PGOMemOPSizeOpt.cpp 15.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
//===-- PGOMemOPSizeOpt.cpp - Optimizations based on value profiling ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the transformation that optimizes memory intrinsics
// such as memcpy using the size value profile. When memory intrinsic size
// value profile metadata is available, a single memory intrinsic is expanded
// to a sequence of guarded specialized versions that are called with the
// hottest size(s), for later expansion into more optimal inline sequences.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/PassRegistry.h"
#include "llvm/PassSupport.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <cassert>
#include <cstdint>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "pgo-memop-opt"

STATISTIC(NumOfPGOMemOPOpt, "Number of memop intrinsics optimized.");
STATISTIC(NumOfPGOMemOPAnnotate, "Number of memop intrinsics annotated.");

// The minimum call count to optimize memory intrinsic calls.
static cl::opt<unsigned>
    MemOPCountThreshold("pgo-memop-count-threshold", cl::Hidden, cl::ZeroOrMore,
                        cl::init(1000),
                        cl::desc("The minimum count to optimize memory "
                                 "intrinsic calls"));

// Command line option to disable memory intrinsic optimization. The default is
// false. This is for debug purpose.
static cl::opt<bool> DisableMemOPOPT("disable-memop-opt", cl::init(false),
                                     cl::Hidden, cl::desc("Disable optimize"));

// The percent threshold to optimize memory intrinsic calls.
static cl::opt<unsigned>
    MemOPPercentThreshold("pgo-memop-percent-threshold", cl::init(40),
                          cl::Hidden, cl::ZeroOrMore,
                          cl::desc("The percentage threshold for the "
                                   "memory intrinsic calls optimization"));

// Maximum number of versions for optimizing memory intrinsic call.
static cl::opt<unsigned>
    MemOPMaxVersion("pgo-memop-max-version", cl::init(3), cl::Hidden,
                    cl::ZeroOrMore,
                    cl::desc("The max version for the optimized memory "
                             " intrinsic calls"));

// Scale the counts from the annotation using the BB count value.
static cl::opt<bool>
    MemOPScaleCount("pgo-memop-scale-count", cl::init(true), cl::Hidden,
                    cl::desc("Scale the memop size counts using the basic "
                             " block count value"));

// This option sets the rangge of precise profile memop sizes.
extern cl::opt<std::string> MemOPSizeRange;

// This option sets the value that groups large memop sizes
extern cl::opt<unsigned> MemOPSizeLarge;

namespace {
class PGOMemOPSizeOptLegacyPass : public FunctionPass {
public:
  static char ID;

  PGOMemOPSizeOptLegacyPass() : FunctionPass(ID) {
    initializePGOMemOPSizeOptLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  StringRef getPassName() const override { return "PGOMemOPSize"; }

private:
  bool runOnFunction(Function &F) override;
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<BlockFrequencyInfoWrapperPass>();
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
    AU.addPreserved<GlobalsAAWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
  }
};
} // end anonymous namespace

char PGOMemOPSizeOptLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(PGOMemOPSizeOptLegacyPass, "pgo-memop-opt",
                      "Optimize memory intrinsic using its size value profile",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_END(PGOMemOPSizeOptLegacyPass, "pgo-memop-opt",
                    "Optimize memory intrinsic using its size value profile",
                    false, false)

FunctionPass *llvm::createPGOMemOPSizeOptLegacyPass() {
  return new PGOMemOPSizeOptLegacyPass();
}

namespace {
class MemOPSizeOpt : public InstVisitor<MemOPSizeOpt> {
public:
  MemOPSizeOpt(Function &Func, BlockFrequencyInfo &BFI,
               OptimizationRemarkEmitter &ORE, DominatorTree *DT)
      : Func(Func), BFI(BFI), ORE(ORE), DT(DT), Changed(false) {
    ValueDataArray =
        std::make_unique<InstrProfValueData[]>(MemOPMaxVersion + 2);
    // Get the MemOPSize range information from option MemOPSizeRange,
    getMemOPSizeRangeFromOption(MemOPSizeRange, PreciseRangeStart,
                                PreciseRangeLast);
  }
  bool isChanged() const { return Changed; }
  void perform() {
    WorkList.clear();
    visit(Func);

