benchmark.h 53.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
// Copyright 2015 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// Support for registering benchmarks for functions.

/* Example usage:
// Define a function that executes the code to be measured a
// specified number of times:
static void BM_StringCreation(benchmark::State& state) {
  for (auto _ : state)
    std::string empty_string;
}

// Register the function as a benchmark
BENCHMARK(BM_StringCreation);

// Define another benchmark
static void BM_StringCopy(benchmark::State& state) {
  std::string x = "hello";
  for (auto _ : state)
    std::string copy(x);
}
BENCHMARK(BM_StringCopy);

// Augment the main() program to invoke benchmarks if specified
// via the --benchmarks command line flag.  E.g.,
//       my_unittest --benchmark_filter=all
//       my_unittest --benchmark_filter=BM_StringCreation
//       my_unittest --benchmark_filter=String
//       my_unittest --benchmark_filter='Copy|Creation'
int main(int argc, char** argv) {
  benchmark::Initialize(&argc, argv);
  benchmark::RunSpecifiedBenchmarks();
  return 0;
}

// Sometimes a family of microbenchmarks can be implemented with
// just one routine that takes an extra argument to specify which
// one of the family of benchmarks to run.  For example, the following
// code defines a family of microbenchmarks for measuring the speed
// of memcpy() calls of different lengths:

static void BM_memcpy(benchmark::State& state) {
  char* src = new char[state.range(0)]; char* dst = new char[state.range(0)];
  memset(src, 'x', state.range(0));
  for (auto _ : state)
    memcpy(dst, src, state.range(0));
  state.SetBytesProcessed(int64_t(state.iterations()) *
                          int64_t(state.range(0)));
  delete[] src; delete[] dst;
}
BENCHMARK(BM_memcpy)->Arg(8)->Arg(64)->Arg(512)->Arg(1<<10)->Arg(8<<10);

// The preceding code is quite repetitive, and can be replaced with the
// following short-hand.  The following invocation will pick a few
// appropriate arguments in the specified range and will generate a
// microbenchmark for each such argument.
BENCHMARK(BM_memcpy)->Range(8, 8<<10);

// You might have a microbenchmark that depends on two inputs.  For
// example, the following code defines a family of microbenchmarks for
// measuring the speed of set insertion.
static void BM_SetInsert(benchmark::State& state) {
  set<int> data;
  for (auto _ : state) {
    state.PauseTiming();
    data = ConstructRandomSet(state.range(0));
    state.ResumeTiming();
    for (int j = 0; j < state.range(1); ++j)
      data.insert(RandomNumber());
  }
}
BENCHMARK(BM_SetInsert)
   ->Args({1<<10, 128})
   ->Args({2<<10, 128})
   ->Args({4<<10, 128})
   ->Args({8<<10, 128})
   ->Args({1<<10, 512})
   ->Args({2<<10, 512})
   ->Args({4<<10, 512})
   ->Args({8<<10, 512});

// The preceding code is quite repetitive, and can be replaced with
// the following short-hand.  The following macro will pick a few
// appropriate arguments in the product of the two specified ranges
// and will generate a microbenchmark for each such pair.
BENCHMARK(BM_SetInsert)->Ranges({{1<<10, 8<<10}, {128, 512}});

// For more complex patterns of inputs, passing a custom function
// to Apply allows programmatic specification of an
// arbitrary set of arguments to run the microbenchmark on.
// The following example enumerates a dense range on
// one parameter, and a sparse range on the second.
static void CustomArguments(benchmark::internal::Benchmark* b) {
  for (int i = 0; i <= 10; ++i)
    for (int j = 32; j <= 1024*1024; j *= 8)
      b->Args({i, j});
}
BENCHMARK(BM_SetInsert)->Apply(CustomArguments);

// Templated microbenchmarks work the same way:
// Produce then consume 'size' messages 'iters' times
// Measures throughput in the absence of multiprogramming.
template <class Q> int BM_Sequential(benchmark::State& state) {
  Q q;
  typename Q::value_type v;
  for (auto _ : state) {
    for (int i = state.range(0); i--; )
      q.push(v);
    for (int e = state.range(0); e--; )
      q.Wait(&v);
  }
  // actually messages, not bytes:
  state.SetBytesProcessed(
      static_cast<int64_t>(state.iterations())*state.range(0));
}
BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10);

Use `Benchmark::MinTime(double t)` to set the minimum time used to run the
benchmark. This option overrides the `benchmark_min_time` flag.

void BM_test(benchmark::State& state) {
 ... body ...
}
BENCHMARK(BM_test)->MinTime(2.0); // Run for at least 2 seconds.

In a multithreaded test, it is guaranteed that none of the threads will start
until all have reached the loop start, and all will have finished before any
thread exits the loop body. As such, any global setup or teardown you want to
do can be wrapped in a check against the thread index:

static void BM_MultiThreaded(benchmark::State& state) {
  if (state.thread_index == 0) {
    // Setup code here.
  }
  for (auto _ : state) {
    // Run the test as normal.
  }
  if (state.thread_index == 0) {
    // Teardown code here.
  }
}
BENCHMARK(BM_MultiThreaded)->Threads(4);


If a benchmark runs a few milliseconds it may be hard to visually compare the
measured times, since the output data is given in nanoseconds per default. In
order to manually set the time unit, you can specify it manually:

BENCHMARK(BM_test)->Unit(benchmark::kMillisecond);
*/

#ifndef BENCHMARK_BENCHMARK_H_
#define BENCHMARK_BENCHMARK_H_

// The _MSVC_LANG check should detect Visual Studio 2015 Update 3 and newer.
#if __cplusplus >= 201103L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201103L)
#define BENCHMARK_HAS_CXX11
#endif

#include <stdint.h>

#include <algorithm>
#include <cassert>
#include <cstddef>
#include <iosfwd>
#include <map>
#include <set>
#include <string>
#include <vector>

#if defined(BENCHMARK_HAS_CXX11)
#include <initializer_list>
#include <type_traits>
#include <utility>
#endif

#if defined(_MSC_VER)
#include <intrin.h>  // for _ReadWriteBarrier
#endif

#ifndef BENCHMARK_HAS_CXX11
#define BENCHMARK_DISALLOW_COPY_AND_ASSIGN(TypeName) \
  TypeName(const TypeName&);                         \
  TypeName& operator=(const TypeName&)
#else
#define BENCHMARK_DISALLOW_COPY_AND_ASSIGN(TypeName) \
  TypeName(const TypeName&) = delete;                \
  TypeName& operator=(const TypeName&) = delete
#endif

#if defined(__GNUC__)
#define BENCHMARK_UNUSED __attribute__((unused))
#define BENCHMARK_ALWAYS_INLINE __attribute__((always_inline))
#define BENCHMARK_NOEXCEPT noexcept
#define BENCHMARK_NOEXCEPT_OP(x) noexcept(x)
#elif defined(_MSC_VER) && !defined(__clang__)
#define BENCHMARK_UNUSED
#define BENCHMARK_ALWAYS_INLINE __forceinline
#if _MSC_VER >= 1900
#define BENCHMARK_NOEXCEPT noexcept
#define BENCHMARK_NOEXCEPT_OP(x) noexcept(x)
#else
#define BENCHMARK_NOEXCEPT
#define BENCHMARK_NOEXCEPT_OP(x)
#endif
#define __func__ __FUNCTION__
#else
#define BENCHMARK_UNUSED
#define BENCHMARK_ALWAYS_INLINE
#define BENCHMARK_NOEXCEPT
#define BENCHMARK_NOEXCEPT_OP(x)
#endif

