ThinLTOBitcodeWriter.cpp 20.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
//===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/ModuleSummaryAnalysis.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TypeMetadataUtils.h"
#include "llvm/Bitcode/BitcodeWriter.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/InitializePasses.h"
#include "llvm/Object/ModuleSymbolTable.h"
#include "llvm/Pass.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/FunctionAttrs.h"
#include "llvm/Transforms/IPO/FunctionImport.h"
#include "llvm/Transforms/IPO/LowerTypeTests.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
using namespace llvm;

namespace {

// Promote each local-linkage entity defined by ExportM and used by ImportM by
// changing visibility and appending the given ModuleId.
void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId,
                      SetVector<GlobalValue *> &PromoteExtra) {
  DenseMap<const Comdat *, Comdat *> RenamedComdats;
  for (auto &ExportGV : ExportM.global_values()) {
    if (!ExportGV.hasLocalLinkage())
      continue;

    auto Name = ExportGV.getName();
    GlobalValue *ImportGV = nullptr;
    if (!PromoteExtra.count(&ExportGV)) {
      ImportGV = ImportM.getNamedValue(Name);
      if (!ImportGV)
        continue;
      ImportGV->removeDeadConstantUsers();
      if (ImportGV->use_empty()) {
        ImportGV->eraseFromParent();
        continue;
      }
    }

    std::string NewName = (Name + ModuleId).str();

    if (const auto *C = ExportGV.getComdat())
      if (C->getName() == Name)
        RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName));

    ExportGV.setName(NewName);
    ExportGV.setLinkage(GlobalValue::ExternalLinkage);
    ExportGV.setVisibility(GlobalValue::HiddenVisibility);

    if (ImportGV) {
      ImportGV->setName(NewName);
      ImportGV->setVisibility(GlobalValue::HiddenVisibility);
    }
  }

  if (!RenamedComdats.empty())
    for (auto &GO : ExportM.global_objects())
      if (auto *C = GO.getComdat()) {
        auto Replacement = RenamedComdats.find(C);
        if (Replacement != RenamedComdats.end())
          GO.setComdat(Replacement->second);
      }
}

// Promote all internal (i.e. distinct) type ids used by the module by replacing
// them with external type ids formed using the module id.
//
// Note that this needs to be done before we clone the module because each clone
// will receive its own set of distinct metadata nodes.
void promoteTypeIds(Module &M, StringRef ModuleId) {
  DenseMap<Metadata *, Metadata *> LocalToGlobal;
  auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) {
    Metadata *MD =
        cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata();

    if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) {
      Metadata *&GlobalMD = LocalToGlobal[MD];
      if (!GlobalMD) {
        std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str();
        GlobalMD = MDString::get(M.getContext(), NewName);
      }

      CI->setArgOperand(ArgNo,
                        MetadataAsValue::get(M.getContext(), GlobalMD));
    }
  };

  if (Function *TypeTestFunc =
          M.getFunction(Intrinsic::getName(Intrinsic::type_test))) {
    for (const Use &U : TypeTestFunc->uses()) {
      auto CI = cast<CallInst>(U.getUser());
      ExternalizeTypeId(CI, 1);
    }
  }

  if (Function *TypeCheckedLoadFunc =
          M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) {
    for (const Use &U : TypeCheckedLoadFunc->uses()) {
      auto CI = cast<CallInst>(U.getUser());
      ExternalizeTypeId(CI, 2);
    }
  }

  for (GlobalObject &GO : M.global_objects()) {
    SmallVector<MDNode *, 1> MDs;
    GO.getMetadata(LLVMContext::MD_type, MDs);

    GO.eraseMetadata(LLVMContext::MD_type);
    for (auto MD : MDs) {
      auto I = LocalToGlobal.find(MD->getOperand(1));
      if (I == LocalToGlobal.end()) {
        GO.addMetadata(LLVMContext::MD_type, *MD);
        continue;
      }
      GO.addMetadata(
          LLVMContext::MD_type,
          *MDNode::get(M.getContext(), {MD->getOperand(0), I->second}));
    }
  }
}

// Drop unused globals, and drop type information from function declarations.
// FIXME: If we made functions typeless then there would be no need to do this.
void simplifyExternals(Module &M) {
  FunctionType *EmptyFT =
      FunctionType::get(Type::getVoidTy(M.getContext()), false);

  for (auto I = M.begin(), E = M.end(); I != E;) {
    Function &F = *I++;
    if (F.isDeclaration() && F.use_empty()) {
      F.eraseFromParent();
      continue;
    }

    if (!F.isDeclaration() || F.getFunctionType() == EmptyFT ||
        // Changing the type of an intrinsic may invalidate the IR.
        F.getName().startswith("llvm."))
      continue;