    for (auto &MI : WorkList) {
      ++NumOfPGOMemOPAnnotate;
      if (perform(MI)) {
        Changed = true;
        ++NumOfPGOMemOPOpt;
        LLVM_DEBUG(dbgs() << "MemOP call: "
                          << MI->getCalledFunction()->getName()
                          << "is Transformed.\n");
      }
    }
  }

  void visitMemIntrinsic(MemIntrinsic &MI) {
    Value *Length = MI.getLength();
    // Not perform on constant length calls.
    if (dyn_cast<ConstantInt>(Length))
      return;
    WorkList.push_back(&MI);
  }

private:
  Function &Func;
  BlockFrequencyInfo &BFI;
  OptimizationRemarkEmitter &ORE;
  DominatorTree *DT;
  bool Changed;
  std::vector<MemIntrinsic *> WorkList;
  // Start of the previse range.
  int64_t PreciseRangeStart;
  // Last value of the previse range.
  int64_t PreciseRangeLast;
  // The space to read the profile annotation.
  std::unique_ptr<InstrProfValueData[]> ValueDataArray;
  bool perform(MemIntrinsic *MI);

  // This kind shows which group the value falls in. For PreciseValue, we have
  // the profile count for that value. LargeGroup groups the values that are in
  // range [LargeValue, +inf). NonLargeGroup groups the rest of values.
  enum MemOPSizeKind { PreciseValue, NonLargeGroup, LargeGroup };

  MemOPSizeKind getMemOPSizeKind(int64_t Value) const {
    if (Value == MemOPSizeLarge && MemOPSizeLarge != 0)
      return LargeGroup;
    if (Value == PreciseRangeLast + 1)
      return NonLargeGroup;
    return PreciseValue;
  }
};

static const char *getMIName(const MemIntrinsic *MI) {
  switch (MI->getIntrinsicID()) {
  case Intrinsic::memcpy:
    return "memcpy";
  case Intrinsic::memmove:
    return "memmove";
  case Intrinsic::memset:
    return "memset";
  default:
    return "unknown";
  }
}

static bool isProfitable(uint64_t Count, uint64_t TotalCount) {
  assert(Count <= TotalCount);
  if (Count < MemOPCountThreshold)
    return false;
  if (Count < TotalCount * MemOPPercentThreshold / 100)
    return false;
  return true;
}

static inline uint64_t getScaledCount(uint64_t Count, uint64_t Num,
                                      uint64_t Denom) {
  if (!MemOPScaleCount)
    return Count;
  bool Overflowed;
  uint64_t ScaleCount = SaturatingMultiply(Count, Num, &Overflowed);
  return ScaleCount / Denom;
}

bool MemOPSizeOpt::perform(MemIntrinsic *MI) {
  assert(MI);
  if (MI->getIntrinsicID() == Intrinsic::memmove)
    return false;

  uint32_t NumVals, MaxNumPromotions = MemOPMaxVersion + 2;
  uint64_t TotalCount;
  if (!getValueProfDataFromInst(*MI, IPVK_MemOPSize, MaxNumPromotions,
                                ValueDataArray.get(), NumVals, TotalCount))
    return false;

  uint64_t ActualCount = TotalCount;
  uint64_t SavedTotalCount = TotalCount;
  if (MemOPScaleCount) {
    auto BBEdgeCount = BFI.getBlockProfileCount(MI->getParent());
    if (!BBEdgeCount)
      return false;
    ActualCount = *BBEdgeCount;
  }

