InstCombineShifts.cpp 53.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
//===- InstCombineShifts.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the visitShl, visitLShr, and visitAShr functions.
//
//===----------------------------------------------------------------------===//

#include "InstCombineInternal.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "instcombine"

// Given pattern:
//   (x shiftopcode Q) shiftopcode K
// we should rewrite it as
//   x shiftopcode (Q+K)  iff (Q+K) u< bitwidth(x) and
//
// This is valid for any shift, but they must be identical, and we must be
// careful in case we have (zext(Q)+zext(K)) and look past extensions,
// (Q+K) must not overflow or else (Q+K) u< bitwidth(x) is bogus.
//
// AnalyzeForSignBitExtraction indicates that we will only analyze whether this
// pattern has any 2 right-shifts that sum to 1 less than original bit width.
Value *InstCombiner::reassociateShiftAmtsOfTwoSameDirectionShifts(
    BinaryOperator *Sh0, const SimplifyQuery &SQ,
    bool AnalyzeForSignBitExtraction) {
  // Look for a shift of some instruction, ignore zext of shift amount if any.
  Instruction *Sh0Op0;
  Value *ShAmt0;
  if (!match(Sh0,
             m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0)))))
    return nullptr;

  // If there is a truncation between the two shifts, we must make note of it
  // and look through it. The truncation imposes additional constraints on the
  // transform.
  Instruction *Sh1;
  Value *Trunc = nullptr;
  match(Sh0Op0,
        m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)),
                    m_Instruction(Sh1)));

  // Inner shift: (x shiftopcode ShAmt1)
  // Like with other shift, ignore zext of shift amount if any.
  Value *X, *ShAmt1;
  if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1)))))
    return nullptr;

  // We have two shift amounts from two different shifts. The types of those
  // shift amounts may not match. If that's the case let's bailout now..
  if (ShAmt0->getType() != ShAmt1->getType())
    return nullptr;

  // As input, we have the following pattern:
  //   Sh0 (Sh1 X, Q), K
  // We want to rewrite that as:
  //   Sh x, (Q+K)  iff (Q+K) u< bitwidth(x)
  // While we know that originally (Q+K) would not overflow
  // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
  // shift amounts. so it may now overflow in smaller bitwidth.
  // To ensure that does not happen, we need to ensure that the total maximal
  // shift amount is still representable in that smaller bit width.
  unsigned MaximalPossibleTotalShiftAmount =
      (Sh0->getType()->getScalarSizeInBits() - 1) +
      (Sh1->getType()->getScalarSizeInBits() - 1);
  APInt MaximalRepresentableShiftAmount =
      APInt::getAllOnesValue(ShAmt0->getType()->getScalarSizeInBits());
  if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
    return nullptr;

  // We are only looking for signbit extraction if we have two right shifts.
  bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) &&
                           match(Sh1, m_Shr(m_Value(), m_Value()));
  // ... and if it's not two right-shifts, we know the answer already.
  if (AnalyzeForSignBitExtraction && !HadTwoRightShifts)
    return nullptr;

  // The shift opcodes must be identical, unless we are just checking whether
  // this pattern can be interpreted as a sign-bit-extraction.
  Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode();
  bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode();
  if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction)
    return nullptr;

  // If we saw truncation, we'll need to produce extra instruction,
  // and for that one of the operands of the shift must be one-use,
  // unless of course we don't actually plan to produce any instructions here.
  if (Trunc && !AnalyzeForSignBitExtraction &&
      !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
    return nullptr;

  // Can we fold (ShAmt0+ShAmt1) ?
  auto *NewShAmt = dyn_cast_or_null<Constant>(
      SimplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false,
                      SQ.getWithInstruction(Sh0)));
  if (!NewShAmt)
    return nullptr; // Did not simplify.
  unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits();
  unsigned XBitWidth = X->getType()->getScalarSizeInBits();
  // Is the new shift amount smaller than the bit width of inner/new shift?
  if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
                                          APInt(NewShAmtBitWidth, XBitWidth))))
    return nullptr; // FIXME: could perform constant-folding.

  // If there was a truncation, and we have a right-shift, we can only fold if
  // we are left with the original sign bit. Likewise, if we were just checking
  // that this is a sighbit extraction, this is the place to check it.
  // FIXME: zero shift amount is also legal here, but we can't *easily* check
  // more than one predicate so it's not really worth it.
  if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) {
    // If it's not a sign bit extraction, then we're done.
    if (!match(NewShAmt,
               m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
                                  APInt(NewShAmtBitWidth, XBitWidth - 1))))
      return nullptr;
    // If it is, and that was the question, return the base value.
    if (AnalyzeForSignBitExtraction)
      return X;
  }

  assert(IdenticalShOpcodes && "Should not get here with different shifts.");

  // All good, we can do this fold.
  NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, X->getType());

  BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt);

  // The flags can only be propagated if there wasn't a trunc.
  if (!Trunc) {
    // If the pattern did not involve trunc, and both of the original shifts
    // had the same flag set, preserve the flag.
    if (ShiftOpcode == Instruction::BinaryOps::Shl) {
      NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() &&
                                     Sh1->hasNoUnsignedWrap());
      NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() &&
                                   Sh1->hasNoSignedWrap());
    } else {
      NewShift->setIsExact(Sh0->isExact() && Sh1->isExact());
    }
  }

