ConvertStandardToLLVM.cpp
91.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
//===- ConvertStandardToLLVM.cpp - Standard to LLVM dialect conversion-----===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to convert MLIR standard and builtin dialects
// into the LLVM IR dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
#include "mlir/ADT/TypeSwitch.h"
#include "mlir/Conversion/LoopToStandard/ConvertLoopToStandard.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/StandardOps/Ops.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/Functional.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/Passes.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/CommandLine.h"
using namespace mlir;
#define PASS_NAME "convert-std-to-llvm"
static llvm::cl::OptionCategory
clOptionsCategory("Standard to LLVM lowering options");
static llvm::cl::opt<bool>
clUseAlloca(PASS_NAME "-use-alloca",
llvm::cl::desc("Replace emission of malloc/free by alloca"),
llvm::cl::init(false));
LLVMTypeConverter::LLVMTypeConverter(MLIRContext *ctx)
: llvmDialect(ctx->getRegisteredDialect<LLVM::LLVMDialect>()) {
assert(llvmDialect && "LLVM IR dialect is not registered");
module = &llvmDialect->getLLVMModule();
}
// Get the LLVM context.
llvm::LLVMContext &LLVMTypeConverter::getLLVMContext() {
return module->getContext();
}
// Extract an LLVM IR type from the LLVM IR dialect type.
LLVM::LLVMType LLVMTypeConverter::unwrap(Type type) {
if (!type)
return nullptr;
auto *mlirContext = type.getContext();
auto wrappedLLVMType = type.dyn_cast<LLVM::LLVMType>();
if (!wrappedLLVMType)
emitError(UnknownLoc::get(mlirContext),
"conversion resulted in a non-LLVM type");
return wrappedLLVMType;
}
LLVM::LLVMType LLVMTypeConverter::getIndexType() {
return LLVM::LLVMType::getIntNTy(
llvmDialect, module->getDataLayout().getPointerSizeInBits());
}
Type LLVMTypeConverter::convertIndexType(IndexType type) {
return getIndexType();
}
Type LLVMTypeConverter::convertIntegerType(IntegerType type) {
return LLVM::LLVMType::getIntNTy(llvmDialect, type.getWidth());
}
Type LLVMTypeConverter::convertFloatType(FloatType type) {
switch (type.getKind()) {
case mlir::StandardTypes::F32:
return LLVM::LLVMType::getFloatTy(llvmDialect);
case mlir::StandardTypes::F64:
return LLVM::LLVMType::getDoubleTy(llvmDialect);
case mlir::StandardTypes::F16:
return LLVM::LLVMType::getHalfTy(llvmDialect);
case mlir::StandardTypes::BF16: {
auto *mlirContext = llvmDialect->getContext();
return emitError(UnknownLoc::get(mlirContext), "unsupported type: BF16"),
Type();
}
default:
llvm_unreachable("non-float type in convertFloatType");
}
}
// Except for signatures, MLIR function types are converted into LLVM
// pointer-to-function types.
Type LLVMTypeConverter::convertFunctionType(FunctionType type) {
SignatureConversion conversion(type.getNumInputs());
LLVM::LLVMType converted =
convertFunctionSignature(type, /*isVariadic=*/false, conversion);
return converted.getPointerTo();
}
// Function types are converted to LLVM Function types by recursively converting
// argument and result types. If MLIR Function has zero results, the LLVM
// Function has one VoidType result. If MLIR Function has more than one result,
// they are into an LLVM StructType in their order of appearance.
LLVM::LLVMType LLVMTypeConverter::convertFunctionSignature(
FunctionType type, bool isVariadic,
LLVMTypeConverter::SignatureConversion &result) {
// Convert argument types one by one and check for errors.
for (auto &en : llvm::enumerate(type.getInputs())) {
Type type = en.value();
auto converted = convertType(type).dyn_cast_or_null<LLVM::LLVMType>();
if (!converted)
return {};
if (type.isa<MemRefType>() || type.isa<UnrankedMemRefType>())
converted = converted.getPointerTo();
result.addInputs(en.index(), converted);
}
SmallVector<LLVM::LLVMType, 8> argTypes;
argTypes.reserve(llvm::size(result.getConvertedTypes()));
for (Type type : result.getConvertedTypes())
argTypes.push_back(unwrap(type));
// If function does not return anything, create the void result type,
// if it returns on element, convert it, otherwise pack the result types into
// a struct.
LLVM::LLVMType resultType =
type.getNumResults() == 0
? LLVM::LLVMType::getVoidTy(llvmDialect)
: unwrap(packFunctionResults(type.getResults()));
if (!resultType)
return {};
return LLVM::LLVMType::getFunctionTy(resultType, argTypes, isVariadic);
}
// Convert a MemRef to an LLVM type. The result is a MemRef descriptor which
// contains:
// 1. the pointer to the data buffer, followed by
// 2. a lowered `index`-type integer containing the distance between the
// beginning of the buffer and the first element to be accessed through the
// view, followed by
// 3. an array containing as many `index`-type integers as the rank of the
// MemRef: the array represents the size, in number of elements, of the memref
// along the given dimension. For constant MemRef dimensions, the
// corresponding size entry is a constant whose runtime value must match the
// static value, followed by
// 4. a second array containing as many `index`-type integers as the rank of
// the MemRef: the second array represents the "stride" (in tensor abstraction
// sense), i.e. the number of consecutive elements of the underlying buffer.
// TODO(ntv, zinenko): add assertions for the static cases.
//
// template <typename Elem, size_t Rank>
// struct {
// Elem *allocatedPtr;
// Elem *alignedPtr;
// int64_t offset;
// int64_t sizes[Rank]; // omitted when rank == 0
// int64_t strides[Rank]; // omitted when rank == 0
// };
static constexpr unsigned kAllocatedPtrPosInMemRefDescriptor = 0;
static constexpr unsigned kAlignedPtrPosInMemRefDescriptor = 1;
static constexpr unsigned kOffsetPosInMemRefDescriptor = 2;
static constexpr unsigned kSizePosInMemRefDescriptor = 3;
static constexpr unsigned kStridePosInMemRefDescriptor = 4;
Type LLVMTypeConverter::convertMemRefType(MemRefType type) {
int64_t offset;
SmallVector<int64_t, 4> strides;
bool strideSuccess = succeeded(getStridesAndOffset(type, strides, offset));
assert(strideSuccess &&
"Non-strided layout maps must have been normalized away");
(void)strideSuccess;
LLVM::LLVMType elementType = unwrap(convertType(type.getElementType()));
if (!elementType)
return {};
auto ptrTy = elementType.getPointerTo(type.getMemorySpace());
auto indexTy = getIndexType();
auto rank = type.getRank();
if (rank > 0) {
auto arrayTy = LLVM::LLVMType::getArrayTy(indexTy, type.getRank());
return LLVM::LLVMType::getStructTy(ptrTy, ptrTy, indexTy, arrayTy, arrayTy);
}
return LLVM::LLVMType::getStructTy(ptrTy, ptrTy, indexTy);
}
// Converts UnrankedMemRefType to LLVMType. The result is a descriptor which
// contains:
// 1. int64_t rank, the dynamic rank of this MemRef
// 2. void* ptr, pointer to the static ranked MemRef descriptor. This will be
// stack allocated (alloca) copy of a MemRef descriptor that got casted to
// be unranked.
static constexpr unsigned kRankInUnrankedMemRefDescriptor = 0;
static constexpr unsigned kPtrInUnrankedMemRefDescriptor = 1;
Type LLVMTypeConverter::convertUnrankedMemRefType(UnrankedMemRefType type) {
auto rankTy = LLVM::LLVMType::getInt64Ty(llvmDialect);
auto ptrTy = LLVM::LLVMType::getInt8PtrTy(llvmDialect);
return LLVM::LLVMType::getStructTy(rankTy, ptrTy);
}
// Convert an n-D vector type to an LLVM vector type via (n-1)-D array type when
// n > 1.
// For example, `vector<4 x f32>` converts to `!llvm.type<"<4 x float>">` and
// `vector<4 x 8 x 16 f32>` converts to `!llvm<"[4 x [8 x <16 x float>]]">`.
Type LLVMTypeConverter::convertVectorType(VectorType type) {
auto elementType = unwrap(convertType(type.getElementType()));
if (!elementType)
return {};
auto vectorType =
LLVM::LLVMType::getVectorTy(elementType, type.getShape().back());
auto shape = type.getShape();
for (int i = shape.size() - 2; i >= 0; --i)
vectorType = LLVM::LLVMType::getArrayTy(vectorType, shape[i]);
return vectorType;
}
// Dispatch based on the actual type. Return null type on error.
Type LLVMTypeConverter::convertStandardType(Type t) {
return TypeSwitch<Type, Type>(t)
.Case([&](FloatType type) { return convertFloatType(type); })
.Case([&](FunctionType type) { return convertFunctionType(type); })
.Case([&](IndexType type) { return convertIndexType(type); })
.Case([&](IntegerType type) { return convertIntegerType(type); })
.Case([&](MemRefType type) { return convertMemRefType(type); })
.Case([&](UnrankedMemRefType type) {
return convertUnrankedMemRefType(type);
})
.Case([&](VectorType type) { return convertVectorType(type); })
.Case([](LLVM::LLVMType type) { return type; })
.Default([](Type) { return Type(); });
}
LLVMOpLowering::LLVMOpLowering(StringRef rootOpName, MLIRContext *context,
LLVMTypeConverter &lowering_,
PatternBenefit benefit)
: ConversionPattern(rootOpName, benefit, context), lowering(lowering_) {}
/*============================================================================*/
/* StructBuilder implementation */
/*============================================================================*/
StructBuilder::StructBuilder(Value v) : value(v) {
assert(value != nullptr && "value cannot be null");
structType = value.getType().cast<LLVM::LLVMType>();
}
Value StructBuilder::extractPtr(OpBuilder &builder, Location loc,
unsigned pos) {
Type type = structType.cast<LLVM::LLVMType>().getStructElementType(pos);
return builder.create<LLVM::ExtractValueOp>(loc, type, value,
builder.getI64ArrayAttr(pos));
}
void StructBuilder::setPtr(OpBuilder &builder, Location loc, unsigned pos,
Value ptr) {
value = builder.create<LLVM::InsertValueOp>(loc, structType, value, ptr,
builder.getI64ArrayAttr(pos));
}
/*============================================================================*/
/* MemRefDescriptor implementation */
/*============================================================================*/
/// Construct a helper for the given descriptor value.
MemRefDescriptor::MemRefDescriptor(Value descriptor)
: StructBuilder(descriptor) {
assert(value != nullptr && "value cannot be null");
indexType = value.getType().cast<LLVM::LLVMType>().getStructElementType(
kOffsetPosInMemRefDescriptor);
}
/// Builds IR creating an `undef` value of the descriptor type.
MemRefDescriptor MemRefDescriptor::undef(OpBuilder &builder, Location loc,
Type descriptorType) {
Value descriptor =
builder.create<LLVM::UndefOp>(loc, descriptorType.cast<LLVM::LLVMType>());
return MemRefDescriptor(descriptor);
}
/// Builds IR creating a MemRef descriptor that represents `type` and
/// populates it with static shape and stride information extracted from the
/// type.