#define BENCHMARK_INTERNAL_TOSTRING2(x) #x
#define BENCHMARK_INTERNAL_TOSTRING(x) BENCHMARK_INTERNAL_TOSTRING2(x)

#if defined(__GNUC__) || defined(__clang__)
#define BENCHMARK_BUILTIN_EXPECT(x, y) __builtin_expect(x, y)
#define BENCHMARK_DEPRECATED_MSG(msg) __attribute__((deprecated(msg)))
#else
#define BENCHMARK_BUILTIN_EXPECT(x, y) x
#define BENCHMARK_DEPRECATED_MSG(msg)
#define BENCHMARK_WARNING_MSG(msg)                           \
  __pragma(message(__FILE__ "(" BENCHMARK_INTERNAL_TOSTRING( \
      __LINE__) ") : warning note: " msg))
#endif

#if defined(__GNUC__) && !defined(__clang__)
#define BENCHMARK_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
#endif

#ifndef __has_builtin
#define __has_builtin(x) 0
#endif

#if defined(__GNUC__) || __has_builtin(__builtin_unreachable)
  #define BENCHMARK_UNREACHABLE() __builtin_unreachable()
#elif defined(_MSC_VER)
  #define BENCHMARK_UNREACHABLE() __assume(false)
#else
  #define BENCHMARK_UNREACHABLE() ((void)0)
#endif

namespace benchmark {
class BenchmarkReporter;
class MemoryManager;

void Initialize(int* argc, char** argv);

// Report to stdout all arguments in 'argv' as unrecognized except the first.
// Returns true there is at least on unrecognized argument (i.e. 'argc' > 1).
bool ReportUnrecognizedArguments(int argc, char** argv);

// Generate a list of benchmarks matching the specified --benchmark_filter flag
// and if --benchmark_list_tests is specified return after printing the name
// of each matching benchmark. Otherwise run each matching benchmark and
// report the results.
//
// The second and third overload use the specified 'display_reporter' and
//  'file_reporter' respectively. 'file_reporter' will write to the file
//  specified
//   by '--benchmark_output'. If '--benchmark_output' is not given the
//  'file_reporter' is ignored.
//
// RETURNS: The number of matching benchmarks.
size_t RunSpecifiedBenchmarks();
size_t RunSpecifiedBenchmarks(BenchmarkReporter* display_reporter);
size_t RunSpecifiedBenchmarks(BenchmarkReporter* display_reporter,
                              BenchmarkReporter* file_reporter);

// Register a MemoryManager instance that will be used to collect and report
// allocation measurements for benchmark runs.
void RegisterMemoryManager(MemoryManager* memory_manager);

namespace internal {
class Benchmark;
class BenchmarkImp;
class BenchmarkFamilies;

void UseCharPointer(char const volatile*);

// Take ownership of the pointer and register the benchmark. Return the
// registered benchmark.
Benchmark* RegisterBenchmarkInternal(Benchmark*);

// Ensure that the standard streams are properly initialized in every TU.
int InitializeStreams();
BENCHMARK_UNUSED static int stream_init_anchor = InitializeStreams();

}  // namespace internal

#if (!defined(__GNUC__) && !defined(__clang__)) || defined(__pnacl__) || \
    defined(__EMSCRIPTEN__)
#define BENCHMARK_HAS_NO_INLINE_ASSEMBLY
#endif

// The DoNotOptimize(...) function can be used to prevent a value or
// expression from being optimized away by the compiler. This function is
// intended to add little to no overhead.
// See: https://youtu.be/nXaxk27zwlk?t=2441
#ifndef BENCHMARK_HAS_NO_INLINE_ASSEMBLY
template <class Tp>
inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp const& value) {
  asm volatile("" : : "r,m"(value) : "memory");
}

template <class Tp>
inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp& value) {
#if defined(__clang__)
  asm volatile("" : "+r,m"(value) : : "memory");
#else
  asm volatile("" : "+m,r"(value) : : "memory");
#endif
}

// Force the compiler to flush pending writes to global memory. Acts as an
// effective read/write barrier
inline BENCHMARK_ALWAYS_INLINE void ClobberMemory() {
  asm volatile("" : : : "memory");
}
#elif defined(_MSC_VER)
template <class Tp>
inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp const& value) {
  internal::UseCharPointer(&reinterpret_cast<char const volatile&>(value));
  _ReadWriteBarrier();
}

inline BENCHMARK_ALWAYS_INLINE void ClobberMemory() { _ReadWriteBarrier(); }
#else
template <class Tp>
inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp const& value) {
  internal::UseCharPointer(&reinterpret_cast<char const volatile&>(value));
}
// FIXME Add ClobberMemory() for non-gnu and non-msvc compilers
#endif

// This class is used for user-defined counters.
class Counter {
 public:
  enum Flags {
    kDefaults = 0,
    // Mark the counter as a rate. It will be presented divided
    // by the duration of the benchmark.
    kIsRate = 1U << 0U,
    // Mark the counter as a thread-average quantity. It will be
    // presented divided by the number of threads.
    kAvgThreads = 1U << 1U,
    // Mark the counter as a thread-average rate. See above.
    kAvgThreadsRate = kIsRate | kAvgThreads,
    // Mark the counter as a constant value, valid/same for *every* iteration.
    // When reporting, it will be *multiplied* by the iteration count.
    kIsIterationInvariant = 1U << 2U,
    // Mark the counter as a constant rate.
    // When reporting, it will be *multiplied* by the iteration count
    // and then divided by the duration of the benchmark.
    kIsIterationInvariantRate = kIsRate | kIsIterationInvariant,
    // Mark the counter as a iteration-average quantity.
    // It will be presented divided by the number of iterations.
    kAvgIterations = 1U << 3U,
    // Mark the counter as a iteration-average rate. See above.
    kAvgIterationsRate = kIsRate | kAvgIterations
  };

  enum OneK {
    // 1'000 items per 1k
    kIs1000 = 1000,
    // 1'024 items per 1k
    kIs1024 = 1024
  };

  double value;
  Flags flags;
  OneK oneK;

  BENCHMARK_ALWAYS_INLINE
  Counter(double v = 0., Flags f = kDefaults, OneK k = kIs1000)
      : value(v), flags(f), oneK(k) {}

  BENCHMARK_ALWAYS_INLINE operator double const&() const { return value; }
  BENCHMARK_ALWAYS_INLINE operator double&() { return value; }
};

// A helper for user code to create unforeseen combinations of Flags, without
// having to do this cast manually each time, or providing this operator.
Counter::Flags inline operator|(const Counter::Flags& LHS,
                                const Counter::Flags& RHS) {
  return static_cast<Counter::Flags>(static_cast<int>(LHS) |
                                     static_cast<int>(RHS));
}