  Instruction *Ret = NewShift;
  if (Trunc) {
    Builder.Insert(NewShift);
    Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType());
  }

  return Ret;
}

// If we have some pattern that leaves only some low bits set, and then performs
// left-shift of those bits, if none of the bits that are left after the final
// shift are modified by the mask, we can omit the mask.
//
// There are many variants to this pattern:
//   a)  (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt
//   b)  (x & (~(-1 << MaskShAmt))) << ShiftShAmt
//   c)  (x & (-1 >> MaskShAmt)) << ShiftShAmt
//   d)  (x & ((-1 << MaskShAmt) >> MaskShAmt)) << ShiftShAmt
//   e)  ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt
//   f)  ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt
// All these patterns can be simplified to just:
//   x << ShiftShAmt
// iff:
//   a,b)     (MaskShAmt+ShiftShAmt) u>= bitwidth(x)
//   c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt)
static Instruction *
dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift,
                                     const SimplifyQuery &Q,
                                     InstCombiner::BuilderTy &Builder) {
  assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl &&
         "The input must be 'shl'!");

  Value *Masked, *ShiftShAmt;
  match(OuterShift,
        m_Shift(m_Value(Masked), m_ZExtOrSelf(m_Value(ShiftShAmt))));

  // *If* there is a truncation between an outer shift and a possibly-mask,
  // then said truncation *must* be one-use, else we can't perform the fold.
  Value *Trunc;
  if (match(Masked, m_CombineAnd(m_Trunc(m_Value(Masked)), m_Value(Trunc))) &&
      !Trunc->hasOneUse())
    return nullptr;

  Type *NarrowestTy = OuterShift->getType();
  Type *WidestTy = Masked->getType();
  bool HadTrunc = WidestTy != NarrowestTy;

  // The mask must be computed in a type twice as wide to ensure
  // that no bits are lost if the sum-of-shifts is wider than the base type.
  Type *ExtendedTy = WidestTy->getExtendedType();

  Value *MaskShAmt;

  // ((1 << MaskShAmt) - 1)
  auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes());
  // (~(-1 << maskNbits))
  auto MaskB = m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_AllOnes());
  // (-1 >> MaskShAmt)
  auto MaskC = m_Shr(m_AllOnes(), m_Value(MaskShAmt));
  // ((-1 << MaskShAmt) >> MaskShAmt)
  auto MaskD =
      m_Shr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt));

  Value *X;
  Constant *NewMask;

  if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) {
    // Peek through an optional zext of the shift amount.
    match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));

    // We have two shift amounts from two different shifts. The types of those
    // shift amounts may not match. If that's the case let's bailout now.
    if (MaskShAmt->getType() != ShiftShAmt->getType())
      return nullptr;

    // Can we simplify (MaskShAmt+ShiftShAmt) ?
    auto *SumOfShAmts = dyn_cast_or_null<Constant>(SimplifyAddInst(
        MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
    if (!SumOfShAmts)
      return nullptr; // Did not simplify.
    // In this pattern SumOfShAmts correlates with the number of low bits
    // that shall remain in the root value (OuterShift).

    // An extend of an undef value becomes zero because the high bits are never
    // completely unknown. Replace the the `undef` shift amounts with final
    // shift bitwidth to ensure that the value remains undef when creating the
    // subsequent shift op.
    SumOfShAmts = Constant::replaceUndefsWith(
        SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(),
                                      ExtendedTy->getScalarSizeInBits()));
    auto *ExtendedSumOfShAmts = ConstantExpr::getZExt(SumOfShAmts, ExtendedTy);
    // And compute the mask as usual: ~(-1 << (SumOfShAmts))
    auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
    auto *ExtendedInvertedMask =
        ConstantExpr::getShl(ExtendedAllOnes, ExtendedSumOfShAmts);
    NewMask = ConstantExpr::getNot(ExtendedInvertedMask);
  } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) ||
             match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)),
                                 m_Deferred(MaskShAmt)))) {
    // Peek through an optional zext of the shift amount.
    match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));

    // We have two shift amounts from two different shifts. The types of those
    // shift amounts may not match. If that's the case let's bailout now.
    if (MaskShAmt->getType() != ShiftShAmt->getType())
      return nullptr;

    // Can we simplify (ShiftShAmt-MaskShAmt) ?
    auto *ShAmtsDiff = dyn_cast_or_null<Constant>(SimplifySubInst(
        ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
    if (!ShAmtsDiff)
      return nullptr; // Did not simplify.
    // In this pattern ShAmtsDiff correlates with the number of high bits that
    // shall be unset in the root value (OuterShift).

    // An extend of an undef value becomes zero because the high bits are never
    // completely unknown. Replace the the `undef` shift amounts with negated
    // bitwidth of innermost shift to ensure that the value remains undef when
    // creating the subsequent shift op.
    unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits();
    ShAmtsDiff = Constant::replaceUndefsWith(
        ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(),
                                     -WidestTyBitWidth));
    auto *ExtendedNumHighBitsToClear = ConstantExpr::getZExt(
        ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(),
                                              WidestTyBitWidth,
                                              /*isSigned=*/false),
                             ShAmtsDiff),
        ExtendedTy);
    // And compute the mask as usual: (-1 l>> (NumHighBitsToClear))
    auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
    NewMask =
        ConstantExpr::getLShr(ExtendedAllOnes, ExtendedNumHighBitsToClear);
  } else
    return nullptr; // Don't know anything about this pattern.

  NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy);

  // Does this mask has any unset bits? If not then we can just not apply it.
  bool NeedMask = !match(NewMask, m_AllOnes());

  // If we need to apply a mask, there are several more restrictions we have.
  if (NeedMask) {
    // The old masking instruction must go away.
    if (!Masked->hasOneUse())
      return nullptr;
    // The original "masking" instruction must not have been`ashr`.
    if (match(Masked, m_AShr(m_Value(), m_Value())))
      return nullptr;
  }

  // If we need to apply truncation, let's do it first, since we can.
  // We have already ensured that the old truncation will go away.
  if (HadTrunc)
    X = Builder.CreateTrunc(X, NarrowestTy);

  // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits.
  // We didn't change the Type of this outermost shift, so we can just do it.
  auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X,
                                          OuterShift->getOperand(1));
  if (!NeedMask)
    return NewShift;

  Builder.Insert(NewShift);
  return BinaryOperator::Create(Instruction::And, NewShift, NewMask);
}

/// If we have a shift-by-constant of a bitwise logic op that itself has a
/// shift-by-constant operand with identical opcode, we may be able to convert
/// that into 2 independent shifts followed by the logic op. This eliminates a
/// a use of an intermediate value (reduces dependency chain).
static Instruction *foldShiftOfShiftedLogic(BinaryOperator &I,
                                            InstCombiner::BuilderTy &Builder) {
  assert(I.isShift() && "Expected a shift as input");
  auto *LogicInst = dyn_cast<BinaryOperator>(I.getOperand(0));
  if (!LogicInst || !LogicInst->isBitwiseLogicOp() || !LogicInst->hasOneUse())
    return nullptr;

  const APInt *C0, *C1;
  if (!match(I.getOperand(1), m_APInt(C1)))
    return nullptr;

  Instruction::BinaryOps ShiftOpcode = I.getOpcode();
  Type *Ty = I.getType();

  // Find a matching one-use shift by constant. The fold is not valid if the sum
  // of the shift values equals or exceeds bitwidth.
  // TODO: Remove the one-use check if the other logic operand (Y) is constant.
  Value *X, *Y;
  auto matchFirstShift = [&](Value *V) {
    return !isa<ConstantExpr>(V) &&
           match(V, m_OneUse(m_Shift(m_Value(X), m_APInt(C0)))) &&
           cast<BinaryOperator>(V)->getOpcode() == ShiftOpcode &&
           (*C0 + *C1).ult(Ty->getScalarSizeInBits());
  };

  // Logic ops are commutative, so check each operand for a match.
  if (matchFirstShift(LogicInst->getOperand(0)))
    Y = LogicInst->getOperand(1);
  else if (matchFirstShift(LogicInst->getOperand(1)))
    Y = LogicInst->getOperand(0);
  else
    return nullptr;

  // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
  Constant *ShiftSumC = ConstantInt::get(Ty, *C0 + *C1);
  Value *NewShift1 = Builder.CreateBinOp(ShiftOpcode, X, ShiftSumC);
  Value *NewShift2 = Builder.CreateBinOp(ShiftOpcode, Y, I.getOperand(1));
  return BinaryOperator::Create(LogicInst->getOpcode(), NewShift1, NewShift2);
}

Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  assert(Op0->getType() == Op1->getType());

  // If the shift amount is a one-use `sext`, we can demote it to `zext`.
  Value *Y;
  if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) {
    Value *NewExt = Builder.CreateZExt(Y, I.getType(), Op1->getName());
    return BinaryOperator::Create(I.getOpcode(), Op0, NewExt);
  }

  // See if we can fold away this shift.
  if (SimplifyDemandedInstructionBits(I))
    return &I;

  // Try to fold constant and into select arguments.
  if (isa<Constant>(Op0))
    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
      if (Instruction *R = FoldOpIntoSelect(I, SI))
        return R;

  if (Constant *CUI = dyn_cast<Constant>(Op1))
    if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
      return Res;

  if (auto *NewShift = cast_or_null<Instruction>(
          reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ)))
    return NewShift;

  // (C1 shift (A add C2)) -> (C1 shift C2) shift A)
  // iff A and C2 are both positive.
  Value *A;
  Constant *C;
  if (match(Op0, m_Constant()) && match(Op1, m_Add(m_Value(A), m_Constant(C))))
    if (isKnownNonNegative(A, DL, 0, &AC, &I, &DT) &&
        isKnownNonNegative(C, DL, 0, &AC, &I, &DT))
      return BinaryOperator::Create(
          I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), Op0, C), A);

  // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
  // Because shifts by negative values (which could occur if A were negative)
  // are undefined.
  const APInt *B;
  if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) {
    // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
    // demand the sign bit (and many others) here??
    Value *Rem = Builder.CreateAnd(A, ConstantInt::get(I.getType(), *B - 1),
                                   Op1->getName());
    I.setOperand(1, Rem);
    return &I;
  }

  if (Instruction *Logic = foldShiftOfShiftedLogic(I, Builder))
    return Logic;

  return nullptr;
}

/// Return true if we can simplify two logical (either left or right) shifts
/// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl,
                                    Instruction *InnerShift, InstCombiner &IC,
                                    Instruction *CxtI) {
  assert(InnerShift->isLogicalShift() && "Unexpected instruction type");

  // We need constant scalar or constant splat shifts.
  const APInt *InnerShiftConst;
  if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst)))
    return false;

  // Two logical shifts in the same direction:
  // shl (shl X, C1), C2 -->  shl X, C1 + C2
  // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
  bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
  if (IsInnerShl == IsOuterShl)
    return true;

  // Equal shift amounts in opposite directions become bitwise 'and':
  // lshr (shl X, C), C --> and X, C'
  // shl (lshr X, C), C --> and X, C'
  if (*InnerShiftConst == OuterShAmt)
    return true;

