ConvertLaunchFuncToCudaCalls.cpp
18.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
//===- ConvertLaunchFuncToCudaCalls.cpp - MLIR CUDA lowering passes -------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to convert gpu.launch_func op into a sequence of
// CUDA runtime calls. As the CUDA runtime does not have a stable published ABI,
// this pass uses a slim runtime layer that builds on top of the public API from
// the CUDA headers.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/GPUToCUDA/GPUToCUDAPass.h"
#include "mlir/Dialect/GPU/GPUDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/Pass/Pass.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FormatVariadic.h"
using namespace mlir;
// To avoid name mangling, these are defined in the mini-runtime file.
static constexpr const char *cuModuleLoadName = "mcuModuleLoad";
static constexpr const char *cuModuleGetFunctionName = "mcuModuleGetFunction";
static constexpr const char *cuLaunchKernelName = "mcuLaunchKernel";
static constexpr const char *cuGetStreamHelperName = "mcuGetStreamHelper";
static constexpr const char *cuStreamSynchronizeName = "mcuStreamSynchronize";
static constexpr const char *kMcuMemHostRegister = "mcuMemHostRegister";
static constexpr const char *kCubinAnnotation = "nvvm.cubin";
static constexpr const char *kCubinStorageSuffix = "_cubin_cst";
namespace {
/// A pass to convert gpu.launch_func operations into a sequence of CUDA
/// runtime calls.
///
/// In essence, a gpu.launch_func operations gets compiled into the following
/// sequence of runtime calls:
///
/// * mcuModuleLoad -- loads the module given the cubin data
/// * mcuModuleGetFunction -- gets a handle to the actual kernel function
/// * mcuGetStreamHelper -- initializes a new CUDA stream
/// * mcuLaunchKernelName -- launches the kernel on a stream
/// * mcuStreamSynchronize -- waits for operations on the stream to finish
///
/// Intermediate data structures are allocated on the stack.
class GpuLaunchFuncToCudaCallsPass
: public ModulePass<GpuLaunchFuncToCudaCallsPass> {
private:
LLVM::LLVMDialect *getLLVMDialect() { return llvmDialect; }
llvm::LLVMContext &getLLVMContext() {
return getLLVMDialect()->getLLVMContext();
}
void initializeCachedTypes() {
const llvm::Module &module = llvmDialect->getLLVMModule();
llvmVoidType = LLVM::LLVMType::getVoidTy(llvmDialect);
llvmPointerType = LLVM::LLVMType::getInt8PtrTy(llvmDialect);
llvmPointerPointerType = llvmPointerType.getPointerTo();
llvmInt8Type = LLVM::LLVMType::getInt8Ty(llvmDialect);
llvmInt32Type = LLVM::LLVMType::getInt32Ty(llvmDialect);
llvmInt64Type = LLVM::LLVMType::getInt64Ty(llvmDialect);
llvmIntPtrType = LLVM::LLVMType::getIntNTy(
llvmDialect, module.getDataLayout().getPointerSizeInBits());
}
LLVM::LLVMType getVoidType() { return llvmVoidType; }
LLVM::LLVMType getPointerType() { return llvmPointerType; }
LLVM::LLVMType getPointerPointerType() { return llvmPointerPointerType; }
LLVM::LLVMType getInt8Type() { return llvmInt8Type; }
LLVM::LLVMType getInt32Type() { return llvmInt32Type; }
LLVM::LLVMType getInt64Type() { return llvmInt64Type; }
LLVM::LLVMType getIntPtrType() {
const llvm::Module &module = getLLVMDialect()->getLLVMModule();
return LLVM::LLVMType::getIntNTy(
getLLVMDialect(), module.getDataLayout().getPointerSizeInBits());
}
LLVM::LLVMType getCUResultType() {
// This is declared as an enum in CUDA but helpers use i32.
return getInt32Type();
}
// Allocate a void pointer on the stack.
Value allocatePointer(OpBuilder &builder, Location loc) {
auto one = builder.create<LLVM::ConstantOp>(loc, getInt32Type(),
builder.getI32IntegerAttr(1));
return builder.create<LLVM::AllocaOp>(loc, getPointerPointerType(), one,
/*alignment=*/0);
}
void declareCudaFunctions(Location loc);
Value setupParamsArray(gpu::LaunchFuncOp launchOp, OpBuilder &builder);
Value generateKernelNameConstant(StringRef name, Location loc,
OpBuilder &builder);
void translateGpuLaunchCalls(mlir::gpu::LaunchFuncOp launchOp);
public:
// Run the dialect converter on the module.
void runOnModule() override {
// Cache the LLVMDialect for the current module.
llvmDialect = getContext().getRegisteredDialect<LLVM::LLVMDialect>();
// Cache the used LLVM types.