// This is the container for the user-defined counters.
typedef std::map<std::string, Counter> UserCounters;

// TimeUnit is passed to a benchmark in order to specify the order of magnitude
// for the measured time.
enum TimeUnit { kNanosecond, kMicrosecond, kMillisecond };

// BigO is passed to a benchmark in order to specify the asymptotic
// computational
// complexity for the benchmark. In case oAuto is selected, complexity will be
// calculated automatically to the best fit.
enum BigO { oNone, o1, oN, oNSquared, oNCubed, oLogN, oNLogN, oAuto, oLambda };

// BigOFunc is passed to a benchmark in order to specify the asymptotic
// computational complexity for the benchmark.
typedef double(BigOFunc)(int64_t);

// StatisticsFunc is passed to a benchmark in order to compute some descriptive
// statistics over all the measurements of some type
typedef double(StatisticsFunc)(const std::vector<double>&);

struct Statistics {
  std::string name_;
  StatisticsFunc* compute_;

  Statistics(const std::string& name, StatisticsFunc* compute)
      : name_(name), compute_(compute) {}
};

namespace internal {
struct BenchmarkInstance;
class ThreadTimer;
class ThreadManager;

enum AggregationReportMode
#if defined(BENCHMARK_HAS_CXX11)
    : unsigned
#else
#endif
{
  // The mode has not been manually specified
  ARM_Unspecified = 0,
  // The mode is user-specified.
  // This may or may not be set when the following bit-flags are set.
  ARM_Default = 1U << 0U,
  // File reporter should only output aggregates.
  ARM_FileReportAggregatesOnly = 1U << 1U,
  // Display reporter should only output aggregates
  ARM_DisplayReportAggregatesOnly = 1U << 2U,
  // Both reporters should only display aggregates.
  ARM_ReportAggregatesOnly =
      ARM_FileReportAggregatesOnly | ARM_DisplayReportAggregatesOnly
};

}  // namespace internal

// State is passed to a running Benchmark and contains state for the
// benchmark to use.
class State {
 public:
  struct StateIterator;
  friend struct StateIterator;

  // Returns iterators used to run each iteration of a benchmark using a
  // C++11 ranged-based for loop. These functions should not be called directly.
  //
  // REQUIRES: The benchmark has not started running yet. Neither begin nor end
  // have been called previously.
  //
  // NOTE: KeepRunning may not be used after calling either of these functions.
  BENCHMARK_ALWAYS_INLINE StateIterator begin();
  BENCHMARK_ALWAYS_INLINE StateIterator end();

  // Returns true if the benchmark should continue through another iteration.
  // NOTE: A benchmark may not return from the test until KeepRunning() has
  // returned false.
  bool KeepRunning();

  // Returns true iff the benchmark should run n more iterations.
  // REQUIRES: 'n' > 0.
  // NOTE: A benchmark must not return from the test until KeepRunningBatch()
  // has returned false.
  // NOTE: KeepRunningBatch() may overshoot by up to 'n' iterations.
  //
  // Intended usage:
  //   while (state.KeepRunningBatch(1000)) {
  //     // process 1000 elements
  //   }
  bool KeepRunningBatch(size_t n);

  // REQUIRES: timer is running and 'SkipWithError(...)' has not been called
  //           by the current thread.
  // Stop the benchmark timer.  If not called, the timer will be
  // automatically stopped after the last iteration of the benchmark loop.
  //
  // For threaded benchmarks the PauseTiming() function only pauses the timing
  // for the current thread.
  //
  // NOTE: The "real time" measurement is per-thread. If different threads
  // report different measurements the largest one is reported.
  //
  // NOTE: PauseTiming()/ResumeTiming() are relatively
  // heavyweight, and so their use should generally be avoided
  // within each benchmark iteration, if possible.
  void PauseTiming();

  // REQUIRES: timer is not running and 'SkipWithError(...)' has not been called
  //           by the current thread.
  // Start the benchmark timer.  The timer is NOT running on entrance to the
  // benchmark function. It begins running after control flow enters the
  // benchmark loop.
  //
  // NOTE: PauseTiming()/ResumeTiming() are relatively
  // heavyweight, and so their use should generally be avoided
  // within each benchmark iteration, if possible.
  void ResumeTiming();

  // REQUIRES: 'SkipWithError(...)' has not been called previously by the
  //            current thread.
  // Report the benchmark as resulting in an error with the specified 'msg'.
  // After this call the user may explicitly 'return' from the benchmark.
  //
  // If the ranged-for style of benchmark loop is used, the user must explicitly
  // break from the loop, otherwise all future iterations will be run.
  // If the 'KeepRunning()' loop is used the current thread will automatically
  // exit the loop at the end of the current iteration.
  //
  // For threaded benchmarks only the current thread stops executing and future
  // calls to `KeepRunning()` will block until all threads have completed
  // the `KeepRunning()` loop. If multiple threads report an error only the
  // first error message is used.
  //
  // NOTE: Calling 'SkipWithError(...)' does not cause the benchmark to exit
  // the current scope immediately. If the function is called from within
  // the 'KeepRunning()' loop the current iteration will finish. It is the users
  // responsibility to exit the scope as needed.
  void SkipWithError(const char* msg);

  // REQUIRES: called exactly once per iteration of the benchmarking loop.
  // Set the manually measured time for this benchmark iteration, which
  // is used instead of automatically measured time if UseManualTime() was
  // specified.
  //
  // For threaded benchmarks the final value will be set to the largest
  // reported values.
  void SetIterationTime(double seconds);

  // Set the number of bytes processed by the current benchmark
  // execution.  This routine is typically called once at the end of a
  // throughput oriented benchmark.
  //
  // REQUIRES: a benchmark has exited its benchmarking loop.
  BENCHMARK_ALWAYS_INLINE
  void SetBytesProcessed(int64_t bytes) {
    counters["bytes_per_second"] =
        Counter(static_cast<double>(bytes), Counter::kIsRate, Counter::kIs1024);
  }

  BENCHMARK_ALWAYS_INLINE
  int64_t bytes_processed() const {
    if (counters.find("bytes_per_second") != counters.end())
      return static_cast<int64_t>(counters.at("bytes_per_second"));
    return 0;
  }

  // If this routine is called with complexity_n > 0 and complexity report is
  // requested for the
  // family benchmark, then current benchmark will be part of the computation
  // and complexity_n will
  // represent the length of N.
  BENCHMARK_ALWAYS_INLINE
  void SetComplexityN(int64_t complexity_n) { complexity_n_ = complexity_n; }

  BENCHMARK_ALWAYS_INLINE
  int64_t complexity_length_n() { return complexity_n_; }

  // If this routine is called with items > 0, then an items/s
  // label is printed on the benchmark report line for the currently
  // executing benchmark. It is typically called at the end of a processing
  // benchmark where a processing items/second output is desired.
  //
  // REQUIRES: a benchmark has exited its benchmarking loop.
  BENCHMARK_ALWAYS_INLINE
  void SetItemsProcessed(int64_t items) {
    counters["items_per_second"] =
        Counter(static_cast<double>(items), benchmark::Counter::kIsRate);
  }