  // If the 2nd shift is bigger than the 1st, we can fold:
  // lshr (shl X, C1), C2 -->  and (shl X, C1 - C2), C3
  // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
  // but it isn't profitable unless we know the and'd out bits are already zero.
  // Also, check that the inner shift is valid (less than the type width) or
  // we'll crash trying to produce the bit mask for the 'and'.
  unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits();
  if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) {
    unsigned InnerShAmt = InnerShiftConst->getZExtValue();
    unsigned MaskShift =
        IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
    APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift;
    if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI))
      return true;
  }

  return false;
}

/// See if we can compute the specified value, but shifted logically to the left
/// or right by some number of bits. This should return true if the expression
/// can be computed for the same cost as the current expression tree. This is
/// used to eliminate extraneous shifting from things like:
///      %C = shl i128 %A, 64
///      %D = shl i128 %B, 96
///      %E = or i128 %C, %D
///      %F = lshr i128 %E, 64
/// where the client will ask if E can be computed shifted right by 64-bits. If
/// this succeeds, getShiftedValue() will be called to produce the value.
static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift,
                               InstCombiner &IC, Instruction *CxtI) {
  // We can always evaluate constants shifted.
  if (isa<Constant>(V))
    return true;

  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return false;

  // If this is the opposite shift, we can directly reuse the input of the shift
  // if the needed bits are already zero in the input.  This allows us to reuse
  // the value which means that we don't care if the shift has multiple uses.
  //  TODO:  Handle opposite shift by exact value.
  ConstantInt *CI = nullptr;
  if ((IsLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
      (!IsLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
    if (CI->getValue() == NumBits) {
      // TODO: Check that the input bits are already zero with MaskedValueIsZero
#if 0
      // If this is a truncate of a logical shr, we can truncate it to a smaller
      // lshr iff we know that the bits we would otherwise be shifting in are
      // already zeros.
      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
      uint32_t BitWidth = Ty->getScalarSizeInBits();
      if (MaskedValueIsZero(I->getOperand(0),
            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
          CI->getLimitedValue(BitWidth) < BitWidth) {
        return CanEvaluateTruncated(I->getOperand(0), Ty);
      }
#endif

    }
  }

  // We can't mutate something that has multiple uses: doing so would
  // require duplicating the instruction in general, which isn't profitable.
  if (!I->hasOneUse()) return false;

  switch (I->getOpcode()) {
  default: return false;
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
    return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) &&
           canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I);

  case Instruction::Shl:
  case Instruction::LShr:
    return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI);

  case Instruction::Select: {
    SelectInst *SI = cast<SelectInst>(I);
    Value *TrueVal = SI->getTrueValue();
    Value *FalseVal = SI->getFalseValue();
    return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) &&
           canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI);
  }
  case Instruction::PHI: {
    // We can change a phi if we can change all operands.  Note that we never
    // get into trouble with cyclic PHIs here because we only consider
    // instructions with a single use.
    PHINode *PN = cast<PHINode>(I);
    for (Value *IncValue : PN->incoming_values())
      if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN))
        return false;
    return true;
  }
  }
}

/// Fold OuterShift (InnerShift X, C1), C2.
/// See canEvaluateShiftedShift() for the constraints on these instructions.
static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt,
                               bool IsOuterShl,
                               InstCombiner::BuilderTy &Builder) {
  bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
  Type *ShType = InnerShift->getType();
  unsigned TypeWidth = ShType->getScalarSizeInBits();

  // We only accept shifts-by-a-constant in canEvaluateShifted().
  const APInt *C1;
  match(InnerShift->getOperand(1), m_APInt(C1));
  unsigned InnerShAmt = C1->getZExtValue();

  // Change the shift amount and clear the appropriate IR flags.
  auto NewInnerShift = [&](unsigned ShAmt) {
    InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt));
    if (IsInnerShl) {
      InnerShift->setHasNoUnsignedWrap(false);
      InnerShift->setHasNoSignedWrap(false);
    } else {
      InnerShift->setIsExact(false);
    }
    return InnerShift;
  };

  // Two logical shifts in the same direction:
  // shl (shl X, C1), C2 -->  shl X, C1 + C2
  // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
  if (IsInnerShl == IsOuterShl) {
    // If this is an oversized composite shift, then unsigned shifts get 0.
    if (InnerShAmt + OuterShAmt >= TypeWidth)
      return Constant::getNullValue(ShType);

    return NewInnerShift(InnerShAmt + OuterShAmt);
  }

  // Equal shift amounts in opposite directions become bitwise 'and':
  // lshr (shl X, C), C --> and X, C'
  // shl (lshr X, C), C --> and X, C'
  if (InnerShAmt == OuterShAmt) {
    APInt Mask = IsInnerShl
                     ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt)
                     : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt);
    Value *And = Builder.CreateAnd(InnerShift->getOperand(0),
                                   ConstantInt::get(ShType, Mask));
    if (auto *AndI = dyn_cast<Instruction>(And)) {
      AndI->moveBefore(InnerShift);
      AndI->takeName(InnerShift);
    }
    return And;
  }

  assert(InnerShAmt > OuterShAmt &&
         "Unexpected opposite direction logical shift pair");

  // In general, we would need an 'and' for this transform, but
  // canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
  // lshr (shl X, C1), C2 -->  shl X, C1 - C2
  // shl (lshr X, C1), C2 --> lshr X, C1 - C2
  return NewInnerShift(InnerShAmt - OuterShAmt);
}

