parse-ops-invalid.mlir
2.94 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
// RUN: mlir-opt %s -split-input-file -verify-diagnostics
// -----
func @invalidStatisticsMismatchedLayerType(%arg0: tensor<8x4x3xf32>) ->
tensor<8x4x3xf32> {
// expected-error@+1 {{layerStats must have a floating point element type}}
%0 = "quant.stats"(%arg0) {
layerStats = dense<[-1, 1]> : tensor<2xi8>
} : (tensor<8x4x3xf32>) -> tensor<8x4x3xf32>
return %0 : tensor<8x4x3xf32>
}
// -----
func @invalidStatisticsMismatchedLayerRank(%arg0: tensor<8x4x3xf32>) ->
tensor<8x4x3xf32> {
// expected-error@+1 {{layerStats must have shape [2]}}
%0 = "quant.stats"(%arg0) {
layerStats = dense<[[-1.0, 1.0]]> : tensor<1x2xf32>
} : (tensor<8x4x3xf32>) -> tensor<8x4x3xf32>
return %0 : tensor<8x4x3xf32>
}
// -----
func @invalidStatisticsMismatchedLayerShape(%arg0: tensor<8x4x3xf32>) ->
tensor<8x4x3xf32> {
// expected-error@+1 {{layerStats must have shape [2]}}
%0 = "quant.stats"(%arg0) {
layerStats = dense<[-1.0, 1.0, 2.0]> : tensor<3xf32>
} : (tensor<8x4x3xf32>) -> tensor<8x4x3xf32>
return %0 : tensor<8x4x3xf32>
}
// -----
// CHECK-LABEL: validStatistics
func @invalidStatisticsMismatchedAxisType(%arg0: tensor<8x4x3xf32>) -> tensor<8x4x3xf32> {
// expected-error@+1 {{axisStats must have a floating point element type}}
%0 = "quant.stats"(%0) {
layerStats = dense<[-1.0, 1.0]> : tensor<2xf32>,
axisStats = dense<[
[-1, 1],
[-8, 8],
[-1, 0]
]> : tensor<3x2xi8>, axis = 3 : i64
} : (tensor<8x4x3xf32>) -> tensor<8x4x3xf32>
return %0 : tensor<8x4x3xf32>
}
// -----
func @invalidStatisticsMismatchedAxisSize(%arg0: tensor<8x4x3xf32>) ->
tensor<8x4x3xf32> {
// expected-error@+1 {{axisStats must have shape [N,2] where N = the slice size defined by the axis dim}}
%0 = "quant.stats"(%arg0) {
layerStats = dense<[-1.0, 1.0]> : tensor<2xf32>,
axisStats = dense<[
[-1.0, 1.0],
[-8.0, 8.0],
[-0.5, 0.5],
[-2.0, 3.5]
]> : tensor<4x2xf32>, axis = 3 : i64
} : (tensor<8x4x3xf32>) -> tensor<8x4x3xf32>
return %0 : tensor<8x4x3xf32>
}
// -----
func @invalidStatisticsMismatchedAxisShape(%arg0: tensor<8x4x3xf32>) ->
tensor<8x4x3xf32> {
// expected-error@+1 {{axisStats must have shape [N,2] where N = the slice size defined by the axis dim}}
%0 = "quant.stats"(%arg0) {
layerStats = dense<[-1.0, 1.0]> : tensor<2xf32>,
axisStats = dense<[
[-1.0, 1.0, 1.0],
[-8.0, 8.0, 1.0],
[-0.5, 0.5, 1.0]
]> : tensor<3x3xf32>, axis = 3 : i64
} : (tensor<8x4x3xf32>) -> tensor<8x4x3xf32>
return %0 : tensor<8x4x3xf32>
}
// -----
func @axisIsRequiredForAxisStats(%arg0: tensor<8x4x3xf32>) -> tensor<8x4x3xf32> {
// expected-error@+1 {{axis must be specified for axisStats}}
%1 = "quant.stats"(%arg0) {
layerStats = dense<[-1.0, 1.0]> : tensor<2xf32>,
axisStats = dense<[
[-1.0, 1.0],
[-8.0, 8.0],
[-0.5, 0.5]
]> : tensor<3x2xf32>
} : (tensor<8x4x3xf32>) -> tensor<8x4x3xf32>
return %1 : tensor<8x4x3xf32>
}
// -----