  BENCHMARK_ALWAYS_INLINE
  int64_t items_processed() const {
    if (counters.find("items_per_second") != counters.end())
      return static_cast<int64_t>(counters.at("items_per_second"));
    return 0;
  }

  // If this routine is called, the specified label is printed at the
  // end of the benchmark report line for the currently executing
  // benchmark.  Example:
  //  static void BM_Compress(benchmark::State& state) {
  //    ...
  //    double compress = input_size / output_size;
  //    state.SetLabel(StrFormat("compress:%.1f%%", 100.0*compression));
  //  }
  // Produces output that looks like:
  //  BM_Compress   50         50   14115038  compress:27.3%
  //
  // REQUIRES: a benchmark has exited its benchmarking loop.
  void SetLabel(const char* label);

  void BENCHMARK_ALWAYS_INLINE SetLabel(const std::string& str) {
    this->SetLabel(str.c_str());
  }

  // Range arguments for this run. CHECKs if the argument has been set.
  BENCHMARK_ALWAYS_INLINE
  int64_t range(std::size_t pos = 0) const {
    assert(range_.size() > pos);
    return range_[pos];
  }

  BENCHMARK_DEPRECATED_MSG("use 'range(0)' instead")
  int64_t range_x() const { return range(0); }

  BENCHMARK_DEPRECATED_MSG("use 'range(1)' instead")
  int64_t range_y() const { return range(1); }

  BENCHMARK_ALWAYS_INLINE
  size_t iterations() const {
    if (BENCHMARK_BUILTIN_EXPECT(!started_, false)) {
      return 0;
    }
    return max_iterations - total_iterations_ + batch_leftover_;
  }

 private
     :  // items we expect on the first cache line (ie 64 bytes of the struct)
  // When total_iterations_ is 0, KeepRunning() and friends will return false.
  // May be larger than max_iterations.
  size_t total_iterations_;

  // When using KeepRunningBatch(), batch_leftover_ holds the number of
  // iterations beyond max_iters that were run. Used to track
  // completed_iterations_ accurately.
  size_t batch_leftover_;

 public:
  const size_t max_iterations;

 private:
  bool started_;
  bool finished_;
  bool error_occurred_;

 private:  // items we don't need on the first cache line
  std::vector<int64_t> range_;

  int64_t complexity_n_;

 public:
  // Container for user-defined counters.
  UserCounters counters;
  // Index of the executing thread. Values from [0, threads).
  const int thread_index;
  // Number of threads concurrently executing the benchmark.
  const int threads;

 private:
  State(size_t max_iters, const std::vector<int64_t>& ranges, int thread_i,
        int n_threads, internal::ThreadTimer* timer,
        internal::ThreadManager* manager);

  void StartKeepRunning();
  // Implementation of KeepRunning() and KeepRunningBatch().
  // is_batch must be true unless n is 1.
  bool KeepRunningInternal(size_t n, bool is_batch);
  void FinishKeepRunning();
  internal::ThreadTimer* timer_;
  internal::ThreadManager* manager_;

  friend struct internal::BenchmarkInstance;
};

inline BENCHMARK_ALWAYS_INLINE bool State::KeepRunning() {
  return KeepRunningInternal(1, /*is_batch=*/false);
}

inline BENCHMARK_ALWAYS_INLINE bool State::KeepRunningBatch(size_t n) {
  return KeepRunningInternal(n, /*is_batch=*/true);
}

inline BENCHMARK_ALWAYS_INLINE bool State::KeepRunningInternal(size_t n,
                                                               bool is_batch) {
  // total_iterations_ is set to 0 by the constructor, and always set to a
  // nonzero value by StartKepRunning().
  assert(n > 0);
  // n must be 1 unless is_batch is true.
  assert(is_batch || n == 1);
  if (BENCHMARK_BUILTIN_EXPECT(total_iterations_ >= n, true)) {
    total_iterations_ -= n;
    return true;
  }
  if (!started_) {
    StartKeepRunning();
    if (!error_occurred_ && total_iterations_ >= n) {
      total_iterations_ -= n;
      return true;
    }
  }
  // For non-batch runs, total_iterations_ must be 0 by now.
  if (is_batch && total_iterations_ != 0) {
    batch_leftover_ = n - total_iterations_;
    total_iterations_ = 0;
    return true;
  }
  FinishKeepRunning();
  return false;
}

struct State::StateIterator {
  struct BENCHMARK_UNUSED Value {};
  typedef std::forward_iterator_tag iterator_category;
  typedef Value value_type;
  typedef Value reference;
  typedef Value pointer;
  typedef std::ptrdiff_t difference_type;

 private:
  friend class State;
  BENCHMARK_ALWAYS_INLINE
  StateIterator() : cached_(0), parent_() {}

  BENCHMARK_ALWAYS_INLINE
  explicit StateIterator(State* st)
      : cached_(st->error_occurred_ ? 0 : st->max_iterations), parent_(st) {}

 public:
  BENCHMARK_ALWAYS_INLINE
  Value operator*() const { return Value(); }

  BENCHMARK_ALWAYS_INLINE
  StateIterator& operator++() {
    assert(cached_ > 0);
    --cached_;
    return *this;
  }

  BENCHMARK_ALWAYS_INLINE
  bool operator!=(StateIterator const&) const {
    if (BENCHMARK_BUILTIN_EXPECT(cached_ != 0, true)) return true;
    parent_->FinishKeepRunning();
    return false;
  }

 private:
  size_t cached_;
  State* const parent_;
};

inline BENCHMARK_ALWAYS_INLINE State::StateIterator State::begin() {
  return StateIterator(this);
}
inline BENCHMARK_ALWAYS_INLINE State::StateIterator State::end() {
  StartKeepRunning();
  return StateIterator();
}

namespace internal {

typedef void(Function)(State&);

// ------------------------------------------------------
// Benchmark registration object.  The BENCHMARK() macro expands
// into an internal::Benchmark* object.  Various methods can
// be called on this object to change the properties of the benchmark.
// Each method returns "this" so that multiple method calls can
// chained into one expression.
class Benchmark {
 public:
  virtual ~Benchmark();

  // Note: the following methods all return "this" so that multiple
  // method calls can be chained together in one expression.