    Function *NewF =
        Function::Create(EmptyFT, GlobalValue::ExternalLinkage,
                         F.getAddressSpace(), "", &M);
    NewF->setVisibility(F.getVisibility());
    NewF->takeName(&F);
    F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType()));
    F.eraseFromParent();
  }

  for (auto I = M.global_begin(), E = M.global_end(); I != E;) {
    GlobalVariable &GV = *I++;
    if (GV.isDeclaration() && GV.use_empty()) {
      GV.eraseFromParent();
      continue;
    }
  }
}

static void
filterModule(Module *M,
             function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) {
  std::vector<GlobalValue *> V;
  for (GlobalValue &GV : M->global_values())
    if (!ShouldKeepDefinition(&GV))
      V.push_back(&GV);

  for (GlobalValue *GV : V)
    if (!convertToDeclaration(*GV))
      GV->eraseFromParent();
}

void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) {
  if (auto *F = dyn_cast<Function>(C))
    return Fn(F);
  if (isa<GlobalValue>(C))
    return;
  for (Value *Op : C->operands())
    forEachVirtualFunction(cast<Constant>(Op), Fn);
}

// If it's possible to split M into regular and thin LTO parts, do so and write
// a multi-module bitcode file with the two parts to OS. Otherwise, write only a
// regular LTO bitcode file to OS.
void splitAndWriteThinLTOBitcode(
    raw_ostream &OS, raw_ostream *ThinLinkOS,
    function_ref<AAResults &(Function &)> AARGetter, Module &M) {
  std::string ModuleId = getUniqueModuleId(&M);
  if (ModuleId.empty()) {
    // We couldn't generate a module ID for this module, write it out as a
    // regular LTO module with an index for summary-based dead stripping.
    ProfileSummaryInfo PSI(M);
    M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
    ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
    WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index);

    if (ThinLinkOS)
      // We don't have a ThinLTO part, but still write the module to the
      // ThinLinkOS if requested so that the expected output file is produced.
      WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false,
                         &Index);

    return;
  }

  promoteTypeIds(M, ModuleId);

  // Returns whether a global or its associated global has attached type
  // metadata. The former may participate in CFI or whole-program
  // devirtualization, so they need to appear in the merged module instead of
  // the thin LTO module. Similarly, globals that are associated with globals
  // with type metadata need to appear in the merged module because they will
  // reference the global's section directly.
  auto HasTypeMetadata = [](const GlobalObject *GO) {
    if (MDNode *MD = GO->getMetadata(LLVMContext::MD_associated))
      if (auto *AssocVM = dyn_cast_or_null<ValueAsMetadata>(MD->getOperand(0)))
        if (auto *AssocGO = dyn_cast<GlobalObject>(AssocVM->getValue()))
          if (AssocGO->hasMetadata(LLVMContext::MD_type))
            return true;
    return GO->hasMetadata(LLVMContext::MD_type);
  };

  // Collect the set of virtual functions that are eligible for virtual constant
  // propagation. Each eligible function must not access memory, must return
  // an integer of width <=64 bits, must take at least one argument, must not
  // use its first argument (assumed to be "this") and all arguments other than
  // the first one must be of <=64 bit integer type.
  //
  // Note that we test whether this copy of the function is readnone, rather
  // than testing function attributes, which must hold for any copy of the
  // function, even a less optimized version substituted at link time. This is
  // sound because the virtual constant propagation optimizations effectively
  // inline all implementations of the virtual function into each call site,
  // rather than using function attributes to perform local optimization.
  DenseSet<const Function *> EligibleVirtualFns;
  // If any member of a comdat lives in MergedM, put all members of that
  // comdat in MergedM to keep the comdat together.
  DenseSet<const Comdat *> MergedMComdats;
  for (GlobalVariable &GV : M.globals())
    if (HasTypeMetadata(&GV)) {
      if (const auto *C = GV.getComdat())
        MergedMComdats.insert(C);
      forEachVirtualFunction(GV.getInitializer(), [&](Function *F) {
        auto *RT = dyn_cast<IntegerType>(F->getReturnType());
        if (!RT || RT->getBitWidth() > 64 || F->arg_empty() ||
            !F->arg_begin()->use_empty())
          return;
        for (auto &Arg : make_range(std::next(F->arg_begin()), F->arg_end())) {
          auto *ArgT = dyn_cast<IntegerType>(Arg.getType());
          if (!ArgT || ArgT->getBitWidth() > 64)
            return;
        }
        if (!F->isDeclaration() &&
            computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone)
          EligibleVirtualFns.insert(F);
      });
    }