initializeCachedTypes();
getModule().walk([this](mlir::gpu::LaunchFuncOp op) {
translateGpuLaunchCalls(op);
});
// GPU kernel modules are no longer necessary since we have a global
// constant with the CUBIN data.
for (auto m : llvm::make_early_inc_range(getModule().getOps<ModuleOp>()))
if (m.getAttrOfType<UnitAttr>(gpu::GPUDialect::getKernelModuleAttrName()))
m.erase();
}
private:
LLVM::LLVMDialect *llvmDialect;
LLVM::LLVMType llvmVoidType;
LLVM::LLVMType llvmPointerType;
LLVM::LLVMType llvmPointerPointerType;
LLVM::LLVMType llvmInt8Type;
LLVM::LLVMType llvmInt32Type;
LLVM::LLVMType llvmInt64Type;
LLVM::LLVMType llvmIntPtrType;
};
} // anonymous namespace
// Adds declarations for the needed helper functions from the CUDA wrapper.
// The types in comments give the actual types expected/returned but the API
// uses void pointers. This is fine as they have the same linkage in C.
void GpuLaunchFuncToCudaCallsPass::declareCudaFunctions(Location loc) {
ModuleOp module = getModule();
OpBuilder builder(module.getBody()->getTerminator());
if (!module.lookupSymbol(cuModuleLoadName)) {
builder.create<LLVM::LLVMFuncOp>(
loc, cuModuleLoadName,
LLVM::LLVMType::getFunctionTy(
getCUResultType(),
{
getPointerPointerType(), /* CUmodule *module */
getPointerType() /* void *cubin */
},
/*isVarArg=*/false));
}
if (!module.lookupSymbol(cuModuleGetFunctionName)) {
// The helper uses void* instead of CUDA's opaque CUmodule and
// CUfunction.
builder.create<LLVM::LLVMFuncOp>(
loc, cuModuleGetFunctionName,
LLVM::LLVMType::getFunctionTy(
getCUResultType(),
{
getPointerPointerType(), /* void **function */
getPointerType(), /* void *module */
getPointerType() /* char *name */
},
/*isVarArg=*/false));
}
if (!module.lookupSymbol(cuLaunchKernelName)) {
// Other than the CUDA api, the wrappers use uintptr_t to match the
// LLVM type if MLIR's index type, which the GPU dialect uses.
// Furthermore, they use void* instead of CUDA's opaque CUfunction and
// CUstream.
builder.create<LLVM::LLVMFuncOp>(
loc, cuLaunchKernelName,
LLVM::LLVMType::getFunctionTy(
getCUResultType(),
{
getPointerType(), /* void* f */
getIntPtrType(), /* intptr_t gridXDim */
getIntPtrType(), /* intptr_t gridyDim */
getIntPtrType(), /* intptr_t gridZDim */
getIntPtrType(), /* intptr_t blockXDim */
getIntPtrType(), /* intptr_t blockYDim */
getIntPtrType(), /* intptr_t blockZDim */
getInt32Type(), /* unsigned int sharedMemBytes */
getPointerType(), /* void *hstream */
getPointerPointerType(), /* void **kernelParams */
getPointerPointerType() /* void **extra */
},
/*isVarArg=*/false));
}
if (!module.lookupSymbol(cuGetStreamHelperName)) {
// Helper function to get the current CUDA stream. Uses void* instead of
// CUDAs opaque CUstream.
builder.create<LLVM::LLVMFuncOp>(
loc, cuGetStreamHelperName,
LLVM::LLVMType::getFunctionTy(getPointerType(), /*isVarArg=*/false));
}
if (!module.lookupSymbol(cuStreamSynchronizeName)) {
builder.create<LLVM::LLVMFuncOp>(
loc, cuStreamSynchronizeName,
LLVM::LLVMType::getFunctionTy(getCUResultType(),
getPointerType() /* CUstream stream */,
/*isVarArg=*/false));
}
if (!module.lookupSymbol(kMcuMemHostRegister)) {
builder.create<LLVM::LLVMFuncOp>(
loc, kMcuMemHostRegister,
LLVM::LLVMType::getFunctionTy(getVoidType(),
{
getPointerType(), /* void *ptr */
getInt64Type() /* int64 sizeBytes*/
},
/*isVarArg=*/false));
}
}
// Generates a parameters array to be used with a CUDA kernel launch call. The
// arguments are extracted from the launchOp.