  // Run this benchmark once with "x" as the extra argument passed
  // to the function.
  // REQUIRES: The function passed to the constructor must accept an arg1.
  Benchmark* Arg(int64_t x);

  // Run this benchmark with the given time unit for the generated output report
  Benchmark* Unit(TimeUnit unit);

  // Run this benchmark once for a number of values picked from the
  // range [start..limit].  (start and limit are always picked.)
  // REQUIRES: The function passed to the constructor must accept an arg1.
  Benchmark* Range(int64_t start, int64_t limit);

  // Run this benchmark once for all values in the range [start..limit] with
  // specific step
  // REQUIRES: The function passed to the constructor must accept an arg1.
  Benchmark* DenseRange(int64_t start, int64_t limit, int step = 1);

  // Run this benchmark once with "args" as the extra arguments passed
  // to the function.
  // REQUIRES: The function passed to the constructor must accept arg1, arg2 ...
  Benchmark* Args(const std::vector<int64_t>& args);

  // Equivalent to Args({x, y})
  // NOTE: This is a legacy C++03 interface provided for compatibility only.
  //   New code should use 'Args'.
  Benchmark* ArgPair(int64_t x, int64_t y) {
    std::vector<int64_t> args;
    args.push_back(x);
    args.push_back(y);
    return Args(args);
  }

  // Run this benchmark once for a number of values picked from the
  // ranges [start..limit].  (starts and limits are always picked.)
  // REQUIRES: The function passed to the constructor must accept arg1, arg2 ...
  Benchmark* Ranges(const std::vector<std::pair<int64_t, int64_t> >& ranges);

  // Equivalent to ArgNames({name})
  Benchmark* ArgName(const std::string& name);

  // Set the argument names to display in the benchmark name. If not called,
  // only argument values will be shown.
  Benchmark* ArgNames(const std::vector<std::string>& names);

  // Equivalent to Ranges({{lo1, hi1}, {lo2, hi2}}).
  // NOTE: This is a legacy C++03 interface provided for compatibility only.
  //   New code should use 'Ranges'.
  Benchmark* RangePair(int64_t lo1, int64_t hi1, int64_t lo2, int64_t hi2) {
    std::vector<std::pair<int64_t, int64_t> > ranges;
    ranges.push_back(std::make_pair(lo1, hi1));
    ranges.push_back(std::make_pair(lo2, hi2));
    return Ranges(ranges);
  }

  // Pass this benchmark object to *func, which can customize
  // the benchmark by calling various methods like Arg, Args,
  // Threads, etc.
  Benchmark* Apply(void (*func)(Benchmark* benchmark));

  // Set the range multiplier for non-dense range. If not called, the range
  // multiplier kRangeMultiplier will be used.
  Benchmark* RangeMultiplier(int multiplier);

  // Set the minimum amount of time to use when running this benchmark. This
  // option overrides the `benchmark_min_time` flag.
  // REQUIRES: `t > 0` and `Iterations` has not been called on this benchmark.
  Benchmark* MinTime(double t);

  // Specify the amount of iterations that should be run by this benchmark.
  // REQUIRES: 'n > 0' and `MinTime` has not been called on this benchmark.
  //
  // NOTE: This function should only be used when *exact* iteration control is
  //   needed and never to control or limit how long a benchmark runs, where
  // `--benchmark_min_time=N` or `MinTime(...)` should be used instead.
  Benchmark* Iterations(size_t n);

  // Specify the amount of times to repeat this benchmark. This option overrides
  // the `benchmark_repetitions` flag.
  // REQUIRES: `n > 0`
  Benchmark* Repetitions(int n);

  // Specify if each repetition of the benchmark should be reported separately
  // or if only the final statistics should be reported. If the benchmark
  // is not repeated then the single result is always reported.
  // Applies to *ALL* reporters (display and file).
  Benchmark* ReportAggregatesOnly(bool value = true);

  // Same as ReportAggregatesOnly(), but applies to display reporter only.
  Benchmark* DisplayAggregatesOnly(bool value = true);

  // If a particular benchmark is I/O bound, runs multiple threads internally or
  // if for some reason CPU timings are not representative, call this method. If
  // called, the elapsed time will be used to control how many iterations are
  // run, and in the printing of items/second or MB/seconds values.  If not
  // called, the cpu time used by the benchmark will be used.
  Benchmark* UseRealTime();

  // If a benchmark must measure time manually (e.g. if GPU execution time is
  // being
  // measured), call this method. If called, each benchmark iteration should
  // call
  // SetIterationTime(seconds) to report the measured time, which will be used
  // to control how many iterations are run, and in the printing of items/second
  // or MB/second values.
  Benchmark* UseManualTime();

  // Set the asymptotic computational complexity for the benchmark. If called
  // the asymptotic computational complexity will be shown on the output.
  Benchmark* Complexity(BigO complexity = benchmark::oAuto);

  // Set the asymptotic computational complexity for the benchmark. If called
  // the asymptotic computational complexity will be shown on the output.
  Benchmark* Complexity(BigOFunc* complexity);

  // Add this statistics to be computed over all the values of benchmark run
  Benchmark* ComputeStatistics(std::string name, StatisticsFunc* statistics);

  // Support for running multiple copies of the same benchmark concurrently
  // in multiple threads.  This may be useful when measuring the scaling
  // of some piece of code.

  // Run one instance of this benchmark concurrently in t threads.
  Benchmark* Threads(int t);

  // Pick a set of values T from [min_threads,max_threads].
  // min_threads and max_threads are always included in T.  Run this
  // benchmark once for each value in T.  The benchmark run for a
  // particular value t consists of t threads running the benchmark
  // function concurrently.  For example, consider:
  //    BENCHMARK(Foo)->ThreadRange(1,16);
  // This will run the following benchmarks:
  //    Foo in 1 thread
  //    Foo in 2 threads
  //    Foo in 4 threads
  //    Foo in 8 threads
  //    Foo in 16 threads
  Benchmark* ThreadRange(int min_threads, int max_threads);

  // For each value n in the range, run this benchmark once using n threads.
  // min_threads and max_threads are always included in the range.
  // stride specifies the increment. E.g. DenseThreadRange(1, 8, 3) starts
  // a benchmark with 1, 4, 7 and 8 threads.
  Benchmark* DenseThreadRange(int min_threads, int max_threads, int stride = 1);

  // Equivalent to ThreadRange(NumCPUs(), NumCPUs())
  Benchmark* ThreadPerCpu();

  virtual void Run(State& state) = 0;

 protected:
  explicit Benchmark(const char* name);
  Benchmark(Benchmark const&);
  void SetName(const char* name);

  int ArgsCnt() const;

 private:
  friend class BenchmarkFamilies;

  std::string name_;
  AggregationReportMode aggregation_report_mode_;
  std::vector<std::string> arg_names_;       // Args for all benchmark runs
  std::vector<std::vector<int64_t> > args_;  // Args for all benchmark runs
  TimeUnit time_unit_;
  int range_multiplier_;
  double min_time_;
  size_t iterations_;
  int repetitions_;
  bool use_real_time_;
  bool use_manual_time_;
  BigO complexity_;
  BigOFunc* complexity_lambda_;
  std::vector<Statistics> statistics_;
  std::vector<int> thread_counts_;

  Benchmark& operator=(Benchmark const&);
};

}  // namespace internal

// Create and register a benchmark with the specified 'name' that invokes
// the specified functor 'fn'.
//
// RETURNS: A pointer to the registered benchmark.
internal::Benchmark* RegisterBenchmark(const char* name,
                                       internal::Function* fn);

#if defined(BENCHMARK_HAS_CXX11)
template <class Lambda>
internal::Benchmark* RegisterBenchmark(const char* name, Lambda&& fn);
#endif

// Remove all registered benchmarks. All pointers to previously registered
// benchmarks are invalidated.
void ClearRegisteredBenchmarks();

namespace internal {
// The class used to hold all Benchmarks created from static function.
// (ie those created using the BENCHMARK(...) macros.
class FunctionBenchmark : public Benchmark {
 public:
  FunctionBenchmark(const char* name, Function* func)
      : Benchmark(name), func_(func) {}

  virtual void Run(State& st);

 private:
  Function* func_;
};

