AggressiveInstCombine.cpp 15.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
//===- AggressiveInstCombine.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the aggressive expression pattern combiner classes.
// Currently, it handles expression patterns for:
//  * Truncate instruction
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
#include "AggressiveInstCombineInternal.h"
#include "llvm-c/Initialization.h"
#include "llvm-c/Transforms/AggressiveInstCombine.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "aggressive-instcombine"

namespace {
/// Contains expression pattern combiner logic.
/// This class provides both the logic to combine expression patterns and
/// combine them. It differs from InstCombiner class in that each pattern
/// combiner runs only once as opposed to InstCombine's multi-iteration,
/// which allows pattern combiner to have higher complexity than the O(1)
/// required by the instruction combiner.
class AggressiveInstCombinerLegacyPass : public FunctionPass {
public:
  static char ID; // Pass identification, replacement for typeid

  AggressiveInstCombinerLegacyPass() : FunctionPass(ID) {
    initializeAggressiveInstCombinerLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override;

  /// Run all expression pattern optimizations on the given /p F function.
  ///
  /// \param F function to optimize.
  /// \returns true if the IR is changed.
  bool runOnFunction(Function &F) override;
};
} // namespace

/// Match a pattern for a bitwise rotate operation that partially guards
/// against undefined behavior by branching around the rotation when the shift
/// amount is 0.
static bool foldGuardedRotateToFunnelShift(Instruction &I) {
  if (I.getOpcode() != Instruction::PHI || I.getNumOperands() != 2)
    return false;

  // As with the one-use checks below, this is not strictly necessary, but we
  // are being cautious to avoid potential perf regressions on targets that
  // do not actually have a rotate instruction (where the funnel shift would be
  // expanded back into math/shift/logic ops).
  if (!isPowerOf2_32(I.getType()->getScalarSizeInBits()))
    return false;

  // Match V to funnel shift left/right and capture the source operand and
  // shift amount in X and Y.
  auto matchRotate = [](Value *V, Value *&X, Value *&Y) {
    Value *L0, *L1, *R0, *R1;
    unsigned Width = V->getType()->getScalarSizeInBits();
    auto Sub = m_Sub(m_SpecificInt(Width), m_Value(R1));

    // rotate_left(X, Y) == (X << Y) | (X >> (Width - Y))
    auto RotL = m_OneUse(
        m_c_Or(m_Shl(m_Value(L0), m_Value(L1)), m_LShr(m_Value(R0), Sub)));
    if (RotL.match(V) && L0 == R0 && L1 == R1) {
      X = L0;
      Y = L1;
      return Intrinsic::fshl;
    }

    // rotate_right(X, Y) == (X >> Y) | (X << (Width - Y))
    auto RotR = m_OneUse(
        m_c_Or(m_LShr(m_Value(L0), m_Value(L1)), m_Shl(m_Value(R0), Sub)));
    if (RotR.match(V) && L0 == R0 && L1 == R1) {
      X = L0;
      Y = L1;
      return Intrinsic::fshr;
    }

    return Intrinsic::not_intrinsic;
  };

  // One phi operand must be a rotate operation, and the other phi operand must
  // be the source value of that rotate operation:
  // phi [ rotate(RotSrc, RotAmt), RotBB ], [ RotSrc, GuardBB ]
  PHINode &Phi = cast<PHINode>(I);
  Value *P0 = Phi.getOperand(0), *P1 = Phi.getOperand(1);
  Value *RotSrc, *RotAmt;
  Intrinsic::ID IID = matchRotate(P0, RotSrc, RotAmt);
  if (IID == Intrinsic::not_intrinsic || RotSrc != P1) {
    IID = matchRotate(P1, RotSrc, RotAmt);
    if (IID == Intrinsic::not_intrinsic || RotSrc != P0)
      return false;
    assert((IID == Intrinsic::fshl || IID == Intrinsic::fshr) &&
           "Pattern must match funnel shift left or right");
  }