MemRefDescriptor
MemRefDescriptor::fromStaticShape(OpBuilder &builder, Location loc,
LLVMTypeConverter &typeConverter,
MemRefType type, Value memory) {
assert(type.hasStaticShape() && "unexpected dynamic shape");
assert(type.getAffineMaps().empty() && "unexpected layout map");
auto convertedType = typeConverter.convertType(type);
assert(convertedType && "unexpected failure in memref type conversion");
auto descr = MemRefDescriptor::undef(builder, loc, convertedType);
descr.setAllocatedPtr(builder, loc, memory);
descr.setAlignedPtr(builder, loc, memory);
descr.setConstantOffset(builder, loc, 0);
// Fill in sizes and strides, in reverse order to simplify stride
// calculation.
uint64_t runningStride = 1;
for (unsigned i = type.getRank(); i > 0; --i) {
unsigned dim = i - 1;
descr.setConstantSize(builder, loc, dim, type.getDimSize(dim));
descr.setConstantStride(builder, loc, dim, runningStride);
runningStride *= type.getDimSize(dim);
}
return descr;
}
/// Builds IR extracting the allocated pointer from the descriptor.
Value MemRefDescriptor::allocatedPtr(OpBuilder &builder, Location loc) {
return extractPtr(builder, loc, kAllocatedPtrPosInMemRefDescriptor);
}
/// Builds IR inserting the allocated pointer into the descriptor.
void MemRefDescriptor::setAllocatedPtr(OpBuilder &builder, Location loc,
Value ptr) {
setPtr(builder, loc, kAllocatedPtrPosInMemRefDescriptor, ptr);
}
/// Builds IR extracting the aligned pointer from the descriptor.
Value MemRefDescriptor::alignedPtr(OpBuilder &builder, Location loc) {
return extractPtr(builder, loc, kAlignedPtrPosInMemRefDescriptor);
}
/// Builds IR inserting the aligned pointer into the descriptor.
void MemRefDescriptor::setAlignedPtr(OpBuilder &builder, Location loc,
Value ptr) {
setPtr(builder, loc, kAlignedPtrPosInMemRefDescriptor, ptr);
}
// Creates a constant Op producing a value of `resultType` from an index-typed
// integer attribute.
static Value createIndexAttrConstant(OpBuilder &builder, Location loc,
Type resultType, int64_t value) {
return builder.create<LLVM::ConstantOp>(
loc, resultType, builder.getIntegerAttr(builder.getIndexType(), value));
}
/// Builds IR extracting the offset from the descriptor.
Value MemRefDescriptor::offset(OpBuilder &builder, Location loc) {
return builder.create<LLVM::ExtractValueOp>(
loc, indexType, value,
builder.getI64ArrayAttr(kOffsetPosInMemRefDescriptor));
}
/// Builds IR inserting the offset into the descriptor.
void MemRefDescriptor::setOffset(OpBuilder &builder, Location loc,
Value offset) {
value = builder.create<LLVM::InsertValueOp>(
loc, structType, value, offset,
builder.getI64ArrayAttr(kOffsetPosInMemRefDescriptor));
}
/// Builds IR inserting the offset into the descriptor.
void MemRefDescriptor::setConstantOffset(OpBuilder &builder, Location loc,
uint64_t offset) {
setOffset(builder, loc,
createIndexAttrConstant(builder, loc, indexType, offset));
}
/// Builds IR extracting the pos-th size from the descriptor.
Value MemRefDescriptor::size(OpBuilder &builder, Location loc, unsigned pos) {
return builder.create<LLVM::ExtractValueOp>(
loc, indexType, value,
builder.getI64ArrayAttr({kSizePosInMemRefDescriptor, pos}));
}
/// Builds IR inserting the pos-th size into the descriptor
void MemRefDescriptor::setSize(OpBuilder &builder, Location loc, unsigned pos,
Value size) {
value = builder.create<LLVM::InsertValueOp>(
loc, structType, value, size,
builder.getI64ArrayAttr({kSizePosInMemRefDescriptor, pos}));
}
/// Builds IR inserting the pos-th size into the descriptor
void MemRefDescriptor::setConstantSize(OpBuilder &builder, Location loc,
unsigned pos, uint64_t size) {
setSize(builder, loc, pos,
createIndexAttrConstant(builder, loc, indexType, size));
}
/// Builds IR extracting the pos-th size from the descriptor.
Value MemRefDescriptor::stride(OpBuilder &builder, Location loc, unsigned pos) {
return builder.create<LLVM::ExtractValueOp>(
loc, indexType, value,
builder.getI64ArrayAttr({kStridePosInMemRefDescriptor, pos}));
}
/// Builds IR inserting the pos-th stride into the descriptor
void MemRefDescriptor::setStride(OpBuilder &builder, Location loc, unsigned pos,
Value stride) {
value = builder.create<LLVM::InsertValueOp>(
loc, structType, value, stride,
builder.getI64ArrayAttr({kStridePosInMemRefDescriptor, pos}));
}
/// Builds IR inserting the pos-th stride into the descriptor
void MemRefDescriptor::setConstantStride(OpBuilder &builder, Location loc,
unsigned pos, uint64_t stride) {
setStride(builder, loc, pos,
createIndexAttrConstant(builder, loc, indexType, stride));
}
LLVM::LLVMType MemRefDescriptor::getElementType() {
return value.getType().cast<LLVM::LLVMType>().getStructElementType(
kAlignedPtrPosInMemRefDescriptor);
}
/*============================================================================*/
/* UnrankedMemRefDescriptor implementation */
/*============================================================================*/
/// Construct a helper for the given descriptor value.
UnrankedMemRefDescriptor::UnrankedMemRefDescriptor(Value descriptor)
: StructBuilder(descriptor) {}
/// Builds IR creating an `undef` value of the descriptor type.
UnrankedMemRefDescriptor UnrankedMemRefDescriptor::undef(OpBuilder &builder,
Location loc,
Type descriptorType) {
Value descriptor =
builder.create<LLVM::UndefOp>(loc, descriptorType.cast<LLVM::LLVMType>());
return UnrankedMemRefDescriptor(descriptor);
}
Value UnrankedMemRefDescriptor::rank(OpBuilder &builder, Location loc) {
return extractPtr(builder, loc, kRankInUnrankedMemRefDescriptor);
}
void UnrankedMemRefDescriptor::setRank(OpBuilder &builder, Location loc,
Value v) {
setPtr(builder, loc, kRankInUnrankedMemRefDescriptor, v);
}
Value UnrankedMemRefDescriptor::memRefDescPtr(OpBuilder &builder,
Location loc) {
return extractPtr(builder, loc, kPtrInUnrankedMemRefDescriptor);
}
void UnrankedMemRefDescriptor::setMemRefDescPtr(OpBuilder &builder,
Location loc, Value v) {
setPtr(builder, loc, kPtrInUnrankedMemRefDescriptor, v);
}
namespace {
// Base class for Standard to LLVM IR op conversions. Matches the Op type
// provided as template argument. Carries a reference to the LLVM dialect in
// case it is necessary for rewriters.
template <typename SourceOp>
class LLVMLegalizationPattern : public LLVMOpLowering {
public:
// Construct a conversion pattern.
explicit LLVMLegalizationPattern(LLVM::LLVMDialect &dialect_,
LLVMTypeConverter &lowering_)
: LLVMOpLowering(SourceOp::getOperationName(), dialect_.getContext(),
lowering_),
dialect(dialect_) {}
// Get the LLVM IR dialect.
LLVM::LLVMDialect &getDialect() const { return dialect; }
// Get the LLVM context.
llvm::LLVMContext &getContext() const { return dialect.getLLVMContext(); }
// Get the LLVM module in which the types are constructed.
llvm::Module &getModule() const { return dialect.getLLVMModule(); }
// Get the MLIR type wrapping the LLVM integer type whose bit width is defined
// by the pointer size used in the LLVM module.
LLVM::LLVMType getIndexType() const {
return LLVM::LLVMType::getIntNTy(
&dialect, getModule().getDataLayout().getPointerSizeInBits());
}
LLVM::LLVMType getVoidType() const {
return LLVM::LLVMType::getVoidTy(&dialect);
}
// Get the MLIR type wrapping the LLVM i8* type.
LLVM::LLVMType getVoidPtrType() const {
return LLVM::LLVMType::getInt8PtrTy(&dialect);
}
// Create an LLVM IR pseudo-operation defining the given index constant.
Value createIndexConstant(ConversionPatternRewriter &builder, Location loc,
uint64_t value) const {
return createIndexAttrConstant(builder, loc, getIndexType(), value);
}
protected:
LLVM::LLVMDialect &dialect;
};
struct FuncOpConversion : public LLVMLegalizationPattern<FuncOp> {
using LLVMLegalizationPattern<FuncOp>::LLVMLegalizationPattern;
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto funcOp = cast<FuncOp>(op);
FunctionType type = funcOp.getType();
// Store the positions of memref-typed arguments so that we can emit loads
// from them to follow the calling convention.
SmallVector<unsigned, 4> promotedArgIndices;
promotedArgIndices.reserve(type.getNumInputs());
for (auto en : llvm::enumerate(type.getInputs())) {
if (en.value().isa<MemRefType>() || en.value().isa<UnrankedMemRefType>())
promotedArgIndices.push_back(en.index());
}
// Convert the original function arguments. Struct arguments are promoted to
// pointer to struct arguments to allow calling external functions with
// various ABIs (e.g. compiled from C/C++ on platform X).
auto varargsAttr = funcOp.getAttrOfType<BoolAttr>("std.varargs");
TypeConverter::SignatureConversion result(funcOp.getNumArguments());
auto llvmType = lowering.convertFunctionSignature(
funcOp.getType(), varargsAttr && varargsAttr.getValue(), result);
// Only retain those attributes that are not constructed by build.
SmallVector<NamedAttribute, 4> attributes;
for (const auto &attr : funcOp.getAttrs()) {
if (attr.first.is(SymbolTable::getSymbolAttrName()) ||
attr.first.is(impl::getTypeAttrName()) ||
attr.first.is("std.varargs"))
continue;
attributes.push_back(attr);
}
// Create an LLVM function, use external linkage by default until MLIR
// functions have linkage.
auto newFuncOp = rewriter.create<LLVM::LLVMFuncOp>(
op->getLoc(), funcOp.getName(), llvmType, LLVM::Linkage::External,
attributes);
rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(),
newFuncOp.end());
// Tell the rewriter to convert the region signature.
rewriter.applySignatureConversion(&newFuncOp.getBody(), result);
// Insert loads from memref descriptor pointers in function bodies.
if (!newFuncOp.getBody().empty()) {
Block *firstBlock = &newFuncOp.getBody().front();
rewriter.setInsertionPoint(firstBlock, firstBlock->begin());
for (unsigned idx : promotedArgIndices) {
BlockArgument arg = firstBlock->getArgument(idx);
Value loaded = rewriter.create<LLVM::LoadOp>(funcOp.getLoc(), arg);
rewriter.replaceUsesOfBlockArgument(arg, loaded);
}
}
rewriter.eraseOp(op);
return matchSuccess();
}
};
//////////////// Support for Lowering operations on n-D vectors ////////////////
namespace {
// Helper struct to "unroll" operations on n-D vectors in terms of operations on
// 1-D LLVM vectors.
struct NDVectorTypeInfo {
// LLVM array struct which encodes n-D vectors.