  ValueToValueMapTy VMap;
  std::unique_ptr<Module> MergedM(
      CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool {
        if (const auto *C = GV->getComdat())
          if (MergedMComdats.count(C))
            return true;
        if (auto *F = dyn_cast<Function>(GV))
          return EligibleVirtualFns.count(F);
        if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
          return HasTypeMetadata(GVar);
        return false;
      }));
  StripDebugInfo(*MergedM);
  MergedM->setModuleInlineAsm("");

  for (Function &F : *MergedM)
    if (!F.isDeclaration()) {
      // Reset the linkage of all functions eligible for virtual constant
      // propagation. The canonical definitions live in the thin LTO module so
      // that they can be imported.
      F.setLinkage(GlobalValue::AvailableExternallyLinkage);
      F.setComdat(nullptr);
    }

  SetVector<GlobalValue *> CfiFunctions;
  for (auto &F : M)
    if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F))
      CfiFunctions.insert(&F);

  // Remove all globals with type metadata, globals with comdats that live in
  // MergedM, and aliases pointing to such globals from the thin LTO module.
  filterModule(&M, [&](const GlobalValue *GV) {
    if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
      if (HasTypeMetadata(GVar))
        return false;
    if (const auto *C = GV->getComdat())
      if (MergedMComdats.count(C))
        return false;
    return true;
  });

  promoteInternals(*MergedM, M, ModuleId, CfiFunctions);
  promoteInternals(M, *MergedM, ModuleId, CfiFunctions);

  auto &Ctx = MergedM->getContext();
  SmallVector<MDNode *, 8> CfiFunctionMDs;
  for (auto V : CfiFunctions) {
    Function &F = *cast<Function>(V);
    SmallVector<MDNode *, 2> Types;
    F.getMetadata(LLVMContext::MD_type, Types);

    SmallVector<Metadata *, 4> Elts;
    Elts.push_back(MDString::get(Ctx, F.getName()));
    CfiFunctionLinkage Linkage;
    if (lowertypetests::isJumpTableCanonical(&F))
      Linkage = CFL_Definition;
    else if (F.hasExternalWeakLinkage())
      Linkage = CFL_WeakDeclaration;
    else
      Linkage = CFL_Declaration;
    Elts.push_back(ConstantAsMetadata::get(
        llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage)));
    for (auto Type : Types)
      Elts.push_back(Type);
    CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts));
  }

  if(!CfiFunctionMDs.empty()) {
    NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions");
    for (auto MD : CfiFunctionMDs)
      NMD->addOperand(MD);
  }

  SmallVector<MDNode *, 8> FunctionAliases;
  for (auto &A : M.aliases()) {
    if (!isa<Function>(A.getAliasee()))
      continue;

    auto *F = cast<Function>(A.getAliasee());

    Metadata *Elts[] = {
        MDString::get(Ctx, A.getName()),
        MDString::get(Ctx, F->getName()),
        ConstantAsMetadata::get(
            ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())),
        ConstantAsMetadata::get(
            ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())),
    };

    FunctionAliases.push_back(MDTuple::get(Ctx, Elts));
  }

  if (!FunctionAliases.empty()) {
    NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases");
    for (auto MD : FunctionAliases)
      NMD->addOperand(MD);
  }

  SmallVector<MDNode *, 8> Symvers;
  ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) {
    Function *F = M.getFunction(Name);
    if (!F || F->use_empty())
      return;

    Symvers.push_back(MDTuple::get(
        Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)}));
  });

  if (!Symvers.empty()) {
    NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers");
    for (auto MD : Symvers)
      NMD->addOperand(MD);
  }

  simplifyExternals(*MergedM);

  // FIXME: Try to re-use BSI and PFI from the original module here.
  ProfileSummaryInfo PSI(M);
  ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);

  // Mark the merged module as requiring full LTO. We still want an index for
  // it though, so that it can participate in summary-based dead stripping.
  MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
  ModuleSummaryIndex MergedMIndex =
      buildModuleSummaryIndex(*MergedM, nullptr, &PSI);

  SmallVector<char, 0> Buffer;

  BitcodeWriter W(Buffer);
  // Save the module hash produced for the full bitcode, which will
  // be used in the backends, and use that in the minimized bitcode
  // produced for the full link.
  ModuleHash ModHash = {{0}};
  W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index,
                /*GenerateHash=*/true, &ModHash);
  W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex);
  W.writeSymtab();
  W.writeStrtab();
  OS << Buffer;