// The generated code is essentially as follows:
//
// %array = alloca(numparams * sizeof(void *))
// for (i : [0, NumKernelOperands))
// %array[i] = cast<void*>(KernelOperand[i])
// return %array
Value GpuLaunchFuncToCudaCallsPass::setupParamsArray(gpu::LaunchFuncOp launchOp,
OpBuilder &builder) {
auto numKernelOperands = launchOp.getNumKernelOperands();
Location loc = launchOp.getLoc();
auto one = builder.create<LLVM::ConstantOp>(loc, getInt32Type(),
builder.getI32IntegerAttr(1));
// Provision twice as much for the `array` to allow up to one level of
// indirection for each argument.
auto arraySize = builder.create<LLVM::ConstantOp>(
loc, getInt32Type(), builder.getI32IntegerAttr(numKernelOperands));
auto array = builder.create<LLVM::AllocaOp>(loc, getPointerPointerType(),
arraySize, /*alignment=*/0);
for (unsigned idx = 0; idx < numKernelOperands; ++idx) {
auto operand = launchOp.getKernelOperand(idx);
auto llvmType = operand.getType().cast<LLVM::LLVMType>();
Value memLocation = builder.create<LLVM::AllocaOp>(
loc, llvmType.getPointerTo(), one, /*alignment=*/1);
builder.create<LLVM::StoreOp>(loc, operand, memLocation);
auto casted =
builder.create<LLVM::BitcastOp>(loc, getPointerType(), memLocation);
// Assume all struct arguments come from MemRef. If this assumption does not
// hold anymore then we `launchOp` to lower from MemRefType and not after
// LLVMConversion has taken place and the MemRef information is lost.
// Extra level of indirection in the `array`:
// the descriptor pointer is registered via @mcuMemHostRegisterPtr
if (llvmType.isStructTy()) {
auto registerFunc =
getModule().lookupSymbol<LLVM::LLVMFuncOp>(kMcuMemHostRegister);
auto nullPtr = builder.create<LLVM::NullOp>(loc, llvmType.getPointerTo());
auto gep = builder.create<LLVM::GEPOp>(loc, llvmType.getPointerTo(),
ArrayRef<Value>{nullPtr, one});
auto size = builder.create<LLVM::PtrToIntOp>(loc, getInt64Type(), gep);
builder.create<LLVM::CallOp>(loc, ArrayRef<Type>{},
builder.getSymbolRefAttr(registerFunc),
ArrayRef<Value>{casted, size});
Value memLocation = builder.create<LLVM::AllocaOp>(
loc, getPointerPointerType(), one, /*alignment=*/1);
builder.create<LLVM::StoreOp>(loc, casted, memLocation);
casted =
builder.create<LLVM::BitcastOp>(loc, getPointerType(), memLocation);
}
auto index = builder.create<LLVM::ConstantOp>(
loc, getInt32Type(), builder.getI32IntegerAttr(idx));
auto gep = builder.create<LLVM::GEPOp>(loc, getPointerPointerType(), array,
ArrayRef<Value>{index});
builder.create<LLVM::StoreOp>(loc, casted, gep);
}
return array;
}
// Generates an LLVM IR dialect global that contains the name of the given
// kernel function as a C string, and returns a pointer to its beginning.
// The code is essentially:
//
// llvm.global constant @kernel_name("function_name\00")
// func(...) {
// %0 = llvm.addressof @kernel_name
// %1 = llvm.constant (0 : index)
// %2 = llvm.getelementptr %0[%1, %1] : !llvm<"i8*">
// }
Value GpuLaunchFuncToCudaCallsPass::generateKernelNameConstant(
StringRef name, Location loc, OpBuilder &builder) {
// Make sure the trailing zero is included in the constant.
std::vector<char> kernelName(name.begin(), name.end());
kernelName.push_back('\0');
std::string globalName = llvm::formatv("{0}_kernel_name", name);
return LLVM::createGlobalString(
loc, builder, globalName, StringRef(kernelName.data(), kernelName.size()),
LLVM::Linkage::Internal, llvmDialect);
}
// Emits LLVM IR to launch a kernel function. Expects the module that contains
// the compiled kernel function as a cubin in the 'nvvm.cubin' attribute of the
// kernel function in the IR.
// While MLIR has no global constants, also expects a cubin getter function in
// an 'nvvm.cubingetter' attribute. Such function is expected to return a
// pointer to the cubin blob when invoked.