LLVM::LLVMType llvmArrayTy;
// LLVM vector type which encodes the inner 1-D vector type.
LLVM::LLVMType llvmVectorTy;
// Multiplicity of llvmArrayTy to llvmVectorTy.
SmallVector<int64_t, 4> arraySizes;
};
} // namespace
// For >1-D vector types, extracts the necessary information to iterate over all
// 1-D subvectors in the underlying llrepresentation of the n-D vector
// Iterates on the llvm array type until we hit a non-array type (which is
// asserted to be an llvm vector type).
static NDVectorTypeInfo extractNDVectorTypeInfo(VectorType vectorType,
LLVMTypeConverter &converter) {
assert(vectorType.getRank() > 1 && "expected >1D vector type");
NDVectorTypeInfo info;
info.llvmArrayTy =
converter.convertType(vectorType).dyn_cast<LLVM::LLVMType>();
if (!info.llvmArrayTy)
return info;
info.arraySizes.reserve(vectorType.getRank() - 1);
auto llvmTy = info.llvmArrayTy;
while (llvmTy.isArrayTy()) {
info.arraySizes.push_back(llvmTy.getArrayNumElements());
llvmTy = llvmTy.getArrayElementType();
}
if (!llvmTy.isVectorTy())
return info;
info.llvmVectorTy = llvmTy;
return info;
}
// Express `linearIndex` in terms of coordinates of `basis`.
// Returns the empty vector when linearIndex is out of the range [0, P] where
// P is the product of all the basis coordinates.
//
// Prerequisites:
// Basis is an array of nonnegative integers (signed type inherited from
// vector shape type).
static SmallVector<int64_t, 4> getCoordinates(ArrayRef<int64_t> basis,
unsigned linearIndex) {
SmallVector<int64_t, 4> res;
res.reserve(basis.size());
for (unsigned basisElement : llvm::reverse(basis)) {
res.push_back(linearIndex % basisElement);
linearIndex = linearIndex / basisElement;
}
if (linearIndex > 0)
return {};
std::reverse(res.begin(), res.end());
return res;
}
// Iterate of linear index, convert to coords space and insert splatted 1-D
// vector in each position.
template <typename Lambda>
void nDVectorIterate(const NDVectorTypeInfo &info, OpBuilder &builder,
Lambda fun) {
unsigned ub = 1;
for (auto s : info.arraySizes)
ub *= s;
for (unsigned linearIndex = 0; linearIndex < ub; ++linearIndex) {
auto coords = getCoordinates(info.arraySizes, linearIndex);
// Linear index is out of bounds, we are done.
if (coords.empty())
break;
assert(coords.size() == info.arraySizes.size());
auto position = builder.getI64ArrayAttr(coords);
fun(position);
}
}
////////////// End Support for Lowering operations on n-D vectors //////////////
// Basic lowering implementation for one-to-one rewriting from Standard Ops to
// LLVM Dialect Ops.
template <typename SourceOp, typename TargetOp>
struct OneToOneLLVMOpLowering : public LLVMLegalizationPattern<SourceOp> {
using LLVMLegalizationPattern<SourceOp>::LLVMLegalizationPattern;
using Super = OneToOneLLVMOpLowering<SourceOp, TargetOp>;
// Convert the type of the result to an LLVM type, pass operands as is,
// preserve attributes.
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
unsigned numResults = op->getNumResults();
Type packedType;
if (numResults != 0) {
packedType = this->lowering.packFunctionResults(
llvm::to_vector<4>(op->getResultTypes()));
if (!packedType)
return this->matchFailure();
}
auto newOp = rewriter.create<TargetOp>(op->getLoc(), packedType, operands,
op->getAttrs());
// If the operation produced 0 or 1 result, return them immediately.
if (numResults == 0)
return rewriter.eraseOp(op), this->matchSuccess();
if (numResults == 1)
return rewriter.replaceOp(op, newOp.getOperation()->getResult(0)),
this->matchSuccess();
// Otherwise, it had been converted to an operation producing a structure.
// Extract individual results from the structure and return them as list.
SmallVector<Value, 4> results;
results.reserve(numResults);
for (unsigned i = 0; i < numResults; ++i) {
auto type = this->lowering.convertType(op->getResult(i).getType());
results.push_back(rewriter.create<LLVM::ExtractValueOp>(
op->getLoc(), type, newOp.getOperation()->getResult(0),
rewriter.getI64ArrayAttr(i)));
}
rewriter.replaceOp(op, results);
return this->matchSuccess();
}
};
template <typename SourceOp, unsigned OpCount> struct OpCountValidator {
static_assert(
std::is_base_of<
typename OpTrait::NOperands<OpCount>::template Impl<SourceOp>,
SourceOp>::value,
"wrong operand count");
};
template <typename SourceOp> struct OpCountValidator<SourceOp, 1> {
static_assert(std::is_base_of<OpTrait::OneOperand<SourceOp>, SourceOp>::value,
"expected a single operand");
};
template <typename SourceOp, unsigned OpCount> void ValidateOpCount() {
OpCountValidator<SourceOp, OpCount>();
}
// Basic lowering implementation for rewriting from Standard Ops to LLVM Dialect
// Ops for N-ary ops with one result. This supports higher-dimensional vector
// types.
template <typename SourceOp, typename TargetOp, unsigned OpCount>
struct NaryOpLLVMOpLowering : public LLVMLegalizationPattern<SourceOp> {
using LLVMLegalizationPattern<SourceOp>::LLVMLegalizationPattern;
using Super = NaryOpLLVMOpLowering<SourceOp, TargetOp, OpCount>;
// Convert the type of the result to an LLVM type, pass operands as is,
// preserve attributes.
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
ValidateOpCount<SourceOp, OpCount>();
static_assert(
std::is_base_of<OpTrait::OneResult<SourceOp>, SourceOp>::value,
"expected single result op");
static_assert(std::is_base_of<OpTrait::SameOperandsAndResultType<SourceOp>,
SourceOp>::value,
"expected same operands and result type");
// Cannot convert ops if their operands are not of LLVM type.
for (Value operand : operands) {
if (!operand || !operand.getType().isa<LLVM::LLVMType>())
return this->matchFailure();
}
auto loc = op->getLoc();
auto llvmArrayTy = operands[0].getType().cast<LLVM::LLVMType>();
if (!llvmArrayTy.isArrayTy()) {
auto newOp = rewriter.create<TargetOp>(
op->getLoc(), operands[0].getType(), operands, op->getAttrs());
rewriter.replaceOp(op, newOp.getResult());
return this->matchSuccess();
}
auto vectorType = op->getResult(0).getType().dyn_cast<VectorType>();
if (!vectorType)
return this->matchFailure();
auto vectorTypeInfo = extractNDVectorTypeInfo(vectorType, this->lowering);
auto llvmVectorTy = vectorTypeInfo.llvmVectorTy;
if (!llvmVectorTy || llvmArrayTy != vectorTypeInfo.llvmArrayTy)
return this->matchFailure();
Value desc = rewriter.create<LLVM::UndefOp>(loc, llvmArrayTy);
nDVectorIterate(vectorTypeInfo, rewriter, [&](ArrayAttr position) {
// For this unrolled `position` corresponding to the `linearIndex`^th
// element, extract operand vectors
SmallVector<Value, OpCount> extractedOperands;
for (unsigned i = 0; i < OpCount; ++i) {
extractedOperands.push_back(rewriter.create<LLVM::ExtractValueOp>(
loc, llvmVectorTy, operands[i], position));
}
Value newVal = rewriter.create<TargetOp>(
loc, llvmVectorTy, extractedOperands, op->getAttrs());
desc = rewriter.create<LLVM::InsertValueOp>(loc, llvmArrayTy, desc,
newVal, position);
});
rewriter.replaceOp(op, desc);
return this->matchSuccess();
}
};
template <typename SourceOp, typename TargetOp>
using UnaryOpLLVMOpLowering = NaryOpLLVMOpLowering<SourceOp, TargetOp, 1>;
template <typename SourceOp, typename TargetOp>
using BinaryOpLLVMOpLowering = NaryOpLLVMOpLowering<SourceOp, TargetOp, 2>;
// Specific lowerings.
// FIXME: this should be tablegen'ed.
struct AbsFOpLowering : public UnaryOpLLVMOpLowering<AbsFOp, LLVM::FAbsOp> {
using Super::Super;
};
struct CeilFOpLowering : public UnaryOpLLVMOpLowering<CeilFOp, LLVM::FCeilOp> {
using Super::Super;
};
struct CosOpLowering : public UnaryOpLLVMOpLowering<CosOp, LLVM::CosOp> {
using Super::Super;
};
struct ExpOpLowering : public UnaryOpLLVMOpLowering<ExpOp, LLVM::ExpOp> {
using Super::Super;
};
struct LogOpLowering : public UnaryOpLLVMOpLowering<LogOp, LLVM::LogOp> {
using Super::Super;
};
struct Log10OpLowering : public UnaryOpLLVMOpLowering<Log10Op, LLVM::Log10Op> {
using Super::Super;
};
struct Log2OpLowering : public UnaryOpLLVMOpLowering<Log2Op, LLVM::Log2Op> {
using Super::Super;
};
struct NegFOpLowering : public UnaryOpLLVMOpLowering<NegFOp, LLVM::FNegOp> {
using Super::Super;
};
struct AddIOpLowering : public BinaryOpLLVMOpLowering<AddIOp, LLVM::AddOp> {
using Super::Super;
};
struct SubIOpLowering : public BinaryOpLLVMOpLowering<SubIOp, LLVM::SubOp> {
using Super::Super;
};
struct MulIOpLowering : public BinaryOpLLVMOpLowering<MulIOp, LLVM::MulOp> {
using Super::Super;
};
struct SignedDivIOpLowering
: public BinaryOpLLVMOpLowering<SignedDivIOp, LLVM::SDivOp> {
using Super::Super;
};
struct UnsignedDivIOpLowering
: public BinaryOpLLVMOpLowering<UnsignedDivIOp, LLVM::UDivOp> {
using Super::Super;
};
struct SignedRemIOpLowering
: public BinaryOpLLVMOpLowering<SignedRemIOp, LLVM::SRemOp> {
using Super::Super;
};
struct UnsignedRemIOpLowering
: public BinaryOpLLVMOpLowering<UnsignedRemIOp, LLVM::URemOp> {
using Super::Super;
};
struct AndOpLowering : public BinaryOpLLVMOpLowering<AndOp, LLVM::AndOp> {
using Super::Super;
};
struct OrOpLowering : public BinaryOpLLVMOpLowering<OrOp, LLVM::OrOp> {
using Super::Super;
};
struct XOrOpLowering : public BinaryOpLLVMOpLowering<XOrOp, LLVM::XOrOp> {
using Super::Super;
};
struct AddFOpLowering : public BinaryOpLLVMOpLowering<AddFOp, LLVM::FAddOp> {
using Super::Super;
};
struct SubFOpLowering : public BinaryOpLLVMOpLowering<SubFOp, LLVM::FSubOp> {
using Super::Super;
};
struct MulFOpLowering : public BinaryOpLLVMOpLowering<MulFOp, LLVM::FMulOp> {
using Super::Super;
};
struct DivFOpLowering : public BinaryOpLLVMOpLowering<DivFOp, LLVM::FDivOp> {
using Super::Super;
};
struct RemFOpLowering : public BinaryOpLLVMOpLowering<RemFOp, LLVM::FRemOp> {
using Super::Super;
};
struct CopySignOpLowering
: public BinaryOpLLVMOpLowering<CopySignOp, LLVM::CopySignOp> {
using Super::Super;
};
struct SelectOpLowering
: public OneToOneLLVMOpLowering<SelectOp, LLVM::SelectOp> {
using Super::Super;
};
struct ConstLLVMOpLowering
: public OneToOneLLVMOpLowering<ConstantOp, LLVM::ConstantOp> {
using Super::Super;
};
struct ShiftLeftOpLowering
: public OneToOneLLVMOpLowering<ShiftLeftOp, LLVM::ShlOp> {
using Super::Super;
};
struct SignedShiftRightOpLowering
: public OneToOneLLVMOpLowering<SignedShiftRightOp, LLVM::AShrOp> {
using Super::Super;
};
struct UnsignedShiftRightOpLowering
: public OneToOneLLVMOpLowering<UnsignedShiftRightOp, LLVM::LShrOp> {
using Super::Super;
};
// Check if the MemRefType `type` is supported by the lowering. We currently
// only support memrefs with identity maps.