  // The incoming block with our source operand must be the "guard" block.
  // That must contain a cmp+branch to avoid the rotate when the shift amount
  // is equal to 0. The other incoming block is the block with the rotate.
  BasicBlock *GuardBB = Phi.getIncomingBlock(RotSrc == P1);
  BasicBlock *RotBB = Phi.getIncomingBlock(RotSrc != P1);
  Instruction *TermI = GuardBB->getTerminator();
  ICmpInst::Predicate Pred;
  BasicBlock *PhiBB = Phi.getParent();
  if (!match(TermI, m_Br(m_ICmp(Pred, m_Specific(RotAmt), m_ZeroInt()),
                         m_SpecificBB(PhiBB), m_SpecificBB(RotBB))))
    return false;

  if (Pred != CmpInst::ICMP_EQ)
    return false;

  // We matched a variation of this IR pattern:
  // GuardBB:
  //   %cmp = icmp eq i32 %RotAmt, 0
  //   br i1 %cmp, label %PhiBB, label %RotBB
  // RotBB:
  //   %sub = sub i32 32, %RotAmt
  //   %shr = lshr i32 %X, %sub
  //   %shl = shl i32 %X, %RotAmt
  //   %rot = or i32 %shr, %shl
  //   br label %PhiBB
  // PhiBB:
  //   %cond = phi i32 [ %rot, %RotBB ], [ %X, %GuardBB ]
  // -->
  // llvm.fshl.i32(i32 %X, i32 %RotAmt)
  IRBuilder<> Builder(PhiBB, PhiBB->getFirstInsertionPt());
  Function *F = Intrinsic::getDeclaration(Phi.getModule(), IID, Phi.getType());
  Phi.replaceAllUsesWith(Builder.CreateCall(F, {RotSrc, RotSrc, RotAmt}));
  return true;
}

/// This is used by foldAnyOrAllBitsSet() to capture a source value (Root) and
/// the bit indexes (Mask) needed by a masked compare. If we're matching a chain
/// of 'and' ops, then we also need to capture the fact that we saw an
/// "and X, 1", so that's an extra return value for that case.
struct MaskOps {
  Value *Root;
  APInt Mask;
  bool MatchAndChain;
  bool FoundAnd1;

  MaskOps(unsigned BitWidth, bool MatchAnds)
      : Root(nullptr), Mask(APInt::getNullValue(BitWidth)),
        MatchAndChain(MatchAnds), FoundAnd1(false) {}
};

/// This is a recursive helper for foldAnyOrAllBitsSet() that walks through a
/// chain of 'and' or 'or' instructions looking for shift ops of a common source
/// value. Examples:
///   or (or (or X, (X >> 3)), (X >> 5)), (X >> 8)
/// returns { X, 0x129 }
///   and (and (X >> 1), 1), (X >> 4)
/// returns { X, 0x12 }
static bool matchAndOrChain(Value *V, MaskOps &MOps) {
  Value *Op0, *Op1;
  if (MOps.MatchAndChain) {
    // Recurse through a chain of 'and' operands. This requires an extra check
    // vs. the 'or' matcher: we must find an "and X, 1" instruction somewhere
    // in the chain to know that all of the high bits are cleared.
    if (match(V, m_And(m_Value(Op0), m_One()))) {
      MOps.FoundAnd1 = true;
      return matchAndOrChain(Op0, MOps);
    }
    if (match(V, m_And(m_Value(Op0), m_Value(Op1))))
      return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
  } else {
    // Recurse through a chain of 'or' operands.
    if (match(V, m_Or(m_Value(Op0), m_Value(Op1))))
      return matchAndOrChain(Op0, MOps) && matchAndOrChain(Op1, MOps);
  }

  // We need a shift-right or a bare value representing a compare of bit 0 of
  // the original source operand.
  Value *Candidate;
  uint64_t BitIndex = 0;
  if (!match(V, m_LShr(m_Value(Candidate), m_ConstantInt(BitIndex))))
    Candidate = V;

  // Initialize result source operand.
  if (!MOps.Root)
    MOps.Root = Candidate;

  // The shift constant is out-of-range? This code hasn't been simplified.
  if (BitIndex >= MOps.Mask.getBitWidth())
    return false;

  // Fill in the mask bit derived from the shift constant.
  MOps.Mask.setBit(BitIndex);
  return MOps.Root == Candidate;
}