/// When canEvaluateShifted() returns true for an expression, this function
/// inserts the new computation that produces the shifted value.
static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
                              InstCombiner &IC, const DataLayout &DL) {
  // We can always evaluate constants shifted.
  if (Constant *C = dyn_cast<Constant>(V)) {
    if (isLeftShift)
      V = IC.Builder.CreateShl(C, NumBits);
    else
      V = IC.Builder.CreateLShr(C, NumBits);
    // If we got a constantexpr back, try to simplify it with TD info.
    if (auto *C = dyn_cast<Constant>(V))
      if (auto *FoldedC =
              ConstantFoldConstant(C, DL, &IC.getTargetLibraryInfo()))
        V = FoldedC;
    return V;
  }

  Instruction *I = cast<Instruction>(V);
  IC.Worklist.Add(I);

  switch (I->getOpcode()) {
  default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
    I->setOperand(
        0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
    I->setOperand(
        1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
    return I;

  case Instruction::Shl:
  case Instruction::LShr:
    return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift,
                            IC.Builder);

  case Instruction::Select:
    I->setOperand(
        1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
    I->setOperand(
        2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
    return I;
  case Instruction::PHI: {
    // We can change a phi if we can change all operands.  Note that we never
    // get into trouble with cyclic PHIs here because we only consider
    // instructions with a single use.
    PHINode *PN = cast<PHINode>(I);
    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
      PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits,
                                              isLeftShift, IC, DL));
    return PN;
  }
  }
}

// If this is a bitwise operator or add with a constant RHS we might be able
// to pull it through a shift.
static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift,
                                         BinaryOperator *BO) {
  switch (BO->getOpcode()) {
  default:
    return false; // Do not perform transform!
  case Instruction::Add:
    return Shift.getOpcode() == Instruction::Shl;
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::And:
    return true;
  }
}

Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, Constant *Op1,
                                               BinaryOperator &I) {
  bool isLeftShift = I.getOpcode() == Instruction::Shl;

  const APInt *Op1C;
  if (!match(Op1, m_APInt(Op1C)))
    return nullptr;

  // See if we can propagate this shift into the input, this covers the trivial
  // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
  if (I.getOpcode() != Instruction::AShr &&
      canEvaluateShifted(Op0, Op1C->getZExtValue(), isLeftShift, *this, &I)) {
    LLVM_DEBUG(
        dbgs() << "ICE: GetShiftedValue propagating shift through expression"
                  " to eliminate shift:\n  IN: "
               << *Op0 << "\n  SH: " << I << "\n");

    return replaceInstUsesWith(
        I, getShiftedValue(Op0, Op1C->getZExtValue(), isLeftShift, *this, DL));
  }

  // See if we can simplify any instructions used by the instruction whose sole
  // purpose is to compute bits we don't care about.
  unsigned TypeBits = Op0->getType()->getScalarSizeInBits();

  assert(!Op1C->uge(TypeBits) &&
         "Shift over the type width should have been removed already");

  if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I))
    return FoldedShift;

  // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
  if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
    Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
    // If 'shift2' is an ashr, we would have to get the sign bit into a funny
    // place.  Don't try to do this transformation in this case.  Also, we
    // require that the input operand is a shift-by-constant so that we have
    // confidence that the shifts will get folded together.  We could do this
    // xform in more cases, but it is unlikely to be profitable.
    if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
        isa<ConstantInt>(TrOp->getOperand(1))) {
      // Okay, we'll do this xform.  Make the shift of shift.
      Constant *ShAmt =
          ConstantExpr::getZExt(cast<Constant>(Op1), TrOp->getType());
      // (shift2 (shift1 & 0x00FF), c2)
      Value *NSh = Builder.CreateBinOp(I.getOpcode(), TrOp, ShAmt, I.getName());

      // For logical shifts, the truncation has the effect of making the high
      // part of the register be zeros.  Emulate this by inserting an AND to
      // clear the top bits as needed.  This 'and' will usually be zapped by
      // other xforms later if dead.
      unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
      unsigned DstSize = TI->getType()->getScalarSizeInBits();
      APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));

      // The mask we constructed says what the trunc would do if occurring
      // between the shifts.  We want to know the effect *after* the second
      // shift.  We know that it is a logical shift by a constant, so adjust the
      // mask as appropriate.
      if (I.getOpcode() == Instruction::Shl)
        MaskV <<= Op1C->getZExtValue();
      else {
        assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
        MaskV.lshrInPlace(Op1C->getZExtValue());
      }

      // shift1 & 0x00FF
      Value *And = Builder.CreateAnd(NSh,
                                     ConstantInt::get(I.getContext(), MaskV),
                                     TI->getName());

      // Return the value truncated to the interesting size.
      return new TruncInst(And, I.getType());
    }
  }

  if (Op0->hasOneUse()) {
    if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
      // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
      Value *V1, *V2;
      ConstantInt *CC;
      switch (Op0BO->getOpcode()) {
      default: break;
      case Instruction::Add:
      case Instruction::And:
      case Instruction::Or:
      case Instruction::Xor: {
        // These operators commute.
        // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C)
        if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
            match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
                  m_Specific(Op1)))) {
          Value *YS =         // (Y << C)
            Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
          // (X + (Y << C))
          Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), YS, V1,
                                         Op0BO->getOperand(1)->getName());
          unsigned Op1Val = Op1C->getLimitedValue(TypeBits);

          APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
          Constant *Mask = ConstantInt::get(I.getContext(), Bits);
          if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
            Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
          return BinaryOperator::CreateAnd(X, Mask);
        }

        // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C))
        Value *Op0BOOp1 = Op0BO->getOperand(1);
        if (isLeftShift && Op0BOOp1->hasOneUse() &&
            match(Op0BOOp1,
                  m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
                        m_ConstantInt(CC)))) {
          Value *YS =   // (Y << C)
            Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
          // X & (CC << C)
          Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
                                        V1->getName()+".mask");
          return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
        }
        LLVM_FALLTHROUGH;
      }

      case Instruction::Sub: {
        // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
        if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
            match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
                  m_Specific(Op1)))) {
          Value *YS =  // (Y << C)
            Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
          // (X + (Y << C))
          Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), V1, YS,
                                         Op0BO->getOperand(0)->getName());
          unsigned Op1Val = Op1C->getLimitedValue(TypeBits);

          APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
          Constant *Mask = ConstantInt::get(I.getContext(), Bits);
          if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
            Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
          return BinaryOperator::CreateAnd(X, Mask);
        }

        // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C)
        if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
            match(Op0BO->getOperand(0),
                  m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))),
                        m_ConstantInt(CC))) && V2 == Op1) {
          Value *YS = // (Y << C)
            Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
          // X & (CC << C)
          Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
                                        V1->getName()+".mask");

          return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
        }

        break;
      }
      }


      // If the operand is a bitwise operator with a constant RHS, and the
      // shift is the only use, we can pull it out of the shift.
      const APInt *Op0C;
      if (match(Op0BO->getOperand(1), m_APInt(Op0C))) {
        if (canShiftBinOpWithConstantRHS(I, Op0BO)) {
          Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
                                     cast<Constant>(Op0BO->getOperand(1)), Op1);

          Value *NewShift =
            Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
          NewShift->takeName(Op0BO);

          return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
                                        NewRHS);
        }
      }

      // If the operand is a subtract with a constant LHS, and the shift
      // is the only use, we can pull it out of the shift.
      // This folds (shl (sub C1, X), C2) -> (sub (C1 << C2), (shl X, C2))
      if (isLeftShift && Op0BO->getOpcode() == Instruction::Sub &&
          match(Op0BO->getOperand(0), m_APInt(Op0C))) {
        Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
                                   cast<Constant>(Op0BO->getOperand(0)), Op1);

        Value *NewShift = Builder.CreateShl(Op0BO->getOperand(1), Op1);
        NewShift->takeName(Op0BO);

        return BinaryOperator::CreateSub(NewRHS, NewShift);
      }
    }

    // If we have a select that conditionally executes some binary operator,
    // see if we can pull it the select and operator through the shift.
    //
    // For example, turning:
    //   shl (select C, (add X, C1), X), C2
    // Into:
    //   Y = shl X, C2
    //   select C, (add Y, C1 << C2), Y
    Value *Cond;
    BinaryOperator *TBO;
    Value *FalseVal;
    if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)),
                            m_Value(FalseVal)))) {
      const APInt *C;
      if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal &&
          match(TBO->getOperand(1), m_APInt(C)) &&
          canShiftBinOpWithConstantRHS(I, TBO)) {
        Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
                                       cast<Constant>(TBO->getOperand(1)), Op1);

        Value *NewShift =
          Builder.CreateBinOp(I.getOpcode(), FalseVal, Op1);
        Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift,
                                           NewRHS);
        return SelectInst::Create(Cond, NewOp, NewShift);
      }
    }

    BinaryOperator *FBO;
    Value *TrueVal;
    if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal),
                            m_OneUse(m_BinOp(FBO))))) {
      const APInt *C;
      if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal &&
          match(FBO->getOperand(1), m_APInt(C)) &&
          canShiftBinOpWithConstantRHS(I, FBO)) {
        Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
                                       cast<Constant>(FBO->getOperand(1)), Op1);

        Value *NewShift =
          Builder.CreateBinOp(I.getOpcode(), TrueVal, Op1);
        Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift,
                                           NewRHS);
        return SelectInst::Create(Cond, NewShift, NewOp);
      }
    }
  }

  return nullptr;
}

Instruction *InstCombiner::visitShl(BinaryOperator &I) {
  const SimplifyQuery Q = SQ.getWithInstruction(&I);

  if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
                                 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q))
    return replaceInstUsesWith(I, V);

  if (Instruction *X = foldVectorBinop(I))
    return X;

  if (Instruction *V = commonShiftTransforms(I))
    return V;

  if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder))
    return V;

  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  Type *Ty = I.getType();
  unsigned BitWidth = Ty->getScalarSizeInBits();

  const APInt *ShAmtAPInt;
  if (match(Op1, m_APInt(ShAmtAPInt))) {
    unsigned ShAmt = ShAmtAPInt->getZExtValue();

    // shl (zext X), ShAmt --> zext (shl X, ShAmt)
    // This is only valid if X would have zeros shifted out.
    Value *X;
    if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
      unsigned SrcWidth = X->getType()->getScalarSizeInBits();
      if (ShAmt < SrcWidth &&
          MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmt), 0, &I))
        return new ZExtInst(Builder.CreateShl(X, ShAmt), Ty);
    }

    // (X >> C) << C --> X & (-1 << C)
    if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) {
      APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt));
      return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
    }