static bool isSupportedMemRefType(MemRefType type) {
return type.getAffineMaps().empty() ||
llvm::all_of(type.getAffineMaps(),
[](AffineMap map) { return map.isIdentity(); });
}
// An `alloc` is converted into a definition of a memref descriptor value and
// a call to `malloc` to allocate the underlying data buffer. The memref
// descriptor is of the LLVM structure type where:
// 1. the first element is a pointer to the allocated (typed) data buffer,
// 2. the second element is a pointer to the (typed) payload, aligned to the
// specified alignment,
// 3. the remaining elements serve to store all the sizes and strides of the
// memref using LLVM-converted `index` type.
//
// Alignment is obtained by allocating `alignment - 1` more bytes than requested
// and shifting the aligned pointer relative to the allocated memory. If
// alignment is unspecified, the two pointers are equal.
struct AllocOpLowering : public LLVMLegalizationPattern<AllocOp> {
using LLVMLegalizationPattern<AllocOp>::LLVMLegalizationPattern;
AllocOpLowering(LLVM::LLVMDialect &dialect_, LLVMTypeConverter &converter,
bool useAlloca = false)
: LLVMLegalizationPattern<AllocOp>(dialect_, converter),
useAlloca(useAlloca) {}
PatternMatchResult match(Operation *op) const override {
MemRefType type = cast<AllocOp>(op).getType();
if (isSupportedMemRefType(type))
return matchSuccess();
int64_t offset;
SmallVector<int64_t, 4> strides;
auto successStrides = getStridesAndOffset(type, strides, offset);
if (failed(successStrides))
return matchFailure();
// Dynamic strides are ok if they can be deduced from dynamic sizes (which
// is guaranteed when succeeded(successStrides)). Dynamic offset however can
// never be alloc'ed.
if (offset == MemRefType::getDynamicStrideOrOffset())
return matchFailure();
return matchSuccess();
}
void rewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto allocOp = cast<AllocOp>(op);
MemRefType type = allocOp.getType();
// Get actual sizes of the memref as values: static sizes are constant
// values and dynamic sizes are passed to 'alloc' as operands. In case of
// zero-dimensional memref, assume a scalar (size 1).
SmallVector<Value, 4> sizes;
sizes.reserve(type.getRank());
unsigned i = 0;
for (int64_t s : type.getShape())
sizes.push_back(s == -1 ? operands[i++]
: createIndexConstant(rewriter, loc, s));
if (sizes.empty())
sizes.push_back(createIndexConstant(rewriter, loc, 1));
// Compute the total number of memref elements.
Value cumulativeSize = sizes.front();
for (unsigned i = 1, e = sizes.size(); i < e; ++i)
cumulativeSize = rewriter.create<LLVM::MulOp>(
loc, getIndexType(), ArrayRef<Value>{cumulativeSize, sizes[i]});
// Compute the size of an individual element. This emits the MLIR equivalent
// of the following sizeof(...) implementation in LLVM IR:
// %0 = getelementptr %elementType* null, %indexType 1
// %1 = ptrtoint %elementType* %0 to %indexType
// which is a common pattern of getting the size of a type in bytes.
auto elementType = type.getElementType();
auto convertedPtrType =
lowering.convertType(elementType).cast<LLVM::LLVMType>().getPointerTo();
auto nullPtr = rewriter.create<LLVM::NullOp>(loc, convertedPtrType);
auto one = createIndexConstant(rewriter, loc, 1);
auto gep = rewriter.create<LLVM::GEPOp>(loc, convertedPtrType,
ArrayRef<Value>{nullPtr, one});
auto elementSize =
rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), gep);
cumulativeSize = rewriter.create<LLVM::MulOp>(
loc, getIndexType(), ArrayRef<Value>{cumulativeSize, elementSize});
// Allocate the underlying buffer and store a pointer to it in the MemRef
// descriptor.
Value allocated = nullptr;
int alignment = 0;
Value alignmentValue = nullptr;
if (auto alignAttr = allocOp.alignment())
alignment = alignAttr.getValue().getSExtValue();
if (useAlloca) {
allocated = rewriter.create<LLVM::AllocaOp>(loc, getVoidPtrType(),
cumulativeSize, alignment);
} else {
// Insert the `malloc` declaration if it is not already present.
auto module = op->getParentOfType<ModuleOp>();
auto mallocFunc = module.lookupSymbol<LLVM::LLVMFuncOp>("malloc");
if (!mallocFunc) {
OpBuilder moduleBuilder(
op->getParentOfType<ModuleOp>().getBodyRegion());
mallocFunc = moduleBuilder.create<LLVM::LLVMFuncOp>(
rewriter.getUnknownLoc(), "malloc",
LLVM::LLVMType::getFunctionTy(getVoidPtrType(), getIndexType(),
/*isVarArg=*/false));
}
if (alignment != 0) {
alignmentValue = createIndexConstant(rewriter, loc, alignment);
cumulativeSize = rewriter.create<LLVM::SubOp>(
loc,
rewriter.create<LLVM::AddOp>(loc, cumulativeSize, alignmentValue),
one);
}
allocated = rewriter
.create<LLVM::CallOp>(
loc, getVoidPtrType(),
rewriter.getSymbolRefAttr(mallocFunc), cumulativeSize)
.getResult(0);
}
auto structElementType = lowering.convertType(elementType);
auto elementPtrType = structElementType.cast<LLVM::LLVMType>().getPointerTo(
type.getMemorySpace());
Value bitcastAllocated = rewriter.create<LLVM::BitcastOp>(
loc, elementPtrType, ArrayRef<Value>(allocated));
int64_t offset;
SmallVector<int64_t, 4> strides;
auto successStrides = getStridesAndOffset(type, strides, offset);
assert(succeeded(successStrides) && "unexpected non-strided memref");
(void)successStrides;
assert(offset != MemRefType::getDynamicStrideOrOffset() &&
"unexpected dynamic offset");
// 0-D memref corner case: they have size 1 ...
assert(((type.getRank() == 0 && strides.empty() && sizes.size() == 1) ||
(strides.size() == sizes.size())) &&
"unexpected number of strides");
// Create the MemRef descriptor.
auto structType = lowering.convertType(type);
auto memRefDescriptor = MemRefDescriptor::undef(rewriter, loc, structType);
// Field 1: Allocated pointer, used for malloc/free.
memRefDescriptor.setAllocatedPtr(rewriter, loc, bitcastAllocated);
// Field 2: Actual aligned pointer to payload.
Value bitcastAligned = bitcastAllocated;
if (!useAlloca && alignment != 0) {
assert(alignmentValue);
// offset = (align - (ptr % align))% align
Value intVal = rewriter.create<LLVM::PtrToIntOp>(
loc, this->getIndexType(), allocated);
Value ptrModAlign =
rewriter.create<LLVM::URemOp>(loc, intVal, alignmentValue);
Value subbed =
rewriter.create<LLVM::SubOp>(loc, alignmentValue, ptrModAlign);
Value offset = rewriter.create<LLVM::URemOp>(loc, subbed, alignmentValue);
Value aligned = rewriter.create<LLVM::GEPOp>(loc, allocated.getType(),
allocated, offset);
bitcastAligned = rewriter.create<LLVM::BitcastOp>(
loc, elementPtrType, ArrayRef<Value>(aligned));
}
memRefDescriptor.setAlignedPtr(rewriter, loc, bitcastAligned);
// Field 3: Offset in aligned pointer.
memRefDescriptor.setOffset(rewriter, loc,
createIndexConstant(rewriter, loc, offset));
if (type.getRank() == 0)
// No size/stride descriptor in memref, return the descriptor value.
return rewriter.replaceOp(op, {memRefDescriptor});
// Fields 4 and 5: Sizes and strides of the strided MemRef.
// Store all sizes in the descriptor. Only dynamic sizes are passed in as
// operands to AllocOp.
Value runningStride = nullptr;
// Iterate strides in reverse order, compute runningStride and strideValues.
auto nStrides = strides.size();
SmallVector<Value, 4> strideValues(nStrides, nullptr);
for (unsigned i = 0; i < nStrides; ++i) {
int64_t index = nStrides - 1 - i;
if (strides[index] == MemRefType::getDynamicStrideOrOffset())
// Identity layout map is enforced in the match function, so we compute:
// `runningStride *= sizes[index + 1]`
runningStride =
runningStride
? rewriter.create<LLVM::MulOp>(loc, runningStride,
sizes[index + 1])
: createIndexConstant(rewriter, loc, 1);
else
runningStride = createIndexConstant(rewriter, loc, strides[index]);
strideValues[index] = runningStride;
}
// Fill size and stride descriptors in memref.
for (auto indexedSize : llvm::enumerate(sizes)) {
int64_t index = indexedSize.index();
memRefDescriptor.setSize(rewriter, loc, index, indexedSize.value());
memRefDescriptor.setStride(rewriter, loc, index, strideValues[index]);
}
// Return the final value of the descriptor.
rewriter.replaceOp(op, {memRefDescriptor});
}
bool useAlloca;
};
// A CallOp automatically promotes MemRefType to a sequence of alloca/store and
// passes the pointer to the MemRef across function boundaries.
template <typename CallOpType>
struct CallOpInterfaceLowering : public LLVMLegalizationPattern<CallOpType> {
using LLVMLegalizationPattern<CallOpType>::LLVMLegalizationPattern;
using Super = CallOpInterfaceLowering<CallOpType>;
using Base = LLVMLegalizationPattern<CallOpType>;
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
OperandAdaptor<CallOpType> transformed(operands);
auto callOp = cast<CallOpType>(op);
// Pack the result types into a struct.
Type packedResult;
unsigned numResults = callOp.getNumResults();
auto resultTypes = llvm::to_vector<4>(callOp.getResultTypes());
for (Type resType : resultTypes) {
assert(!resType.isa<UnrankedMemRefType>() &&
"Returning unranked memref is not supported. Pass result as an"
"argument instead.");
(void)resType;
}
if (numResults != 0) {
if (!(packedResult = this->lowering.packFunctionResults(resultTypes)))
return this->matchFailure();
}
auto promoted = this->lowering.promoteMemRefDescriptors(
op->getLoc(), /*opOperands=*/op->getOperands(), operands, rewriter);
auto newOp = rewriter.create<LLVM::CallOp>(op->getLoc(), packedResult,
promoted, op->getAttrs());
// If < 2 results, packing did not do anything and we can just return.
if (numResults < 2) {
rewriter.replaceOp(op, newOp.getResults());
return this->matchSuccess();
}
// Otherwise, it had been converted to an operation producing a structure.