#ifdef BENCHMARK_HAS_CXX11
template <class Lambda>
class LambdaBenchmark : public Benchmark {
 public:
  virtual void Run(State& st) { lambda_(st); }

 private:
  template <class OLambda>
  LambdaBenchmark(const char* name, OLambda&& lam)
      : Benchmark(name), lambda_(std::forward<OLambda>(lam)) {}

  LambdaBenchmark(LambdaBenchmark const&) = delete;

 private:
  template <class Lam>
  friend Benchmark* ::benchmark::RegisterBenchmark(const char*, Lam&&);

  Lambda lambda_;
};
#endif

}  // namespace internal

inline internal::Benchmark* RegisterBenchmark(const char* name,
                                              internal::Function* fn) {
  return internal::RegisterBenchmarkInternal(
      ::new internal::FunctionBenchmark(name, fn));
}

#ifdef BENCHMARK_HAS_CXX11
template <class Lambda>
internal::Benchmark* RegisterBenchmark(const char* name, Lambda&& fn) {
  using BenchType =
      internal::LambdaBenchmark<typename std::decay<Lambda>::type>;
  return internal::RegisterBenchmarkInternal(
      ::new BenchType(name, std::forward<Lambda>(fn)));
}
#endif

#if defined(BENCHMARK_HAS_CXX11) && \
    (!defined(BENCHMARK_GCC_VERSION) || BENCHMARK_GCC_VERSION >= 409)
template <class Lambda, class... Args>
internal::Benchmark* RegisterBenchmark(const char* name, Lambda&& fn,
                                       Args&&... args) {
  return benchmark::RegisterBenchmark(
      name, [=](benchmark::State& st) { fn(st, args...); });
}
#else
#define BENCHMARK_HAS_NO_VARIADIC_REGISTER_BENCHMARK
#endif

// The base class for all fixture tests.
class Fixture : public internal::Benchmark {
 public:
  Fixture() : internal::Benchmark("") {}

  virtual void Run(State& st) {
    this->SetUp(st);
    this->BenchmarkCase(st);
    this->TearDown(st);
  }

  // These will be deprecated ...
  virtual void SetUp(const State&) {}
  virtual void TearDown(const State&) {}
  // ... In favor of these.
  virtual void SetUp(State& st) { SetUp(const_cast<const State&>(st)); }
  virtual void TearDown(State& st) { TearDown(const_cast<const State&>(st)); }

 protected:
  virtual void BenchmarkCase(State&) = 0;
};

}  // namespace benchmark

// ------------------------------------------------------
// Macro to register benchmarks

// Check that __COUNTER__ is defined and that __COUNTER__ increases by 1
// every time it is expanded. X + 1 == X + 0 is used in case X is defined to be
// empty. If X is empty the expression becomes (+1 == +0).
#if defined(__COUNTER__) && (__COUNTER__ + 1 == __COUNTER__ + 0)
#define BENCHMARK_PRIVATE_UNIQUE_ID __COUNTER__
#else
#define BENCHMARK_PRIVATE_UNIQUE_ID __LINE__
#endif

// Helpers for generating unique variable names
#define BENCHMARK_PRIVATE_NAME(n) \
  BENCHMARK_PRIVATE_CONCAT(_benchmark_, BENCHMARK_PRIVATE_UNIQUE_ID, n)
#define BENCHMARK_PRIVATE_CONCAT(a, b, c) BENCHMARK_PRIVATE_CONCAT2(a, b, c)
#define BENCHMARK_PRIVATE_CONCAT2(a, b, c) a##b##c

#define BENCHMARK_PRIVATE_DECLARE(n)                                 \
  static ::benchmark::internal::Benchmark* BENCHMARK_PRIVATE_NAME(n) \
      BENCHMARK_UNUSED

#define BENCHMARK(n)                                     \
  BENCHMARK_PRIVATE_DECLARE(n) =                         \
      (::benchmark::internal::RegisterBenchmarkInternal( \
          new ::benchmark::internal::FunctionBenchmark(#n, n)))

// Old-style macros
#define BENCHMARK_WITH_ARG(n, a) BENCHMARK(n)->Arg((a))
#define BENCHMARK_WITH_ARG2(n, a1, a2) BENCHMARK(n)->Args({(a1), (a2)})
#define BENCHMARK_WITH_UNIT(n, t) BENCHMARK(n)->Unit((t))
#define BENCHMARK_RANGE(n, lo, hi) BENCHMARK(n)->Range((lo), (hi))
#define BENCHMARK_RANGE2(n, l1, h1, l2, h2) \
  BENCHMARK(n)->RangePair({{(l1), (h1)}, {(l2), (h2)}})

#ifdef BENCHMARK_HAS_CXX11

// Register a benchmark which invokes the function specified by `func`
// with the additional arguments specified by `...`.
//
// For example:
//
// template <class ...ExtraArgs>`
// void BM_takes_args(benchmark::State& state, ExtraArgs&&... extra_args) {
//  [...]
//}
// /* Registers a benchmark named "BM_takes_args/int_string_test` */
// BENCHMARK_CAPTURE(BM_takes_args, int_string_test, 42, std::string("abc"));
#define BENCHMARK_CAPTURE(func, test_case_name, ...)     \
  BENCHMARK_PRIVATE_DECLARE(func) =                      \
      (::benchmark::internal::RegisterBenchmarkInternal( \
          new ::benchmark::internal::FunctionBenchmark(  \
              #func "/" #test_case_name,                 \
              [](::benchmark::State& st) { func(st, __VA_ARGS__); })))

#endif  // BENCHMARK_HAS_CXX11

// This will register a benchmark for a templatized function.  For example:
//
// template<int arg>
// void BM_Foo(int iters);
//
// BENCHMARK_TEMPLATE(BM_Foo, 1);
//
// will register BM_Foo<1> as a benchmark.
#define BENCHMARK_TEMPLATE1(n, a)                        \
  BENCHMARK_PRIVATE_DECLARE(n) =                         \
      (::benchmark::internal::RegisterBenchmarkInternal( \
          new ::benchmark::internal::FunctionBenchmark(#n "<" #a ">", n<a>)))

#define BENCHMARK_TEMPLATE2(n, a, b)                                         \
  BENCHMARK_PRIVATE_DECLARE(n) =                                             \
      (::benchmark::internal::RegisterBenchmarkInternal(                     \
          new ::benchmark::internal::FunctionBenchmark(#n "<" #a "," #b ">", \
                                                       n<a, b>)))

#ifdef BENCHMARK_HAS_CXX11
#define BENCHMARK_TEMPLATE(n, ...)                       \
  BENCHMARK_PRIVATE_DECLARE(n) =                         \
      (::benchmark::internal::RegisterBenchmarkInternal( \
          new ::benchmark::internal::FunctionBenchmark(  \
              #n "<" #__VA_ARGS__ ">", n<__VA_ARGS__>)))
#else
#define BENCHMARK_TEMPLATE(n, a) BENCHMARK_TEMPLATE1(n, a)
#endif