/// Match patterns that correspond to "any-bits-set" and "all-bits-set".
/// These will include a chain of 'or' or 'and'-shifted bits from a
/// common source value:
/// and (or  (lshr X, C), ...), 1 --> (X & CMask) != 0
/// and (and (lshr X, C), ...), 1 --> (X & CMask) == CMask
/// Note: "any-bits-clear" and "all-bits-clear" are variations of these patterns
/// that differ only with a final 'not' of the result. We expect that final
/// 'not' to be folded with the compare that we create here (invert predicate).
static bool foldAnyOrAllBitsSet(Instruction &I) {
  // The 'any-bits-set' ('or' chain) pattern is simpler to match because the
  // final "and X, 1" instruction must be the final op in the sequence.
  bool MatchAllBitsSet;
  if (match(&I, m_c_And(m_OneUse(m_And(m_Value(), m_Value())), m_Value())))
    MatchAllBitsSet = true;
  else if (match(&I, m_And(m_OneUse(m_Or(m_Value(), m_Value())), m_One())))
    MatchAllBitsSet = false;
  else
    return false;

  MaskOps MOps(I.getType()->getScalarSizeInBits(), MatchAllBitsSet);
  if (MatchAllBitsSet) {
    if (!matchAndOrChain(cast<BinaryOperator>(&I), MOps) || !MOps.FoundAnd1)
      return false;
  } else {
    if (!matchAndOrChain(cast<BinaryOperator>(&I)->getOperand(0), MOps))
      return false;
  }

  // The pattern was found. Create a masked compare that replaces all of the
  // shift and logic ops.
  IRBuilder<> Builder(&I);
  Constant *Mask = ConstantInt::get(I.getType(), MOps.Mask);
  Value *And = Builder.CreateAnd(MOps.Root, Mask);
  Value *Cmp = MatchAllBitsSet ? Builder.CreateICmpEQ(And, Mask)
                               : Builder.CreateIsNotNull(And);
  Value *Zext = Builder.CreateZExt(Cmp, I.getType());
  I.replaceAllUsesWith(Zext);
  return true;
}

// Try to recognize below function as popcount intrinsic.
// This is the "best" algorithm from
// http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
// Also used in TargetLowering::expandCTPOP().
//
// int popcount(unsigned int i) {
//   i = i - ((i >> 1) & 0x55555555);
//   i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
//   i = ((i + (i >> 4)) & 0x0F0F0F0F);
//   return (i * 0x01010101) >> 24;
// }
static bool tryToRecognizePopCount(Instruction &I) {
  if (I.getOpcode() != Instruction::LShr)
    return false;

  Type *Ty = I.getType();
  if (!Ty->isIntOrIntVectorTy())
    return false;

  unsigned Len = Ty->getScalarSizeInBits();
  // FIXME: fix Len == 8 and other irregular type lengths.
  if (!(Len <= 128 && Len > 8 && Len % 8 == 0))
    return false;

  APInt Mask55 = APInt::getSplat(Len, APInt(8, 0x55));
  APInt Mask33 = APInt::getSplat(Len, APInt(8, 0x33));
  APInt Mask0F = APInt::getSplat(Len, APInt(8, 0x0F));
  APInt Mask01 = APInt::getSplat(Len, APInt(8, 0x01));
  APInt MaskShift = APInt(Len, Len - 8);

  Value *Op0 = I.getOperand(0);
  Value *Op1 = I.getOperand(1);
  Value *MulOp0;
  // Matching "(i * 0x01010101...) >> 24".
  if ((match(Op0, m_Mul(m_Value(MulOp0), m_SpecificInt(Mask01)))) &&
       match(Op1, m_SpecificInt(MaskShift))) {
    Value *ShiftOp0;
    // Matching "((i + (i >> 4)) & 0x0F0F0F0F...)".
    if (match(MulOp0, m_And(m_c_Add(m_LShr(m_Value(ShiftOp0), m_SpecificInt(4)),
                                    m_Deferred(ShiftOp0)),
                            m_SpecificInt(Mask0F)))) {
      Value *AndOp0;
      // Matching "(i & 0x33333333...) + ((i >> 2) & 0x33333333...)".
      if (match(ShiftOp0,
                m_c_Add(m_And(m_Value(AndOp0), m_SpecificInt(Mask33)),
                        m_And(m_LShr(m_Deferred(AndOp0), m_SpecificInt(2)),
                              m_SpecificInt(Mask33))))) {
        Value *Root, *SubOp1;
        // Matching "i - ((i >> 1) & 0x55555555...)".
        if (match(AndOp0, m_Sub(m_Value(Root), m_Value(SubOp1))) &&
            match(SubOp1, m_And(m_LShr(m_Specific(Root), m_SpecificInt(1)),
                                m_SpecificInt(Mask55)))) {
          LLVM_DEBUG(dbgs() << "Recognized popcount intrinsic\n");
          IRBuilder<> Builder(&I);
          Function *Func = Intrinsic::getDeclaration(
              I.getModule(), Intrinsic::ctpop, I.getType());
          I.replaceAllUsesWith(Builder.CreateCall(Func, {Root}));
          return true;
        }
      }
    }
  }