// Extract individual results from the structure and return them as list.
// TODO(aminim, ntv, riverriddle, zinenko): this seems like patching around
// a particular interaction between MemRefType and CallOp lowering. Find a
// way to avoid special casing.
SmallVector<Value, 4> results;
results.reserve(numResults);
for (unsigned i = 0; i < numResults; ++i) {
auto type = this->lowering.convertType(op->getResult(i).getType());
results.push_back(rewriter.create<LLVM::ExtractValueOp>(
op->getLoc(), type, newOp.getOperation()->getResult(0),
rewriter.getI64ArrayAttr(i)));
}
rewriter.replaceOp(op, results);
return this->matchSuccess();
}
};
struct CallOpLowering : public CallOpInterfaceLowering<CallOp> {
using Super::Super;
};
struct CallIndirectOpLowering : public CallOpInterfaceLowering<CallIndirectOp> {
using Super::Super;
};
// A `dealloc` is converted into a call to `free` on the underlying data buffer.
// The memref descriptor being an SSA value, there is no need to clean it up
// in any way.
struct DeallocOpLowering : public LLVMLegalizationPattern<DeallocOp> {
using LLVMLegalizationPattern<DeallocOp>::LLVMLegalizationPattern;
DeallocOpLowering(LLVM::LLVMDialect &dialect_, LLVMTypeConverter &converter,
bool useAlloca = false)
: LLVMLegalizationPattern<DeallocOp>(dialect_, converter),
useAlloca(useAlloca) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
if (useAlloca)
return rewriter.eraseOp(op), matchSuccess();
assert(operands.size() == 1 && "dealloc takes one operand");
OperandAdaptor<DeallocOp> transformed(operands);
// Insert the `free` declaration if it is not already present.
auto freeFunc =
op->getParentOfType<ModuleOp>().lookupSymbol<LLVM::LLVMFuncOp>("free");
if (!freeFunc) {
OpBuilder moduleBuilder(op->getParentOfType<ModuleOp>().getBodyRegion());
freeFunc = moduleBuilder.create<LLVM::LLVMFuncOp>(
rewriter.getUnknownLoc(), "free",
LLVM::LLVMType::getFunctionTy(getVoidType(), getVoidPtrType(),
/*isVarArg=*/false));
}
MemRefDescriptor memref(transformed.memref());
Value casted = rewriter.create<LLVM::BitcastOp>(
op->getLoc(), getVoidPtrType(),
memref.allocatedPtr(rewriter, op->getLoc()));
rewriter.replaceOpWithNewOp<LLVM::CallOp>(
op, ArrayRef<Type>(), rewriter.getSymbolRefAttr(freeFunc), casted);
return matchSuccess();
}
bool useAlloca;
};
// A `tanh` is converted into a call to the `tanh` function.
struct TanhOpLowering : public LLVMLegalizationPattern<TanhOp> {
using LLVMLegalizationPattern<TanhOp>::LLVMLegalizationPattern;
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
using LLVMFuncOpT = LLVM::LLVMFuncOp;
using LLVMTypeT = LLVM::LLVMType;
OperandAdaptor<TanhOp> transformed(operands);
LLVMTypeT operandType =
transformed.operand().getType().dyn_cast_or_null<LLVM::LLVMType>();
if (!operandType)
return matchFailure();
std::string functionName;
if (operandType.isFloatTy())
functionName = "tanhf";
else if (operandType.isDoubleTy())
functionName = "tanh";
else
return matchFailure();
// Get a reference to the tanh function, inserting it if necessary.
Operation *tanhFunc =
SymbolTable::lookupNearestSymbolFrom(op, functionName);
LLVMFuncOpT tanhLLVMFunc;
if (tanhFunc) {
tanhLLVMFunc = cast<LLVMFuncOpT>(tanhFunc);
} else {
PatternRewriter::InsertionGuard insertGuard(rewriter);
auto module = op->getParentOfType<ModuleOp>();
rewriter.setInsertionPointToStart(module.getBody());
tanhLLVMFunc = rewriter.create<LLVMFuncOpT>(
module.getLoc(), functionName,
LLVMTypeT::getFunctionTy(operandType, operandType,
/*isVarArg=*/false));
}
rewriter.replaceOpWithNewOp<LLVM::CallOp>(
op, operandType, rewriter.getSymbolRefAttr(tanhLLVMFunc),
transformed.operand());
return matchSuccess();
}
};
struct MemRefCastOpLowering : public LLVMLegalizationPattern<MemRefCastOp> {
using LLVMLegalizationPattern<MemRefCastOp>::LLVMLegalizationPattern;
PatternMatchResult match(Operation *op) const override {
auto memRefCastOp = cast<MemRefCastOp>(op);
Type srcType = memRefCastOp.getOperand().getType();
Type dstType = memRefCastOp.getType();
if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>()) {
MemRefType sourceType =
memRefCastOp.getOperand().getType().cast<MemRefType>();
MemRefType targetType = memRefCastOp.getType().cast<MemRefType>();
return (isSupportedMemRefType(targetType) &&
isSupportedMemRefType(sourceType))
? matchSuccess()
: matchFailure();
}
// At least one of the operands is unranked type
assert(srcType.isa<UnrankedMemRefType>() ||
dstType.isa<UnrankedMemRefType>());
// Unranked to unranked cast is disallowed
return !(srcType.isa<UnrankedMemRefType>() &&
dstType.isa<UnrankedMemRefType>())
? matchSuccess()
: matchFailure();
}
void rewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto memRefCastOp = cast<MemRefCastOp>(op);
OperandAdaptor<MemRefCastOp> transformed(operands);
auto srcType = memRefCastOp.getOperand().getType();
auto dstType = memRefCastOp.getType();
auto targetStructType = lowering.convertType(memRefCastOp.getType());
auto loc = op->getLoc();
if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>()) {
// memref_cast is defined for source and destination memref types with the
// same element type, same mappings, same address space and same rank.
// Therefore a simple bitcast suffices. If not it is undefined behavior.
rewriter.replaceOpWithNewOp<LLVM::BitcastOp>(op, targetStructType,
transformed.source());
} else if (srcType.isa<MemRefType>() && dstType.isa<UnrankedMemRefType>()) {
// Casting ranked to unranked memref type
// Set the rank in the destination from the memref type
// Allocate space on the stack and copy the src memref descriptor
// Set the ptr in the destination to the stack space
auto srcMemRefType = srcType.cast<MemRefType>();
int64_t rank = srcMemRefType.getRank();
// ptr = AllocaOp sizeof(MemRefDescriptor)
auto ptr = lowering.promoteOneMemRefDescriptor(loc, transformed.source(),
rewriter);
// voidptr = BitCastOp srcType* to void*
auto voidPtr =
rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr)
.getResult();
// rank = ConstantOp srcRank
auto rankVal = rewriter.create<LLVM::ConstantOp>(
loc, lowering.convertType(rewriter.getIntegerType(64)),
rewriter.getI64IntegerAttr(rank));
// undef = UndefOp
UnrankedMemRefDescriptor memRefDesc =
UnrankedMemRefDescriptor::undef(rewriter, loc, targetStructType);
// d1 = InsertValueOp undef, rank, 0
memRefDesc.setRank(rewriter, loc, rankVal);
// d2 = InsertValueOp d1, voidptr, 1
memRefDesc.setMemRefDescPtr(rewriter, loc, voidPtr);
rewriter.replaceOp(op, (Value)memRefDesc);
} else if (srcType.isa<UnrankedMemRefType>() && dstType.isa<MemRefType>()) {
// Casting from unranked type to ranked.
// The operation is assumed to be doing a correct cast. If the destination
// type mismatches the unranked the type, it is undefined behavior.
UnrankedMemRefDescriptor memRefDesc(transformed.source());
// ptr = ExtractValueOp src, 1
auto ptr = memRefDesc.memRefDescPtr(rewriter, loc);
// castPtr = BitCastOp i8* to structTy*
auto castPtr =
rewriter
.create<LLVM::BitcastOp>(
loc, targetStructType.cast<LLVM::LLVMType>().getPointerTo(),
ptr)
.getResult();
// struct = LoadOp castPtr
auto loadOp = rewriter.create<LLVM::LoadOp>(loc, castPtr);
rewriter.replaceOp(op, loadOp.getResult());
} else {
llvm_unreachable("Unsuppored unranked memref to unranked memref cast");
}
}
};
// A `dim` is converted to a constant for static sizes and to an access to the
// size stored in the memref descriptor for dynamic sizes.
struct DimOpLowering : public LLVMLegalizationPattern<DimOp> {
using LLVMLegalizationPattern<DimOp>::LLVMLegalizationPattern;
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto dimOp = cast<DimOp>(op);
OperandAdaptor<DimOp> transformed(operands);
MemRefType type = dimOp.getOperand().getType().cast<MemRefType>();
auto shape = type.getShape();
int64_t index = dimOp.getIndex();
// Extract dynamic size from the memref descriptor.
if (ShapedType::isDynamic(shape[index]))
rewriter.replaceOp(op, {MemRefDescriptor(transformed.memrefOrTensor())
.size(rewriter, op->getLoc(), index)});
else
// Use constant for static size.
rewriter.replaceOp(
op, createIndexConstant(rewriter, op->getLoc(), shape[index]));
return matchSuccess();
}
};
// Common base for load and store operations on MemRefs. Restricts the match
// to supported MemRef types. Provides functionality to emit code accessing a
// specific element of the underlying data buffer.
template <typename Derived>
struct LoadStoreOpLowering : public LLVMLegalizationPattern<Derived> {
using LLVMLegalizationPattern<Derived>::LLVMLegalizationPattern;
using Base = LoadStoreOpLowering<Derived>;
PatternMatchResult match(Operation *op) const override {
MemRefType type = cast<Derived>(op).getMemRefType();
return isSupportedMemRefType(type) ? this->matchSuccess()
: this->matchFailure();
}
// Given subscript indices and array sizes in row-major order,
// i_n, i_{n-1}, ..., i_1
// s_n, s_{n-1}, ..., s_1
// obtain a value that corresponds to the linearized subscript
// \sum_k i_k * \prod_{j=1}^{k-1} s_j
// by accumulating the running linearized value.
// Note that `indices` and `allocSizes` are passed in the same order as they
// appear in load/store operations and memref type declarations.
Value linearizeSubscripts(ConversionPatternRewriter &builder, Location loc,
ArrayRef<Value> indices,
ArrayRef<Value> allocSizes) const {
assert(indices.size() == allocSizes.size() &&
"mismatching number of indices and allocation sizes");
assert(!indices.empty() && "cannot linearize a 0-dimensional access");
Value linearized = indices.front();
for (int i = 1, nSizes = allocSizes.size(); i < nSizes; ++i) {
linearized = builder.create<LLVM::MulOp>(
loc, this->getIndexType(),
ArrayRef<Value>{linearized, allocSizes[i]});
linearized = builder.create<LLVM::AddOp>(
loc, this->getIndexType(), ArrayRef<Value>{linearized, indices[i]});
}
return linearized;
}
// This is a strided getElementPtr variant that linearizes subscripts as:
// `base_offset + index_0 * stride_0 + ... + index_n * stride_n`.