#define BENCHMARK_PRIVATE_DECLARE_F(BaseClass, Method)        \
  class BaseClass##_##Method##_Benchmark : public BaseClass { \
   public:                                                    \
    BaseClass##_##Method##_Benchmark() : BaseClass() {        \
      this->SetName(#BaseClass "/" #Method);                  \
    }                                                         \
                                                              \
   protected:                                                 \
    virtual void BenchmarkCase(::benchmark::State&);          \
  };

#define BENCHMARK_TEMPLATE1_PRIVATE_DECLARE_F(BaseClass, Method, a) \
  class BaseClass##_##Method##_Benchmark : public BaseClass<a> {    \
   public:                                                          \
    BaseClass##_##Method##_Benchmark() : BaseClass<a>() {           \
      this->SetName(#BaseClass "<" #a ">/" #Method);                \
    }                                                               \
                                                                    \
   protected:                                                       \
    virtual void BenchmarkCase(::benchmark::State&);                \
  };

#define BENCHMARK_TEMPLATE2_PRIVATE_DECLARE_F(BaseClass, Method, a, b) \
  class BaseClass##_##Method##_Benchmark : public BaseClass<a, b> {    \
   public:                                                             \
    BaseClass##_##Method##_Benchmark() : BaseClass<a, b>() {           \
      this->SetName(#BaseClass "<" #a "," #b ">/" #Method);            \
    }                                                                  \
                                                                       \
   protected:                                                          \
    virtual void BenchmarkCase(::benchmark::State&);                   \
  };

#ifdef BENCHMARK_HAS_CXX11
#define BENCHMARK_TEMPLATE_PRIVATE_DECLARE_F(BaseClass, Method, ...)       \
  class BaseClass##_##Method##_Benchmark : public BaseClass<__VA_ARGS__> { \
   public:                                                                 \
    BaseClass##_##Method##_Benchmark() : BaseClass<__VA_ARGS__>() {        \
      this->SetName(#BaseClass "<" #__VA_ARGS__ ">/" #Method);             \
    }                                                                      \
                                                                           \
   protected:                                                              \
    virtual void BenchmarkCase(::benchmark::State&);                       \
  };
#else
#define BENCHMARK_TEMPLATE_PRIVATE_DECLARE_F(n, a) \
  BENCHMARK_TEMPLATE1_PRIVATE_DECLARE_F(n, a)
#endif

#define BENCHMARK_DEFINE_F(BaseClass, Method)    \
  BENCHMARK_PRIVATE_DECLARE_F(BaseClass, Method) \
  void BaseClass##_##Method##_Benchmark::BenchmarkCase

#define BENCHMARK_TEMPLATE1_DEFINE_F(BaseClass, Method, a)    \
  BENCHMARK_TEMPLATE1_PRIVATE_DECLARE_F(BaseClass, Method, a) \
  void BaseClass##_##Method##_Benchmark::BenchmarkCase

#define BENCHMARK_TEMPLATE2_DEFINE_F(BaseClass, Method, a, b)    \
  BENCHMARK_TEMPLATE2_PRIVATE_DECLARE_F(BaseClass, Method, a, b) \
  void BaseClass##_##Method##_Benchmark::BenchmarkCase

#ifdef BENCHMARK_HAS_CXX11
#define BENCHMARK_TEMPLATE_DEFINE_F(BaseClass, Method, ...)            \
  BENCHMARK_TEMPLATE_PRIVATE_DECLARE_F(BaseClass, Method, __VA_ARGS__) \
  void BaseClass##_##Method##_Benchmark::BenchmarkCase
#else
#define BENCHMARK_TEMPLATE_DEFINE_F(BaseClass, Method, a) \
  BENCHMARK_TEMPLATE1_DEFINE_F(BaseClass, Method, a)
#endif

#define BENCHMARK_REGISTER_F(BaseClass, Method) \
  BENCHMARK_PRIVATE_REGISTER_F(BaseClass##_##Method##_Benchmark)

#define BENCHMARK_PRIVATE_REGISTER_F(TestName) \
  BENCHMARK_PRIVATE_DECLARE(TestName) =        \
      (::benchmark::internal::RegisterBenchmarkInternal(new TestName()))

// This macro will define and register a benchmark within a fixture class.
#define BENCHMARK_F(BaseClass, Method)           \
  BENCHMARK_PRIVATE_DECLARE_F(BaseClass, Method) \
  BENCHMARK_REGISTER_F(BaseClass, Method);       \
  void BaseClass##_##Method##_Benchmark::BenchmarkCase

#define BENCHMARK_TEMPLATE1_F(BaseClass, Method, a)           \
  BENCHMARK_TEMPLATE1_PRIVATE_DECLARE_F(BaseClass, Method, a) \
  BENCHMARK_REGISTER_F(BaseClass, Method);                    \
  void BaseClass##_##Method##_Benchmark::BenchmarkCase

#define BENCHMARK_TEMPLATE2_F(BaseClass, Method, a, b)           \
  BENCHMARK_TEMPLATE2_PRIVATE_DECLARE_F(BaseClass, Method, a, b) \
  BENCHMARK_REGISTER_F(BaseClass, Method);                       \
  void BaseClass##_##Method##_Benchmark::BenchmarkCase

#ifdef BENCHMARK_HAS_CXX11
#define BENCHMARK_TEMPLATE_F(BaseClass, Method, ...)                   \
  BENCHMARK_TEMPLATE_PRIVATE_DECLARE_F(BaseClass, Method, __VA_ARGS__) \
  BENCHMARK_REGISTER_F(BaseClass, Method);                             \
  void BaseClass##_##Method##_Benchmark::BenchmarkCase
#else
#define BENCHMARK_TEMPLATE_F(BaseClass, Method, a) \
  BENCHMARK_TEMPLATE1_F(BaseClass, Method, a)
#endif

// Helper macro to create a main routine in a test that runs the benchmarks
#define BENCHMARK_MAIN()                                                \
  int main(int argc, char** argv) {                                     \
    ::benchmark::Initialize(&argc, argv);                               \
    if (::benchmark::ReportUnrecognizedArguments(argc, argv)) return 1; \
    ::benchmark::RunSpecifiedBenchmarks();                              \
  }                                                                     \
  int main(int, char**)

// ------------------------------------------------------
// Benchmark Reporters

namespace benchmark {

struct CPUInfo {
  struct CacheInfo {
    std::string type;
    int level;
    int size;
    int num_sharing;
  };

  int num_cpus;
  double cycles_per_second;
  std::vector<CacheInfo> caches;
  bool scaling_enabled;
  std::vector<double> load_avg;

  static const CPUInfo& Get();

 private:
  CPUInfo();
  BENCHMARK_DISALLOW_COPY_AND_ASSIGN(CPUInfo);
};

//Adding Struct for System Information
struct SystemInfo {
  std::string name;
  static const SystemInfo& Get();
 private:
  SystemInfo();
  BENCHMARK_DISALLOW_COPY_AND_ASSIGN(SystemInfo);
};