  return false;
}

/// This is the entry point for folds that could be implemented in regular
/// InstCombine, but they are separated because they are not expected to
/// occur frequently and/or have more than a constant-length pattern match.
static bool foldUnusualPatterns(Function &F, DominatorTree &DT) {
  bool MadeChange = false;
  for (BasicBlock &BB : F) {
    // Ignore unreachable basic blocks.
    if (!DT.isReachableFromEntry(&BB))
      continue;
    // Do not delete instructions under here and invalidate the iterator.
    // Walk the block backwards for efficiency. We're matching a chain of
    // use->defs, so we're more likely to succeed by starting from the bottom.
    // Also, we want to avoid matching partial patterns.
    // TODO: It would be more efficient if we removed dead instructions
    // iteratively in this loop rather than waiting until the end.
    for (Instruction &I : make_range(BB.rbegin(), BB.rend())) {
      MadeChange |= foldAnyOrAllBitsSet(I);
      MadeChange |= foldGuardedRotateToFunnelShift(I);
      MadeChange |= tryToRecognizePopCount(I); 
    }
  }

  // We're done with transforms, so remove dead instructions.
  if (MadeChange)
    for (BasicBlock &BB : F)
      SimplifyInstructionsInBlock(&BB);

  return MadeChange;
}

/// This is the entry point for all transforms. Pass manager differences are
/// handled in the callers of this function.
static bool runImpl(Function &F, TargetLibraryInfo &TLI, DominatorTree &DT) {
  bool MadeChange = false;
  const DataLayout &DL = F.getParent()->getDataLayout();
  TruncInstCombine TIC(TLI, DL, DT);
  MadeChange |= TIC.run(F);
  MadeChange |= foldUnusualPatterns(F, DT);
  return MadeChange;
}

void AggressiveInstCombinerLegacyPass::getAnalysisUsage(
    AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequired<DominatorTreeWrapperPass>();
  AU.addRequired<TargetLibraryInfoWrapperPass>();
  AU.addPreserved<AAResultsWrapperPass>();
  AU.addPreserved<BasicAAWrapperPass>();
  AU.addPreserved<DominatorTreeWrapperPass>();
  AU.addPreserved<GlobalsAAWrapperPass>();
}

bool AggressiveInstCombinerLegacyPass::runOnFunction(Function &F) {
  auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  return runImpl(F, TLI, DT);
}

PreservedAnalyses AggressiveInstCombinePass::run(Function &F,
                                                 FunctionAnalysisManager &AM) {
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  if (!runImpl(F, TLI, DT)) {
    // No changes, all analyses are preserved.
    return PreservedAnalyses::all();
  }
  // Mark all the analyses that instcombine updates as preserved.
  PreservedAnalyses PA;
  PA.preserveSet<CFGAnalyses>();
  PA.preserve<AAManager>();
  PA.preserve<GlobalsAA>();
  return PA;
}

char AggressiveInstCombinerLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(AggressiveInstCombinerLegacyPass,
                      "aggressive-instcombine",
                      "Combine pattern based expressions", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(AggressiveInstCombinerLegacyPass, "aggressive-instcombine",
                    "Combine pattern based expressions", false, false)

// Initialization Routines
void llvm::initializeAggressiveInstCombine(PassRegistry &Registry) {
  initializeAggressiveInstCombinerLegacyPassPass(Registry);
}

void LLVMInitializeAggressiveInstCombiner(LLVMPassRegistryRef R) {
  initializeAggressiveInstCombinerLegacyPassPass(*unwrap(R));
}

FunctionPass *llvm::createAggressiveInstCombinerPass() {
  return new AggressiveInstCombinerLegacyPass();
}

void LLVMAddAggressiveInstCombinerPass(LLVMPassManagerRef PM) {
  unwrap(PM)->add(createAggressiveInstCombinerPass());
}