Value getStridedElementPtr(Location loc, Type elementTypePtr,
Value descriptor, ArrayRef<Value> indices,
ArrayRef<int64_t> strides, int64_t offset,
ConversionPatternRewriter &rewriter) const {
MemRefDescriptor memRefDescriptor(descriptor);
Value base = memRefDescriptor.alignedPtr(rewriter, loc);
Value offsetValue = offset == MemRefType::getDynamicStrideOrOffset()
? memRefDescriptor.offset(rewriter, loc)
: this->createIndexConstant(rewriter, loc, offset);
for (int i = 0, e = indices.size(); i < e; ++i) {
Value stride = strides[i] == MemRefType::getDynamicStrideOrOffset()
? memRefDescriptor.stride(rewriter, loc, i)
: this->createIndexConstant(rewriter, loc, strides[i]);
Value additionalOffset =
rewriter.create<LLVM::MulOp>(loc, indices[i], stride);
offsetValue =
rewriter.create<LLVM::AddOp>(loc, offsetValue, additionalOffset);
}
return rewriter.create<LLVM::GEPOp>(loc, elementTypePtr, base, offsetValue);
}
Value getDataPtr(Location loc, MemRefType type, Value memRefDesc,
ArrayRef<Value> indices, ConversionPatternRewriter &rewriter,
llvm::Module &module) const {
LLVM::LLVMType ptrType = MemRefDescriptor(memRefDesc).getElementType();
int64_t offset;
SmallVector<int64_t, 4> strides;
auto successStrides = getStridesAndOffset(type, strides, offset);
assert(succeeded(successStrides) && "unexpected non-strided memref");
(void)successStrides;
return getStridedElementPtr(loc, ptrType, memRefDesc, indices, strides,
offset, rewriter);
}
};
// Load operation is lowered to obtaining a pointer to the indexed element
// and loading it.
struct LoadOpLowering : public LoadStoreOpLowering<LoadOp> {
using Base::Base;
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loadOp = cast<LoadOp>(op);
OperandAdaptor<LoadOp> transformed(operands);
auto type = loadOp.getMemRefType();
Value dataPtr = getDataPtr(op->getLoc(), type, transformed.memref(),
transformed.indices(), rewriter, getModule());
rewriter.replaceOpWithNewOp<LLVM::LoadOp>(op, dataPtr);
return matchSuccess();
}
};
// Store operation is lowered to obtaining a pointer to the indexed element,
// and storing the given value to it.
struct StoreOpLowering : public LoadStoreOpLowering<StoreOp> {
using Base::Base;
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto type = cast<StoreOp>(op).getMemRefType();
OperandAdaptor<StoreOp> transformed(operands);
Value dataPtr = getDataPtr(op->getLoc(), type, transformed.memref(),
transformed.indices(), rewriter, getModule());
rewriter.replaceOpWithNewOp<LLVM::StoreOp>(op, transformed.value(),
dataPtr);
return matchSuccess();
}
};
// The prefetch operation is lowered in a way similar to the load operation
// except that the llvm.prefetch operation is used for replacement.
struct PrefetchOpLowering : public LoadStoreOpLowering<PrefetchOp> {
using Base::Base;
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto prefetchOp = cast<PrefetchOp>(op);
OperandAdaptor<PrefetchOp> transformed(operands);
auto type = prefetchOp.getMemRefType();
Value dataPtr = getDataPtr(op->getLoc(), type, transformed.memref(),
transformed.indices(), rewriter, getModule());
// Replace with llvm.prefetch.
auto llvmI32Type = lowering.convertType(rewriter.getIntegerType(32));
auto isWrite = rewriter.create<LLVM::ConstantOp>(
op->getLoc(), llvmI32Type,
rewriter.getI32IntegerAttr(prefetchOp.isWrite()));
auto localityHint = rewriter.create<LLVM::ConstantOp>(
op->getLoc(), llvmI32Type,
rewriter.getI32IntegerAttr(prefetchOp.localityHint().getZExtValue()));
auto isData = rewriter.create<LLVM::ConstantOp>(
op->getLoc(), llvmI32Type,
rewriter.getI32IntegerAttr(prefetchOp.isDataCache()));
rewriter.replaceOpWithNewOp<LLVM::Prefetch>(op, dataPtr, isWrite,
localityHint, isData);
return matchSuccess();
}
};
// The lowering of index_cast becomes an integer conversion since index becomes
// an integer. If the bit width of the source and target integer types is the
// same, just erase the cast. If the target type is wider, sign-extend the
// value, otherwise truncate it.
struct IndexCastOpLowering : public LLVMLegalizationPattern<IndexCastOp> {
using LLVMLegalizationPattern<IndexCastOp>::LLVMLegalizationPattern;
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
IndexCastOpOperandAdaptor transformed(operands);
auto indexCastOp = cast<IndexCastOp>(op);
auto targetType =
this->lowering.convertType(indexCastOp.getResult().getType())
.cast<LLVM::LLVMType>();
auto sourceType = transformed.in().getType().cast<LLVM::LLVMType>();
unsigned targetBits = targetType.getUnderlyingType()->getIntegerBitWidth();
unsigned sourceBits = sourceType.getUnderlyingType()->getIntegerBitWidth();
if (targetBits == sourceBits)
rewriter.replaceOp(op, transformed.in());
else if (targetBits < sourceBits)
rewriter.replaceOpWithNewOp<LLVM::TruncOp>(op, targetType,
transformed.in());
else
rewriter.replaceOpWithNewOp<LLVM::SExtOp>(op, targetType,
transformed.in());
return matchSuccess();
}
};
// Convert std.cmp predicate into the LLVM dialect CmpPredicate. The two
// enums share the numerical values so just cast.
template <typename LLVMPredType, typename StdPredType>
static LLVMPredType convertCmpPredicate(StdPredType pred) {
return static_cast<LLVMPredType>(pred);
}
struct CmpIOpLowering : public LLVMLegalizationPattern<CmpIOp> {
using LLVMLegalizationPattern<CmpIOp>::LLVMLegalizationPattern;
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto cmpiOp = cast<CmpIOp>(op);
CmpIOpOperandAdaptor transformed(operands);
rewriter.replaceOpWithNewOp<LLVM::ICmpOp>(
op, lowering.convertType(cmpiOp.getResult().getType()),
rewriter.getI64IntegerAttr(static_cast<int64_t>(
convertCmpPredicate<LLVM::ICmpPredicate>(cmpiOp.getPredicate()))),
transformed.lhs(), transformed.rhs());
return matchSuccess();
}
};
struct CmpFOpLowering : public LLVMLegalizationPattern<CmpFOp> {
using LLVMLegalizationPattern<CmpFOp>::LLVMLegalizationPattern;
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto cmpfOp = cast<CmpFOp>(op);
CmpFOpOperandAdaptor transformed(operands);
rewriter.replaceOpWithNewOp<LLVM::FCmpOp>(
op, lowering.convertType(cmpfOp.getResult().getType()),
rewriter.getI64IntegerAttr(static_cast<int64_t>(
convertCmpPredicate<LLVM::FCmpPredicate>(cmpfOp.getPredicate()))),
transformed.lhs(), transformed.rhs());
return matchSuccess();
}
};
struct SIToFPLowering
: public OneToOneLLVMOpLowering<SIToFPOp, LLVM::SIToFPOp> {
using Super::Super;
};
struct FPExtLowering : public OneToOneLLVMOpLowering<FPExtOp, LLVM::FPExtOp> {
using Super::Super;
};
struct FPTruncLowering
: public OneToOneLLVMOpLowering<FPTruncOp, LLVM::FPTruncOp> {
using Super::Super;
};
struct SignExtendIOpLowering
: public OneToOneLLVMOpLowering<SignExtendIOp, LLVM::SExtOp> {
using Super::Super;
};
struct TruncateIOpLowering
: public OneToOneLLVMOpLowering<TruncateIOp, LLVM::TruncOp> {
using Super::Super;
};
struct ZeroExtendIOpLowering
: public OneToOneLLVMOpLowering<ZeroExtendIOp, LLVM::ZExtOp> {
using Super::Super;
};
// Base class for LLVM IR lowering terminator operations with successors.
template <typename SourceOp, typename TargetOp>
struct OneToOneLLVMTerminatorLowering
: public LLVMLegalizationPattern<SourceOp> {
using LLVMLegalizationPattern<SourceOp>::LLVMLegalizationPattern;
using Super = OneToOneLLVMTerminatorLowering<SourceOp, TargetOp>;
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> properOperands,
ArrayRef<Block *> destinations,
ArrayRef<ArrayRef<Value>> operands,
ConversionPatternRewriter &rewriter) const override {
SmallVector<ValueRange, 2> operandRanges(operands.begin(), operands.end());
rewriter.replaceOpWithNewOp<TargetOp>(op, properOperands, destinations,
operandRanges, op->getAttrs());
return this->matchSuccess();
}
};
// Special lowering pattern for `ReturnOps`. Unlike all other operations,
// `ReturnOp` interacts with the function signature and must have as many
// operands as the function has return values. Because in LLVM IR, functions
// can only return 0 or 1 value, we pack multiple values into a structure type.
// Emit `UndefOp` followed by `InsertValueOp`s to create such structure if
// necessary before returning it
struct ReturnOpLowering : public LLVMLegalizationPattern<ReturnOp> {
using LLVMLegalizationPattern<ReturnOp>::LLVMLegalizationPattern;
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
unsigned numArguments = op->getNumOperands();
// If ReturnOp has 0 or 1 operand, create it and return immediately.
if (numArguments == 0) {
rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(
op, ArrayRef<Value>(), ArrayRef<Block *>(), op->getAttrs());
return matchSuccess();
}
if (numArguments == 1) {
rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(
op, ArrayRef<Value>(operands.front()), ArrayRef<Block *>(),
op->getAttrs());
return matchSuccess();
}
// Otherwise, we need to pack the arguments into an LLVM struct type before
// returning.
auto packedType =
lowering.packFunctionResults(llvm::to_vector<4>(op->getOperandTypes()));
Value packed = rewriter.create<LLVM::UndefOp>(op->getLoc(), packedType);
for (unsigned i = 0; i < numArguments; ++i) {
packed = rewriter.create<LLVM::InsertValueOp>(
op->getLoc(), packedType, packed, operands[i],
rewriter.getI64ArrayAttr(i));
}
rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(
op, llvm::makeArrayRef(packed), ArrayRef<Block *>(), op->getAttrs());
return matchSuccess();
}
};
// FIXME: this should be tablegen'ed as well.
struct BranchOpLowering
: public OneToOneLLVMTerminatorLowering<BranchOp, LLVM::BrOp> {
using Super::Super;
};
struct CondBranchOpLowering
: public OneToOneLLVMTerminatorLowering<CondBranchOp, LLVM::CondBrOp> {
using Super::Super;
};
// The Splat operation is lowered to an insertelement + a shufflevector
// operation. Splat to only 1-d vector result types are lowered.
struct SplatOpLowering : public LLVMLegalizationPattern<SplatOp> {
using LLVMLegalizationPattern<SplatOp>::LLVMLegalizationPattern;
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto splatOp = cast<SplatOp>(op);
VectorType resultType = splatOp.getType().dyn_cast<VectorType>();
if (!resultType || resultType.getRank() != 1)
return matchFailure();
// First insert it into an undef vector so we can shuffle it.
auto vectorType = lowering.convertType(splatOp.getType());
Value undef = rewriter.create<LLVM::UndefOp>(op->getLoc(), vectorType);
auto zero = rewriter.create<LLVM::ConstantOp>(
op->getLoc(), lowering.convertType(rewriter.getIntegerType(32)),
rewriter.getZeroAttr(rewriter.getIntegerType(32)));
auto v = rewriter.create<LLVM::InsertElementOp>(
op->getLoc(), vectorType, undef, splatOp.getOperand(), zero);
int64_t width = splatOp.getType().cast<VectorType>().getDimSize(0);
SmallVector<int32_t, 4> zeroValues(width, 0);
// Shuffle the value across the desired number of elements.