    // FIXME: we do not yet transform non-exact shr's. The backend (DAGCombine)
    // needs a few fixes for the rotate pattern recognition first.
    const APInt *ShOp1;
    if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(ShOp1))))) {
      unsigned ShrAmt = ShOp1->getZExtValue();
      if (ShrAmt < ShAmt) {
        // If C1 < C2: (X >>?,exact C1) << C2 --> X << (C2 - C1)
        Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShrAmt);
        auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
        NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
        NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
        return NewShl;
      }
      if (ShrAmt > ShAmt) {
        // If C1 > C2: (X >>?exact C1) << C2 --> X >>?exact (C1 - C2)
        Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmt);
        auto *NewShr = BinaryOperator::Create(
            cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff);
        NewShr->setIsExact(true);
        return NewShr;
      }
    }

    if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1)))) {
      unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
      // Oversized shifts are simplified to zero in InstSimplify.
      if (AmtSum < BitWidth)
        // (X << C1) << C2 --> X << (C1 + C2)
        return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum));
    }

    // If the shifted-out value is known-zero, then this is a NUW shift.
    if (!I.hasNoUnsignedWrap() &&
        MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmt), 0, &I)) {
      I.setHasNoUnsignedWrap();
      return &I;
    }

    // If the shifted-out value is all signbits, then this is a NSW shift.
    if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmt) {
      I.setHasNoSignedWrap();
      return &I;
    }
  }

  // Transform  (x >> y) << y  to  x & (-1 << y)
  // Valid for any type of right-shift.
  Value *X;
  if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
    Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
    Value *Mask = Builder.CreateShl(AllOnes, Op1);
    return BinaryOperator::CreateAnd(Mask, X);
  }

  Constant *C1;
  if (match(Op1, m_Constant(C1))) {
    Constant *C2;
    Value *X;
    // (C2 << X) << C1 --> (C2 << C1) << X
    if (match(Op0, m_OneUse(m_Shl(m_Constant(C2), m_Value(X)))))
      return BinaryOperator::CreateShl(ConstantExpr::getShl(C2, C1), X);

    // (X * C2) << C1 --> X * (C2 << C1)
    if (match(Op0, m_Mul(m_Value(X), m_Constant(C2))))
      return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1));

    // shl (zext i1 X), C1 --> select (X, 1 << C1, 0)
    if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
      auto *NewC = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C1);
      return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
    }
  }

  // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1
  if (match(Op0, m_One()) &&
      match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X))))
    return BinaryOperator::CreateLShr(
        ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X);

  return nullptr;
}

Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
  if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
                                  SQ.getWithInstruction(&I)))
    return replaceInstUsesWith(I, V);

  if (Instruction *X = foldVectorBinop(I))
    return X;

  if (Instruction *R = commonShiftTransforms(I))
    return R;

  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  Type *Ty = I.getType();
  const APInt *ShAmtAPInt;
  if (match(Op1, m_APInt(ShAmtAPInt))) {
    unsigned ShAmt = ShAmtAPInt->getZExtValue();
    unsigned BitWidth = Ty->getScalarSizeInBits();
    auto *II = dyn_cast<IntrinsicInst>(Op0);
    if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt &&
        (II->getIntrinsicID() == Intrinsic::ctlz ||
         II->getIntrinsicID() == Intrinsic::cttz ||
         II->getIntrinsicID() == Intrinsic::ctpop)) {
      // ctlz.i32(x)>>5  --> zext(x == 0)
      // cttz.i32(x)>>5  --> zext(x == 0)
      // ctpop.i32(x)>>5 --> zext(x == -1)
      bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop;
      Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0);
      Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS);
      return new ZExtInst(Cmp, Ty);
    }

    Value *X;
    const APInt *ShOp1;
    if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1))) && ShOp1->ult(BitWidth)) {
      if (ShOp1->ult(ShAmt)) {
        unsigned ShlAmt = ShOp1->getZExtValue();
        Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
        if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
          // (X <<nuw C1) >>u C2 --> X >>u (C2 - C1)
          auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff);
          NewLShr->setIsExact(I.isExact());
          return NewLShr;
        }
        // (X << C1) >>u C2  --> (X >>u (C2 - C1)) & (-1 >> C2)
        Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact());
        APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
        return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
      }
      if (ShOp1->ugt(ShAmt)) {
        unsigned ShlAmt = ShOp1->getZExtValue();
        Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
        if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
          // (X <<nuw C1) >>u C2 --> X <<nuw (C1 - C2)
          auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
          NewShl->setHasNoUnsignedWrap(true);
          return NewShl;
        }
        // (X << C1) >>u C2  --> X << (C1 - C2) & (-1 >> C2)
        Value *NewShl = Builder.CreateShl(X, ShiftDiff);
        APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
        return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
      }
      assert(*ShOp1 == ShAmt);
      // (X << C) >>u C --> X & (-1 >>u C)
      APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
      return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
    }

    if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) &&
        (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
      assert(ShAmt < X->getType()->getScalarSizeInBits() &&
             "Big shift not simplified to zero?");
      // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN
      Value *NewLShr = Builder.CreateLShr(X, ShAmt);
      return new ZExtInst(NewLShr, Ty);
    }

    if (match(Op0, m_SExt(m_Value(X))) &&
        (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
      // Are we moving the sign bit to the low bit and widening with high zeros?
      unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits();
      if (ShAmt == BitWidth - 1) {
        // lshr (sext i1 X to iN), N-1 --> zext X to iN
        if (SrcTyBitWidth == 1)
          return new ZExtInst(X, Ty);

        // lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN
        if (Op0->hasOneUse()) {
          Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1);
          return new ZExtInst(NewLShr, Ty);
        }
      }

      // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN
      if (ShAmt == BitWidth - SrcTyBitWidth && Op0->hasOneUse()) {
        // The new shift amount can't be more than the narrow source type.
        unsigned NewShAmt = std::min(ShAmt, SrcTyBitWidth - 1);
        Value *AShr = Builder.CreateAShr(X, NewShAmt);
        return new ZExtInst(AShr, Ty);
      }
    }

    if (match(Op0, m_LShr(m_Value(X), m_APInt(ShOp1)))) {
      unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
      // Oversized shifts are simplified to zero in InstSimplify.
      if (AmtSum < BitWidth)
        // (X >>u C1) >>u C2 --> X >>u (C1 + C2)
        return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
    }

    // If the shifted-out value is known-zero, then this is an exact shift.
    if (!I.isExact() &&
        MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
      I.setIsExact();
      return &I;
    }
  }

  // Transform  (x << y) >> y  to  x & (-1 >> y)
  Value *X;
  if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) {
    Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
    Value *Mask = Builder.CreateLShr(AllOnes, Op1);
    return BinaryOperator::CreateAnd(Mask, X);
  }

  return nullptr;
}

Instruction *
InstCombiner::foldVariableSignZeroExtensionOfVariableHighBitExtract(
    BinaryOperator &OldAShr) {
  assert(OldAShr.getOpcode() == Instruction::AShr &&
         "Must be called with arithmetic right-shift instruction only.");

  // Check that constant C is a splat of the element-wise bitwidth of V.
  auto BitWidthSplat = [](Constant *C, Value *V) {
    return match(
        C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
                              APInt(C->getType()->getScalarSizeInBits(),
                                    V->getType()->getScalarSizeInBits())));
  };

  // It should look like variable-length sign-extension on the outside:
  //   (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits)
  Value *NBits;
  Instruction *MaybeTrunc;
  Constant *C1, *C2;
  if (!match(&OldAShr,
             m_AShr(m_Shl(m_Instruction(MaybeTrunc),
                          m_ZExtOrSelf(m_Sub(m_Constant(C1),
                                             m_ZExtOrSelf(m_Value(NBits))))),
                    m_ZExtOrSelf(m_Sub(m_Constant(C2),
                                       m_ZExtOrSelf(m_Deferred(NBits)))))) ||
      !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr))
    return nullptr;

  // There may or may not be a truncation after outer two shifts.
  Instruction *HighBitExtract;
  match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract)));
  bool HadTrunc = MaybeTrunc != HighBitExtract;

  // And finally, the innermost part of the pattern must be a right-shift.
  Value *X, *NumLowBitsToSkip;
  if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip))))
    return nullptr;

  // Said right-shift must extract high NBits bits - C0 must be it's bitwidth.
  Constant *C0;
  if (!match(NumLowBitsToSkip,
             m_ZExtOrSelf(
                 m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) ||
      !BitWidthSplat(C0, HighBitExtract))
    return nullptr;

  // Since the NBits is identical for all shifts, if the outermost and
  // innermost shifts are identical, then outermost shifts are redundant.
  // If we had truncation, do keep it though.
  if (HighBitExtract->getOpcode() == OldAShr.getOpcode())
    return replaceInstUsesWith(OldAShr, MaybeTrunc);

  // Else, if there was a truncation, then we need to ensure that one
  // instruction will go away.
  if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
    return nullptr;

  // Finally, bypass two innermost shifts, and perform the outermost shift on
  // the operands of the innermost shift.
  Instruction *NewAShr =
      BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip);
  NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness.
  if (!HadTrunc)
    return NewAShr;

  Builder.Insert(NewAShr);
  return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType());
}

Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
  if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
                                  SQ.getWithInstruction(&I)))
    return replaceInstUsesWith(I, V);

  if (Instruction *X = foldVectorBinop(I))
    return X;

  if (Instruction *R = commonShiftTransforms(I))
    return R;

  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
  Type *Ty = I.getType();
  unsigned BitWidth = Ty->getScalarSizeInBits();
  const APInt *ShAmtAPInt;
  if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) {
    unsigned ShAmt = ShAmtAPInt->getZExtValue();

    // If the shift amount equals the difference in width of the destination
    // and source scalar types:
    // ashr (shl (zext X), C), C --> sext X
    Value *X;
    if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) &&
        ShAmt == BitWidth - X->getType()->getScalarSizeInBits())
      return new SExtInst(X, Ty);

    // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
    // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
    const APInt *ShOp1;
    if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) &&
        ShOp1->ult(BitWidth)) {
      unsigned ShlAmt = ShOp1->getZExtValue();
      if (ShlAmt < ShAmt) {
        // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
        Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
        auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff);
        NewAShr->setIsExact(I.isExact());
        return NewAShr;
      }
      if (ShlAmt > ShAmt) {
        // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
        Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
        auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff);
        NewShl->setHasNoSignedWrap(true);
        return NewShl;
      }
    }

    if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) &&
        ShOp1->ult(BitWidth)) {
      unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
      // Oversized arithmetic shifts replicate the sign bit.
      AmtSum = std::min(AmtSum, BitWidth - 1);
      // (X >>s C1) >>s C2 --> X >>s (C1 + C2)
      return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
    }

    if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) &&
        (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) {
      // ashr (sext X), C --> sext (ashr X, C')
      Type *SrcTy = X->getType();
      ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1);
      Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt));
      return new SExtInst(NewSh, Ty);
    }

    // If the shifted-out value is known-zero, then this is an exact shift.
    if (!I.isExact() &&
        MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
      I.setIsExact();
      return &I;
    }
  }

  if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I))
    return R;

  // See if we can turn a signed shr into an unsigned shr.
  if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I))
    return BinaryOperator::CreateLShr(Op0, Op1);

  return nullptr;
}