// With these given, the generated code in essence is
//
// %0 = call %cubingetter
// %1 = alloca sizeof(void*)
// call %mcuModuleLoad(%2, %1)
// %2 = alloca sizeof(void*)
// %3 = load %1
// %4 = <see generateKernelNameConstant>
// call %mcuModuleGetFunction(%2, %3, %4)
// %5 = call %mcuGetStreamHelper()
// %6 = load %2
// %7 = <see setupParamsArray>
// call %mcuLaunchKernel(%6, <launchOp operands 0..5>, 0, %5, %7, nullptr)
// call %mcuStreamSynchronize(%5)
void GpuLaunchFuncToCudaCallsPass::translateGpuLaunchCalls(
mlir::gpu::LaunchFuncOp launchOp) {
OpBuilder builder(launchOp);
Location loc = launchOp.getLoc();
declareCudaFunctions(loc);
auto zero = builder.create<LLVM::ConstantOp>(loc, getInt32Type(),
builder.getI32IntegerAttr(0));
// Create an LLVM global with CUBIN extracted from the kernel annotation and
// obtain a pointer to the first byte in it.
auto kernelModule =
getModule().lookupSymbol<ModuleOp>(launchOp.getKernelModuleName());
assert(kernelModule && "expected a kernel module");
auto cubinAttr = kernelModule.getAttrOfType<StringAttr>(kCubinAnnotation);
if (!cubinAttr) {
kernelModule.emitOpError()
<< "missing " << kCubinAnnotation << " attribute";
return signalPassFailure();
}
assert(kernelModule.getName() && "expected a named module");
SmallString<128> nameBuffer(*kernelModule.getName());
nameBuffer.append(kCubinStorageSuffix);
Value data = LLVM::createGlobalString(
loc, builder, nameBuffer.str(), cubinAttr.getValue(),
LLVM::Linkage::Internal, getLLVMDialect());
// Emit the load module call to load the module data. Error checking is done
// in the called helper function.
auto cuModule = allocatePointer(builder, loc);
auto cuModuleLoad =
getModule().lookupSymbol<LLVM::LLVMFuncOp>(cuModuleLoadName);
builder.create<LLVM::CallOp>(loc, ArrayRef<Type>{getCUResultType()},
builder.getSymbolRefAttr(cuModuleLoad),
ArrayRef<Value>{cuModule, data});
// Get the function from the module. The name corresponds to the name of
// the kernel function.
auto cuOwningModuleRef =
builder.create<LLVM::LoadOp>(loc, getPointerType(), cuModule);
auto kernelName = generateKernelNameConstant(launchOp.kernel(), loc, builder);
auto cuFunction = allocatePointer(builder, loc);
auto cuModuleGetFunction =
getModule().lookupSymbol<LLVM::LLVMFuncOp>(cuModuleGetFunctionName);
builder.create<LLVM::CallOp>(
loc, ArrayRef<Type>{getCUResultType()},
builder.getSymbolRefAttr(cuModuleGetFunction),
ArrayRef<Value>{cuFunction, cuOwningModuleRef, kernelName});
// Grab the global stream needed for execution.
auto cuGetStreamHelper =
getModule().lookupSymbol<LLVM::LLVMFuncOp>(cuGetStreamHelperName);
auto cuStream = builder.create<LLVM::CallOp>(
loc, ArrayRef<Type>{getPointerType()},
builder.getSymbolRefAttr(cuGetStreamHelper), ArrayRef<Value>{});
// Invoke the function with required arguments.
auto cuLaunchKernel =
getModule().lookupSymbol<LLVM::LLVMFuncOp>(cuLaunchKernelName);
auto cuFunctionRef =
builder.create<LLVM::LoadOp>(loc, getPointerType(), cuFunction);
auto paramsArray = setupParamsArray(launchOp, builder);
auto nullpointer =
builder.create<LLVM::IntToPtrOp>(loc, getPointerPointerType(), zero);
builder.create<LLVM::CallOp>(
loc, ArrayRef<Type>{getCUResultType()},
builder.getSymbolRefAttr(cuLaunchKernel),
ArrayRef<Value>{cuFunctionRef, launchOp.getOperand(0),
launchOp.getOperand(1), launchOp.getOperand(2),
launchOp.getOperand(3), launchOp.getOperand(4),
launchOp.getOperand(5), zero, /* sharedMemBytes */
cuStream.getResult(0), /* stream */
paramsArray, /* kernel params */
nullpointer /* extra */});
// Sync on the stream to make it synchronous.
auto cuStreamSync =
getModule().lookupSymbol<LLVM::LLVMFuncOp>(cuStreamSynchronizeName);
builder.create<LLVM::CallOp>(loc, ArrayRef<Type>{getCUResultType()},
builder.getSymbolRefAttr(cuStreamSync),
ArrayRef<Value>(cuStream.getResult(0)));
launchOp.erase();
}
std::unique_ptr<mlir::OpPassBase<mlir::ModuleOp>>
mlir::createConvertGpuLaunchFuncToCudaCallsPass() {
return std::make_unique<GpuLaunchFuncToCudaCallsPass>();
}
static PassRegistration<GpuLaunchFuncToCudaCallsPass>
pass("launch-func-to-cuda",
"Convert all launch_func ops to CUDA runtime calls");