ArrayAttr zeroAttrs = rewriter.getI32ArrayAttr(zeroValues);
rewriter.replaceOpWithNewOp<LLVM::ShuffleVectorOp>(op, v, undef, zeroAttrs);
return matchSuccess();
}
};
// The Splat operation is lowered to an insertelement + a shufflevector
// operation. Splat to only 2+-d vector result types are lowered by the
// SplatNdOpLowering, the 1-d case is handled by SplatOpLowering.
struct SplatNdOpLowering : public LLVMLegalizationPattern<SplatOp> {
using LLVMLegalizationPattern<SplatOp>::LLVMLegalizationPattern;
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto splatOp = cast<SplatOp>(op);
OperandAdaptor<SplatOp> adaptor(operands);
VectorType resultType = splatOp.getType().dyn_cast<VectorType>();
if (!resultType || resultType.getRank() == 1)
return matchFailure();
// First insert it into an undef vector so we can shuffle it.
auto loc = op->getLoc();
auto vectorTypeInfo = extractNDVectorTypeInfo(resultType, lowering);
auto llvmArrayTy = vectorTypeInfo.llvmArrayTy;
auto llvmVectorTy = vectorTypeInfo.llvmVectorTy;
if (!llvmArrayTy || !llvmVectorTy)
return matchFailure();
// Construct returned value.
Value desc = rewriter.create<LLVM::UndefOp>(loc, llvmArrayTy);
// Construct a 1-D vector with the splatted value that we insert in all the
// places within the returned descriptor.
Value vdesc = rewriter.create<LLVM::UndefOp>(loc, llvmVectorTy);
auto zero = rewriter.create<LLVM::ConstantOp>(
loc, lowering.convertType(rewriter.getIntegerType(32)),
rewriter.getZeroAttr(rewriter.getIntegerType(32)));
Value v = rewriter.create<LLVM::InsertElementOp>(loc, llvmVectorTy, vdesc,
adaptor.input(), zero);
// Shuffle the value across the desired number of elements.
int64_t width = resultType.getDimSize(resultType.getRank() - 1);
SmallVector<int32_t, 4> zeroValues(width, 0);
ArrayAttr zeroAttrs = rewriter.getI32ArrayAttr(zeroValues);
v = rewriter.create<LLVM::ShuffleVectorOp>(loc, v, v, zeroAttrs);
// Iterate of linear index, convert to coords space and insert splatted 1-D
// vector in each position.
nDVectorIterate(vectorTypeInfo, rewriter, [&](ArrayAttr position) {
desc = rewriter.create<LLVM::InsertValueOp>(loc, llvmArrayTy, desc, v,
position);
});
rewriter.replaceOp(op, desc);
return matchSuccess();
}
};
/// Conversion pattern that transforms a subview op into:
/// 1. An `llvm.mlir.undef` operation to create a memref descriptor
/// 2. Updates to the descriptor to introduce the data ptr, offset, size
/// and stride.
/// The subview op is replaced by the descriptor.
struct SubViewOpLowering : public LLVMLegalizationPattern<SubViewOp> {
using LLVMLegalizationPattern<SubViewOp>::LLVMLegalizationPattern;
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto viewOp = cast<SubViewOp>(op);
// TODO(b/144779634, ravishankarm) : After Tblgen is adapted to support
// having multiple variadic operands where each operand can have different
// number of entries, clean all of this up.
SmallVector<Value, 2> dynamicOffsets(
std::next(operands.begin()),
std::next(operands.begin(), 1 + viewOp.getNumOffsets()));
SmallVector<Value, 2> dynamicSizes(
std::next(operands.begin(), 1 + viewOp.getNumOffsets()),
std::next(operands.begin(),
1 + viewOp.getNumOffsets() + viewOp.getNumSizes()));
SmallVector<Value, 2> dynamicStrides(
std::next(operands.begin(),
1 + viewOp.getNumOffsets() + viewOp.getNumSizes()),
operands.end());
auto sourceMemRefType = viewOp.source().getType().cast<MemRefType>();
auto sourceElementTy =
lowering.convertType(sourceMemRefType.getElementType())
.dyn_cast_or_null<LLVM::LLVMType>();
auto viewMemRefType = viewOp.getType();
auto targetElementTy = lowering.convertType(viewMemRefType.getElementType())
.dyn_cast<LLVM::LLVMType>();
auto targetDescTy =
lowering.convertType(viewMemRefType).dyn_cast_or_null<LLVM::LLVMType>();
if (!sourceElementTy || !targetDescTy)
return matchFailure();
// Currently, only rank > 0 and full or no operands are supported. Fail to
// convert otherwise.
unsigned rank = sourceMemRefType.getRank();
if (viewMemRefType.getRank() == 0 || (rank != dynamicOffsets.size()) ||
(!dynamicSizes.empty() && rank != dynamicSizes.size()) ||
(!dynamicStrides.empty() && rank != dynamicStrides.size()))
return matchFailure();
int64_t offset;
SmallVector<int64_t, 4> strides;
auto successStrides = getStridesAndOffset(viewMemRefType, strides, offset);
if (failed(successStrides))
return matchFailure();
// Create the descriptor.
MemRefDescriptor sourceMemRef(operands.front());
auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy);
// Copy the buffer pointer from the old descriptor to the new one.
Value extracted = sourceMemRef.allocatedPtr(rewriter, loc);
Value bitcastPtr = rewriter.create<LLVM::BitcastOp>(
loc, targetElementTy.getPointerTo(), extracted);
targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr);
extracted = sourceMemRef.alignedPtr(rewriter, loc);
bitcastPtr = rewriter.create<LLVM::BitcastOp>(
loc, targetElementTy.getPointerTo(), extracted);
targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr);
// Extract strides needed to compute offset.
SmallVector<Value, 4> strideValues;
strideValues.reserve(viewMemRefType.getRank());
for (int i = 0, e = viewMemRefType.getRank(); i < e; ++i)
strideValues.push_back(sourceMemRef.stride(rewriter, loc, i));
// Fill in missing dynamic sizes.
auto llvmIndexType = lowering.convertType(rewriter.getIndexType());
if (dynamicSizes.empty()) {
dynamicSizes.reserve(viewMemRefType.getRank());
auto shape = viewMemRefType.getShape();
for (auto extent : shape) {
dynamicSizes.push_back(rewriter.create<LLVM::ConstantOp>(
loc, llvmIndexType, rewriter.getI64IntegerAttr(extent)));
}
}
// Offset.
Value baseOffset = sourceMemRef.offset(rewriter, loc);
for (int i = 0, e = viewMemRefType.getRank(); i < e; ++i) {
Value min = dynamicOffsets[i];
baseOffset = rewriter.create<LLVM::AddOp>(
loc, baseOffset,
rewriter.create<LLVM::MulOp>(loc, min, strideValues[i]));
}
targetMemRef.setOffset(rewriter, loc, baseOffset);
// Update sizes and strides.
for (int i = viewMemRefType.getRank() - 1; i >= 0; --i) {
targetMemRef.setSize(rewriter, loc, i, dynamicSizes[i]);
Value newStride;
if (dynamicStrides.empty())
newStride = rewriter.create<LLVM::ConstantOp>(
loc, llvmIndexType, rewriter.getI64IntegerAttr(strides[i]));
else
newStride = rewriter.create<LLVM::MulOp>(loc, dynamicStrides[i],
strideValues[i]);
targetMemRef.setStride(rewriter, loc, i, newStride);
}
rewriter.replaceOp(op, {targetMemRef});
return matchSuccess();
}
};
/// Conversion pattern that transforms a op into:
/// 1. An `llvm.mlir.undef` operation to create a memref descriptor
/// 2. Updates to the descriptor to introduce the data ptr, offset, size
/// and stride.
/// The view op is replaced by the descriptor.
struct ViewOpLowering : public LLVMLegalizationPattern<ViewOp> {
using LLVMLegalizationPattern<ViewOp>::LLVMLegalizationPattern;
// Build and return the value for the idx^th shape dimension, either by
// returning the constant shape dimension or counting the proper dynamic size.
Value getSize(ConversionPatternRewriter &rewriter, Location loc,
ArrayRef<int64_t> shape, ArrayRef<Value> dynamicSizes,
unsigned idx) const {
assert(idx < shape.size());
if (!ShapedType::isDynamic(shape[idx]))
return createIndexConstant(rewriter, loc, shape[idx]);
// Count the number of dynamic dims in range [0, idx]
unsigned nDynamic = llvm::count_if(shape.take_front(idx), [](int64_t v) {
return ShapedType::isDynamic(v);
});
return dynamicSizes[nDynamic];
}
// Build and return the idx^th stride, either by returning the constant stride
// or by computing the dynamic stride from the current `runningStride` and
// `nextSize`. The caller should keep a running stride and update it with the
// result returned by this function.
Value getStride(ConversionPatternRewriter &rewriter, Location loc,
ArrayRef<int64_t> strides, Value nextSize,
Value runningStride, unsigned idx) const {
assert(idx < strides.size());
if (strides[idx] != MemRefType::getDynamicStrideOrOffset())
return createIndexConstant(rewriter, loc, strides[idx]);
if (nextSize)
return runningStride
? rewriter.create<LLVM::MulOp>(loc, runningStride, nextSize)
: nextSize;
assert(!runningStride);
return createIndexConstant(rewriter, loc, 1);
}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
auto viewOp = cast<ViewOp>(op);
ViewOpOperandAdaptor adaptor(operands);
auto viewMemRefType = viewOp.getType();
auto targetElementTy = lowering.convertType(viewMemRefType.getElementType())
.dyn_cast<LLVM::LLVMType>();
auto targetDescTy =
lowering.convertType(viewMemRefType).dyn_cast<LLVM::LLVMType>();
if (!targetDescTy)
return op->emitWarning("Target descriptor type not converted to LLVM"),
matchFailure();
int64_t offset;
SmallVector<int64_t, 4> strides;
auto successStrides = getStridesAndOffset(viewMemRefType, strides, offset);
if (failed(successStrides))
return op->emitWarning("cannot cast to non-strided shape"),
matchFailure();
// Create the descriptor.
MemRefDescriptor sourceMemRef(adaptor.source());
auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy);
// Field 1: Copy the allocated pointer, used for malloc/free.