  // If a minimized bitcode module was requested for the thin link, only
  // the information that is needed by thin link will be written in the
  // given OS (the merged module will be written as usual).
  if (ThinLinkOS) {
    Buffer.clear();
    BitcodeWriter W2(Buffer);
    StripDebugInfo(M);
    W2.writeThinLinkBitcode(M, Index, ModHash);
    W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false,
                   &MergedMIndex);
    W2.writeSymtab();
    W2.writeStrtab();
    *ThinLinkOS << Buffer;
  }
}

// Check if the LTO Unit splitting has been enabled.
bool enableSplitLTOUnit(Module &M) {
  bool EnableSplitLTOUnit = false;
  if (auto *MD = mdconst::extract_or_null<ConstantInt>(
          M.getModuleFlag("EnableSplitLTOUnit")))
    EnableSplitLTOUnit = MD->getZExtValue();
  return EnableSplitLTOUnit;
}

// Returns whether this module needs to be split because it uses type metadata.
bool hasTypeMetadata(Module &M) {
  for (auto &GO : M.global_objects()) {
    if (GO.hasMetadata(LLVMContext::MD_type))
      return true;
  }
  return false;
}

void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS,
                         function_ref<AAResults &(Function &)> AARGetter,
                         Module &M, const ModuleSummaryIndex *Index) {
  std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr;
  // See if this module has any type metadata. If so, we try to split it
  // or at least promote type ids to enable WPD.
  if (hasTypeMetadata(M)) {
    if (enableSplitLTOUnit(M))
      return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M);
    // Promote type ids as needed for index-based WPD.
    std::string ModuleId = getUniqueModuleId(&M);
    if (!ModuleId.empty()) {
      promoteTypeIds(M, ModuleId);
      // Need to rebuild the index so that it contains type metadata
      // for the newly promoted type ids.
      // FIXME: Probably should not bother building the index at all
      // in the caller of writeThinLTOBitcode (which does so via the
      // ModuleSummaryIndexAnalysis pass), since we have to rebuild it
      // anyway whenever there is type metadata (here or in
      // splitAndWriteThinLTOBitcode). Just always build it once via the
      // buildModuleSummaryIndex when Module(s) are ready.
      ProfileSummaryInfo PSI(M);
      NewIndex = std::make_unique<ModuleSummaryIndex>(
          buildModuleSummaryIndex(M, nullptr, &PSI));
      Index = NewIndex.get();
    }
  }

  // Write it out as an unsplit ThinLTO module.

  // Save the module hash produced for the full bitcode, which will
  // be used in the backends, and use that in the minimized bitcode
  // produced for the full link.
  ModuleHash ModHash = {{0}};
  WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index,
                     /*GenerateHash=*/true, &ModHash);
  // If a minimized bitcode module was requested for the thin link, only
  // the information that is needed by thin link will be written in the
  // given OS.
  if (ThinLinkOS && Index)
    WriteThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash);
}

class WriteThinLTOBitcode : public ModulePass {
  raw_ostream &OS; // raw_ostream to print on
  // The output stream on which to emit a minimized module for use
  // just in the thin link, if requested.
  raw_ostream *ThinLinkOS;

public:
  static char ID; // Pass identification, replacement for typeid
  WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) {
    initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
  }

  explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS)
      : ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) {
    initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
  }

  StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; }

  bool runOnModule(Module &M) override {
    const ModuleSummaryIndex *Index =
        &(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex());
    writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index);
    return true;
  }
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesAll();
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<ModuleSummaryIndexWrapperPass>();
    AU.addRequired<TargetLibraryInfoWrapperPass>();
  }
};
} // anonymous namespace

char WriteThinLTOBitcode::ID = 0;
INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode",
                      "Write ThinLTO Bitcode", false, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode",
                    "Write ThinLTO Bitcode", false, true)

ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str,
                                                raw_ostream *ThinLinkOS) {
  return new WriteThinLTOBitcode(Str, ThinLinkOS);
}

PreservedAnalyses
llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) {
  FunctionAnalysisManager &FAM =
      AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
  writeThinLTOBitcode(OS, ThinLinkOS,
                      [&FAM](Function &F) -> AAResults & {
                        return FAM.getResult<AAManager>(F);
                      },
                      M, &AM.getResult<ModuleSummaryIndexAnalysis>(M));
  return PreservedAnalyses::all();
}