// Interface for custom benchmark result printers.
// By default, benchmark reports are printed to stdout. However an application
// can control the destination of the reports by calling
// RunSpecifiedBenchmarks and passing it a custom reporter object.
// The reporter object must implement the following interface.
class BenchmarkReporter {
 public:
  struct Context {
    CPUInfo const& cpu_info;
    SystemInfo const& sys_info;
    // The number of chars in the longest benchmark name.
    size_t name_field_width;
    static const char* executable_name;
    Context();
  };

  struct Run {
    enum RunType { RT_Iteration, RT_Aggregate };

    Run()
        : run_type(RT_Iteration),
          error_occurred(false),
          iterations(1),
          time_unit(kNanosecond),
          real_accumulated_time(0),
          cpu_accumulated_time(0),
          max_heapbytes_used(0),
          complexity(oNone),
          complexity_lambda(),
          complexity_n(0),
          report_big_o(false),
          report_rms(false),
          counters(),
          has_memory_result(false),
          allocs_per_iter(0.0),
          max_bytes_used(0) {}

    std::string benchmark_name() const;
    std::string run_name;
    RunType run_type;          // is this a measurement, or an aggregate?
    std::string aggregate_name;
    std::string report_label;  // Empty if not set by benchmark.
    bool error_occurred;
    std::string error_message;

    int64_t iterations;
    TimeUnit time_unit;
    double real_accumulated_time;
    double cpu_accumulated_time;

    // Return a value representing the real time per iteration in the unit
    // specified by 'time_unit'.
    // NOTE: If 'iterations' is zero the returned value represents the
    // accumulated time.
    double GetAdjustedRealTime() const;

    // Return a value representing the cpu time per iteration in the unit
    // specified by 'time_unit'.
    // NOTE: If 'iterations' is zero the returned value represents the
    // accumulated time.
    double GetAdjustedCPUTime() const;

    // This is set to 0.0 if memory tracing is not enabled.
    double max_heapbytes_used;

    // Keep track of arguments to compute asymptotic complexity
    BigO complexity;
    BigOFunc* complexity_lambda;
    int64_t complexity_n;

    // what statistics to compute from the measurements
    const std::vector<Statistics>* statistics;

    // Inform print function whether the current run is a complexity report
    bool report_big_o;
    bool report_rms;

    UserCounters counters;

    // Memory metrics.
    bool has_memory_result;
    double allocs_per_iter;
    int64_t max_bytes_used;
  };

  // Construct a BenchmarkReporter with the output stream set to 'std::cout'
  // and the error stream set to 'std::cerr'
  BenchmarkReporter();

  // Called once for every suite of benchmarks run.
  // The parameter "context" contains information that the
  // reporter may wish to use when generating its report, for example the
  // platform under which the benchmarks are running. The benchmark run is
  // never started if this function returns false, allowing the reporter
  // to skip runs based on the context information.
  virtual bool ReportContext(const Context& context) = 0;

  // Called once for each group of benchmark runs, gives information about
  // cpu-time and heap memory usage during the benchmark run. If the group
  // of runs contained more than two entries then 'report' contains additional
  // elements representing the mean and standard deviation of those runs.
  // Additionally if this group of runs was the last in a family of benchmarks
  // 'reports' contains additional entries representing the asymptotic
  // complexity and RMS of that benchmark family.
  virtual void ReportRuns(const std::vector<Run>& report) = 0;

  // Called once and only once after ever group of benchmarks is run and
  // reported.
  virtual void Finalize() {}

  // REQUIRES: The object referenced by 'out' is valid for the lifetime
  // of the reporter.
  void SetOutputStream(std::ostream* out) {
    assert(out);
    output_stream_ = out;
  }

  // REQUIRES: The object referenced by 'err' is valid for the lifetime
  // of the reporter.
  void SetErrorStream(std::ostream* err) {
    assert(err);
    error_stream_ = err;
  }

  std::ostream& GetOutputStream() const { return *output_stream_; }

  std::ostream& GetErrorStream() const { return *error_stream_; }

  virtual ~BenchmarkReporter();

  // Write a human readable string to 'out' representing the specified
  // 'context'.
  // REQUIRES: 'out' is non-null.
  static void PrintBasicContext(std::ostream* out, Context const& context);

 private:
  std::ostream* output_stream_;
  std::ostream* error_stream_;
};

// Simple reporter that outputs benchmark data to the console. This is the
// default reporter used by RunSpecifiedBenchmarks().
class ConsoleReporter : public BenchmarkReporter {
 public:
  enum OutputOptions {
    OO_None = 0,
    OO_Color = 1,
    OO_Tabular = 2,
    OO_ColorTabular = OO_Color | OO_Tabular,
    OO_Defaults = OO_ColorTabular
  };
  explicit ConsoleReporter(OutputOptions opts_ = OO_Defaults)
      : output_options_(opts_),
        name_field_width_(0),
        prev_counters_(),
        printed_header_(false) {}

  virtual bool ReportContext(const Context& context);
  virtual void ReportRuns(const std::vector<Run>& reports);

 protected:
  virtual void PrintRunData(const Run& report);
  virtual void PrintHeader(const Run& report);

  OutputOptions output_options_;
  size_t name_field_width_;
  UserCounters prev_counters_;
  bool printed_header_;
};

class JSONReporter : public BenchmarkReporter {
 public:
  JSONReporter() : first_report_(true) {}
  virtual bool ReportContext(const Context& context);
  virtual void ReportRuns(const std::vector<Run>& reports);
  virtual void Finalize();

 private:
  void PrintRunData(const Run& report);

  bool first_report_;
};

class BENCHMARK_DEPRECATED_MSG("The CSV Reporter will be removed in a future release")
      CSVReporter : public BenchmarkReporter {
 public:
  CSVReporter() : printed_header_(false) {}
  virtual bool ReportContext(const Context& context);
  virtual void ReportRuns(const std::vector<Run>& reports);

 private:
  void PrintRunData(const Run& report);

  bool printed_header_;
  std::set<std::string> user_counter_names_;
};

// If a MemoryManager is registered, it can be used to collect and report
// allocation metrics for a run of the benchmark.
class MemoryManager {
 public:
  struct Result {
    Result() : num_allocs(0), max_bytes_used(0) {}

    // The number of allocations made in total between Start and Stop.
    int64_t num_allocs;

    // The peak memory use between Start and Stop.
    int64_t max_bytes_used;
  };

  virtual ~MemoryManager() {}

  // Implement this to start recording allocation information.
  virtual void Start() = 0;

  // Implement this to stop recording and fill out the given Result structure.
  virtual void Stop(Result* result) = 0;
};

inline const char* GetTimeUnitString(TimeUnit unit) {
  switch (unit) {
    case kMillisecond:
      return "ms";
    case kMicrosecond:
      return "us";
    case kNanosecond:
      return "ns";
  }
  BENCHMARK_UNREACHABLE();
}

inline double GetTimeUnitMultiplier(TimeUnit unit) {
  switch (unit) {
    case kMillisecond:
      return 1e3;
    case kMicrosecond:
      return 1e6;
    case kNanosecond:
      return 1e9;
  }
  BENCHMARK_UNREACHABLE();
}

}  // namespace benchmark

#endif  // BENCHMARK_BENCHMARK_H_