Value extracted = sourceMemRef.allocatedPtr(rewriter, loc);
Value bitcastPtr = rewriter.create<LLVM::BitcastOp>(
loc, targetElementTy.getPointerTo(), extracted);
targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr);
// Field 2: Copy the actual aligned pointer to payload.
extracted = sourceMemRef.alignedPtr(rewriter, loc);
bitcastPtr = rewriter.create<LLVM::BitcastOp>(
loc, targetElementTy.getPointerTo(), extracted);
targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr);
// Field 3: Copy the offset in aligned pointer.
unsigned numDynamicSizes = llvm::size(viewOp.getDynamicSizes());
(void)numDynamicSizes;
bool hasDynamicOffset = offset == MemRefType::getDynamicStrideOrOffset();
auto sizeAndOffsetOperands = adaptor.operands();
assert(llvm::size(sizeAndOffsetOperands) ==
numDynamicSizes + (hasDynamicOffset ? 1 : 0));
Value baseOffset = !hasDynamicOffset
? createIndexConstant(rewriter, loc, offset)
// TODO(ntv): better adaptor.
: sizeAndOffsetOperands.front();
targetMemRef.setOffset(rewriter, loc, baseOffset);
// Early exit for 0-D corner case.
if (viewMemRefType.getRank() == 0)
return rewriter.replaceOp(op, {targetMemRef}), matchSuccess();
// Fields 4 and 5: Update sizes and strides.
if (strides.back() != 1)
return op->emitWarning("cannot cast to non-contiguous shape"),
matchFailure();
Value stride = nullptr, nextSize = nullptr;
// Drop the dynamic stride from the operand list, if present.
ArrayRef<Value> sizeOperands(sizeAndOffsetOperands);
if (hasDynamicOffset)
sizeOperands = sizeOperands.drop_front();
for (int i = viewMemRefType.getRank() - 1; i >= 0; --i) {
// Update size.
Value size =
getSize(rewriter, loc, viewMemRefType.getShape(), sizeOperands, i);
targetMemRef.setSize(rewriter, loc, i, size);
// Update stride.
stride = getStride(rewriter, loc, strides, nextSize, stride, i);
targetMemRef.setStride(rewriter, loc, i, stride);
nextSize = size;
}
rewriter.replaceOp(op, {targetMemRef});
return matchSuccess();
}
};
} // namespace
static void ensureDistinctSuccessors(Block &bb) {
auto *terminator = bb.getTerminator();
// Find repeated successors with arguments.
llvm::SmallDenseMap<Block *, SmallVector<int, 4>> successorPositions;
for (int i = 0, e = terminator->getNumSuccessors(); i < e; ++i) {
Block *successor = terminator->getSuccessor(i);
// Blocks with no arguments are safe even if they appear multiple times
// because they don't need PHI nodes.
if (successor->getNumArguments() == 0)
continue;
successorPositions[successor].push_back(i);
}
// If a successor appears for the second or more time in the terminator,
// create a new dummy block that unconditionally branches to the original
// destination, and retarget the terminator to branch to this new block.
// There is no need to pass arguments to the dummy block because it will be
// dominated by the original block and can therefore use any values defined in
// the original block.
for (const auto &successor : successorPositions) {
const auto &positions = successor.second;
// Start from the second occurrence of a block in the successor list.
for (auto position = std::next(positions.begin()), end = positions.end();
position != end; ++position) {
auto *dummyBlock = new Block();
bb.getParent()->push_back(dummyBlock);
auto builder = OpBuilder(dummyBlock);
SmallVector<Value, 8> operands(
terminator->getSuccessorOperands(*position));
builder.create<BranchOp>(terminator->getLoc(), successor.first, operands);
terminator->setSuccessor(dummyBlock, *position);
for (int i = 0, e = terminator->getNumSuccessorOperands(*position); i < e;
++i)
terminator->eraseSuccessorOperand(*position, i);
}
}
}
void mlir::LLVM::ensureDistinctSuccessors(ModuleOp m) {
for (auto f : m.getOps<FuncOp>()) {
for (auto &bb : f.getBlocks()) {
::ensureDistinctSuccessors(bb);
}
}
}
/// Collect a set of patterns to convert from the Standard dialect to LLVM.
void mlir::populateStdToLLVMNonMemoryConversionPatterns(
LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
// FIXME: this should be tablegen'ed
// clang-format off
patterns.insert<
AbsFOpLowering,
AddFOpLowering,
AddIOpLowering,
AndOpLowering,
BranchOpLowering,
CallIndirectOpLowering,
CallOpLowering,
CeilFOpLowering,
CmpFOpLowering,
CmpIOpLowering,
CondBranchOpLowering,
CopySignOpLowering,
CosOpLowering,
ConstLLVMOpLowering,
DivFOpLowering,
ExpOpLowering,
LogOpLowering,
Log10OpLowering,
Log2OpLowering,
FPExtLowering,
FPTruncLowering,
IndexCastOpLowering,
MulFOpLowering,
MulIOpLowering,
NegFOpLowering,
OrOpLowering,
PrefetchOpLowering,
RemFOpLowering,
ReturnOpLowering,
SIToFPLowering,
SelectOpLowering,
ShiftLeftOpLowering,
SignExtendIOpLowering,
SignedDivIOpLowering,
SignedRemIOpLowering,
SignedShiftRightOpLowering,
SplatOpLowering,
SplatNdOpLowering,
SubFOpLowering,
SubIOpLowering,
TanhOpLowering,
TruncateIOpLowering,
UnsignedDivIOpLowering,
UnsignedRemIOpLowering,
UnsignedShiftRightOpLowering,
XOrOpLowering,
ZeroExtendIOpLowering>(*converter.getDialect(), converter);
// clang-format on
}
void mlir::populateStdToLLVMMemoryConversionPatters(
LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
// clang-format off
patterns.insert<
DimOpLowering,
FuncOpConversion,
LoadOpLowering,
MemRefCastOpLowering,
StoreOpLowering,
SubViewOpLowering,
ViewOpLowering>(*converter.getDialect(), converter);
patterns.insert<
AllocOpLowering,
DeallocOpLowering>(
*converter.getDialect(), converter, clUseAlloca.getValue());
// clang-format on
}
void mlir::populateStdToLLVMConversionPatterns(
LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
populateStdToLLVMNonMemoryConversionPatterns(converter, patterns);
populateStdToLLVMMemoryConversionPatters(converter, patterns);
}
// Convert types using the stored LLVM IR module.
Type LLVMTypeConverter::convertType(Type t) { return convertStandardType(t); }
// Create an LLVM IR structure type if there is more than one result.
Type LLVMTypeConverter::packFunctionResults(ArrayRef<Type> types) {
assert(!types.empty() && "expected non-empty list of type");
if (types.size() == 1)
return convertType(types.front());
SmallVector<LLVM::LLVMType, 8> resultTypes;
resultTypes.reserve(types.size());
for (auto t : types) {
auto converted = convertType(t).dyn_cast<LLVM::LLVMType>();
if (!converted)
return {};
resultTypes.push_back(converted);
}
return LLVM::LLVMType::getStructTy(llvmDialect, resultTypes);
}
Value LLVMTypeConverter::promoteOneMemRefDescriptor(Location loc, Value operand,
OpBuilder &builder) {
auto *context = builder.getContext();
auto int64Ty = LLVM::LLVMType::getInt64Ty(getDialect());
auto indexType = IndexType::get(context);
// Alloca with proper alignment. We do not expect optimizations of this
// alloca op and so we omit allocating at the entry block.
auto ptrType = operand.getType().cast<LLVM::LLVMType>().getPointerTo();
Value one = builder.create<LLVM::ConstantOp>(loc, int64Ty,
IntegerAttr::get(indexType, 1));
Value allocated =
builder.create<LLVM::AllocaOp>(loc, ptrType, one, /*alignment=*/0);
// Store into the alloca'ed descriptor.
builder.create<LLVM::StoreOp>(loc, operand, allocated);
return allocated;
}
SmallVector<Value, 4>
LLVMTypeConverter::promoteMemRefDescriptors(Location loc, ValueRange opOperands,
ValueRange operands,
OpBuilder &builder) {
SmallVector<Value, 4> promotedOperands;
promotedOperands.reserve(operands.size());
for (auto it : llvm::zip(opOperands, operands)) {
auto operand = std::get<0>(it);
auto llvmOperand = std::get<1>(it);
if (!operand.getType().isa<MemRefType>() &&
!operand.getType().isa<UnrankedMemRefType>()) {
promotedOperands.push_back(operand);
continue;
}
promotedOperands.push_back(
promoteOneMemRefDescriptor(loc, llvmOperand, builder));
}
return promotedOperands;
}
/// Create an instance of LLVMTypeConverter in the given context.
static std::unique_ptr<LLVMTypeConverter>
makeStandardToLLVMTypeConverter(MLIRContext *context) {
return std::make_unique<LLVMTypeConverter>(context);
}
namespace {
/// A pass converting MLIR operations into the LLVM IR dialect.
struct LLVMLoweringPass : public ModulePass<LLVMLoweringPass> {
// By default, the patterns are those converting Standard operations to the
// LLVMIR dialect.
explicit LLVMLoweringPass(
bool useAlloca = false,
LLVMPatternListFiller patternListFiller =
populateStdToLLVMConversionPatterns,
LLVMTypeConverterMaker converterBuilder = makeStandardToLLVMTypeConverter)
: patternListFiller(patternListFiller),
typeConverterMaker(converterBuilder) {}
// Run the dialect converter on the module.
void runOnModule() override {
if (!typeConverterMaker || !patternListFiller)
return signalPassFailure();
ModuleOp m = getModule();
LLVM::ensureDistinctSuccessors(m);
std::unique_ptr<LLVMTypeConverter> typeConverter =
typeConverterMaker(&getContext());
if (!typeConverter)
return signalPassFailure();
OwningRewritePatternList patterns;
populateLoopToStdConversionPatterns(patterns, m.getContext());
patternListFiller(*typeConverter, patterns);
ConversionTarget target(getContext());
target.addLegalDialect<LLVM::LLVMDialect>();
if (failed(applyPartialConversion(m, target, patterns, &*typeConverter)))
signalPassFailure();
}
// Callback for creating a list of patterns. It is called every time in
// runOnModule since applyPartialConversion consumes the list.
LLVMPatternListFiller patternListFiller;
// Callback for creating an instance of type converter. The converter
// constructor needs an MLIRContext, which is not available until runOnModule.
LLVMTypeConverterMaker typeConverterMaker;
};
} // end namespace
std::unique_ptr<OpPassBase<ModuleOp>>
mlir::createLowerToLLVMPass(bool useAlloca) {
return std::make_unique<LLVMLoweringPass>(useAlloca);
}
std::unique_ptr<OpPassBase<ModuleOp>>
mlir::createLowerToLLVMPass(LLVMPatternListFiller patternListFiller,
LLVMTypeConverterMaker typeConverterMaker,
bool useAlloca) {
return std::make_unique<LLVMLoweringPass>(useAlloca, patternListFiller,
typeConverterMaker);
}
static PassRegistration<LLVMLoweringPass>
pass("convert-std-to-llvm",
"Convert scalar and vector operations from the "
"Standard to the LLVM dialect",
[] {
return std::make_unique<LLVMLoweringPass>(
clUseAlloca.getValue(), populateStdToLLVMConversionPatterns,
makeStandardToLLVMTypeConverter);
});