  ArrayRef<InstrProfValueData> VDs(ValueDataArray.get(), NumVals);
  LLVM_DEBUG(dbgs() << "Read one memory intrinsic profile with count "
                    << ActualCount << "\n");
  LLVM_DEBUG(
      for (auto &VD
           : VDs) { dbgs() << "  (" << VD.Value << "," << VD.Count << ")\n"; });

  if (ActualCount < MemOPCountThreshold)
    return false;
  // Skip if the total value profiled count is 0, in which case we can't
  // scale up the counts properly (and there is no profitable transformation).
  if (TotalCount == 0)
    return false;

  TotalCount = ActualCount;
  if (MemOPScaleCount)
    LLVM_DEBUG(dbgs() << "Scale counts: numerator = " << ActualCount
                      << " denominator = " << SavedTotalCount << "\n");

  // Keeping track of the count of the default case:
  uint64_t RemainCount = TotalCount;
  uint64_t SavedRemainCount = SavedTotalCount;
  SmallVector<uint64_t, 16> SizeIds;
  SmallVector<uint64_t, 16> CaseCounts;
  uint64_t MaxCount = 0;
  unsigned Version = 0;
  // Default case is in the front -- save the slot here.
  CaseCounts.push_back(0);
  for (auto &VD : VDs) {
    int64_t V = VD.Value;
    uint64_t C = VD.Count;
    if (MemOPScaleCount)
      C = getScaledCount(C, ActualCount, SavedTotalCount);

    // Only care precise value here.
    if (getMemOPSizeKind(V) != PreciseValue)
      continue;

    // ValueCounts are sorted on the count. Break at the first un-profitable
    // value.
    if (!isProfitable(C, RemainCount))
      break;

    SizeIds.push_back(V);
    CaseCounts.push_back(C);
    if (C > MaxCount)
      MaxCount = C;

    assert(RemainCount >= C);
    RemainCount -= C;
    assert(SavedRemainCount >= VD.Count);
    SavedRemainCount -= VD.Count;

    if (++Version > MemOPMaxVersion && MemOPMaxVersion != 0)
      break;
  }

  if (Version == 0)
    return false;

  CaseCounts[0] = RemainCount;
  if (RemainCount > MaxCount)
    MaxCount = RemainCount;

  uint64_t SumForOpt = TotalCount - RemainCount;

  LLVM_DEBUG(dbgs() << "Optimize one memory intrinsic call to " << Version
                    << " Versions (covering " << SumForOpt << " out of "
                    << TotalCount << ")\n");

  // mem_op(..., size)
  // ==>
  // switch (size) {
  //   case s1:
  //      mem_op(..., s1);
  //      goto merge_bb;
  //   case s2:
  //      mem_op(..., s2);
  //      goto merge_bb;
  //   ...
  //   default:
  //      mem_op(..., size);
  //      goto merge_bb;
  // }
  // merge_bb:

  BasicBlock *BB = MI->getParent();
  LLVM_DEBUG(dbgs() << "\n\n== Basic Block Before ==\n");
  LLVM_DEBUG(dbgs() << *BB << "\n");
  auto OrigBBFreq = BFI.getBlockFreq(BB);

  BasicBlock *DefaultBB = SplitBlock(BB, MI, DT);
  BasicBlock::iterator It(*MI);
  ++It;
  assert(It != DefaultBB->end());
  BasicBlock *MergeBB = SplitBlock(DefaultBB, &(*It), DT);
  MergeBB->setName("MemOP.Merge");
  BFI.setBlockFreq(MergeBB, OrigBBFreq.getFrequency());
  DefaultBB->setName("MemOP.Default");

  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
  auto &Ctx = Func.getContext();
  IRBuilder<> IRB(BB);
  BB->getTerminator()->eraseFromParent();
  Value *SizeVar = MI->getLength();
  SwitchInst *SI = IRB.CreateSwitch(SizeVar, DefaultBB, SizeIds.size());

  // Clear the value profile data.
  MI->setMetadata(LLVMContext::MD_prof, nullptr);
  // If all promoted, we don't need the MD.prof metadata.
  if (SavedRemainCount > 0 || Version != NumVals)
    // Otherwise we need update with the un-promoted records back.
    annotateValueSite(*Func.getParent(), *MI, VDs.slice(Version),
                      SavedRemainCount, IPVK_MemOPSize, NumVals);

  LLVM_DEBUG(dbgs() << "\n\n== Basic Block After==\n");

  std::vector<DominatorTree::UpdateType> Updates;
  if (DT)
    Updates.reserve(2 * SizeIds.size());

  for (uint64_t SizeId : SizeIds) {
    BasicBlock *CaseBB = BasicBlock::Create(
        Ctx, Twine("MemOP.Case.") + Twine(SizeId), &Func, DefaultBB);
    Instruction *NewInst = MI->clone();
    // Fix the argument.
    auto *MemI = cast<MemIntrinsic>(NewInst);
    auto *SizeType = dyn_cast<IntegerType>(MemI->getLength()->getType());
    assert(SizeType && "Expected integer type size argument.");
    ConstantInt *CaseSizeId = ConstantInt::get(SizeType, SizeId);
    MemI->setLength(CaseSizeId);
    CaseBB->getInstList().push_back(NewInst);
    IRBuilder<> IRBCase(CaseBB);
    IRBCase.CreateBr(MergeBB);
    SI->addCase(CaseSizeId, CaseBB);
    if (DT) {
      Updates.push_back({DominatorTree::Insert, CaseBB, MergeBB});
      Updates.push_back({DominatorTree::Insert, BB, CaseBB});
    }
    LLVM_DEBUG(dbgs() << *CaseBB << "\n");
  }
  DTU.applyUpdates(Updates);
  Updates.clear();

  setProfMetadata(Func.getParent(), SI, CaseCounts, MaxCount);

  LLVM_DEBUG(dbgs() << *BB << "\n");
  LLVM_DEBUG(dbgs() << *DefaultBB << "\n");
  LLVM_DEBUG(dbgs() << *MergeBB << "\n");

  ORE.emit([&]() {
    using namespace ore;
    return OptimizationRemark(DEBUG_TYPE, "memopt-opt", MI)
             << "optimized " << NV("Intrinsic", StringRef(getMIName(MI)))
             << " with count " << NV("Count", SumForOpt) << " out of "
             << NV("Total", TotalCount) << " for " << NV("Versions", Version)
             << " versions";
  });

  return true;
}
} // namespace

static bool PGOMemOPSizeOptImpl(Function &F, BlockFrequencyInfo &BFI,
                                OptimizationRemarkEmitter &ORE,
                                DominatorTree *DT) {
  if (DisableMemOPOPT)
    return false;

  if (F.hasFnAttribute(Attribute::OptimizeForSize))
    return false;
  MemOPSizeOpt MemOPSizeOpt(F, BFI, ORE, DT);
  MemOPSizeOpt.perform();
  return MemOPSizeOpt.isChanged();
}

bool PGOMemOPSizeOptLegacyPass::runOnFunction(Function &F) {
  BlockFrequencyInfo &BFI =
      getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
  auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
  auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
  DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
  return PGOMemOPSizeOptImpl(F, BFI, ORE, DT);
}

namespace llvm {
char &PGOMemOPSizeOptID = PGOMemOPSizeOptLegacyPass::ID;

PreservedAnalyses PGOMemOPSizeOpt::run(Function &F,
                                       FunctionAnalysisManager &FAM) {
  auto &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
  auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
  auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
  bool Changed = PGOMemOPSizeOptImpl(F, BFI, ORE, DT);
  if (!Changed)
    return PreservedAnalyses::all();
  auto PA = PreservedAnalyses();
  PA.preserve<GlobalsAA>();
  PA.preserve<DominatorTreeAnalysis>();
  return PA;
}
} // namespace llvm