Deserializer.cpp
88.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
//===- Deserializer.cpp - MLIR SPIR-V Deserialization ---------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the SPIR-V binary to MLIR SPIR-V module deserialization.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SPIRV/Serialization.h"
#include "mlir/Dialect/SPIRV/SPIRVBinaryUtils.h"
#include "mlir/Dialect/SPIRV/SPIRVOps.h"
#include "mlir/Dialect/SPIRV/SPIRVTypes.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Location.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Support/StringExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/bit.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
#define DEBUG_TYPE "spirv-deserialization"
/// Decodes a string literal in `words` starting at `wordIndex`. Update the
/// latter to point to the position in words after the string literal.
static inline StringRef decodeStringLiteral(ArrayRef<uint32_t> words,
unsigned &wordIndex) {
StringRef str(reinterpret_cast<const char *>(words.data() + wordIndex));
wordIndex += str.size() / 4 + 1;
return str;
}
/// Extracts the opcode from the given first word of a SPIR-V instruction.
static inline spirv::Opcode extractOpcode(uint32_t word) {
return static_cast<spirv::Opcode>(word & 0xffff);
}
/// Returns true if the given `block` is a function entry block.
static inline bool isFnEntryBlock(Block *block) {
return block->isEntryBlock() && isa_and_nonnull<FuncOp>(block->getParentOp());
}
namespace {
/// A struct for containing a header block's merge and continue targets.
///
/// This struct is used to track original structured control flow info from
/// SPIR-V blob. This info will be used to create spv.selection/spv.loop
/// later.
struct BlockMergeInfo {
Block *mergeBlock;
Block *continueBlock; // nullptr for spv.selection
BlockMergeInfo() : mergeBlock(nullptr), continueBlock(nullptr) {}
BlockMergeInfo(Block *m, Block *c = nullptr)
: mergeBlock(m), continueBlock(c) {}
};
/// Map from a selection/loop's header block to its merge (and continue) target.
using BlockMergeInfoMap = DenseMap<Block *, BlockMergeInfo>;
/// A SPIR-V module serializer.
///
/// A SPIR-V binary module is a single linear stream of instructions; each
/// instruction is composed of 32-bit words. The first word of an instruction
/// records the total number of words of that instruction using the 16
/// higher-order bits. So this deserializer uses that to get instruction
/// boundary and parse instructions and build a SPIR-V ModuleOp gradually.
///
// TODO(antiagainst): clean up created ops on errors
class Deserializer {
public:
/// Creates a deserializer for the given SPIR-V `binary` module.
/// The SPIR-V ModuleOp will be created into `context.
explicit Deserializer(ArrayRef<uint32_t> binary, MLIRContext *context);
/// Deserializes the remembered SPIR-V binary module.
LogicalResult deserialize();
/// Collects the final SPIR-V ModuleOp.
Optional<spirv::ModuleOp> collect();
private:
//===--------------------------------------------------------------------===//
// Module structure
//===--------------------------------------------------------------------===//
/// Initializes the `module` ModuleOp in this deserializer instance.
spirv::ModuleOp createModuleOp();
/// Processes SPIR-V module header in `binary`.
LogicalResult processHeader();
/// Processes the SPIR-V OpCapability with `operands` and updates bookkeeping
/// in the deserializer.
LogicalResult processCapability(ArrayRef<uint32_t> operands);
/// Attaches all collected capabilities to `module` as an attribute.
void attachCapabilities();
/// Processes the SPIR-V OpExtension with `operands` and updates bookkeeping
/// in the deserializer.
LogicalResult processExtension(ArrayRef<uint32_t> words);
/// Processes the SPIR-V OpExtInstImport with `operands` and updates
/// bookkeeping in the deserializer.
LogicalResult processExtInstImport(ArrayRef<uint32_t> words);
/// Attaches all collected extensions to `module` as an attribute.
void attachExtensions();
/// Processes the SPIR-V OpMemoryModel with `operands` and updates `module`.
LogicalResult processMemoryModel(ArrayRef<uint32_t> operands);
/// Process SPIR-V OpName with `operands`.
LogicalResult processName(ArrayRef<uint32_t> operands);
/// Processes an OpDecorate instruction.
LogicalResult processDecoration(ArrayRef<uint32_t> words);
// Processes an OpMemberDecorate instruction.
LogicalResult processMemberDecoration(ArrayRef<uint32_t> words);
/// Processes an OpMemberName instruction.
LogicalResult processMemberName(ArrayRef<uint32_t> words);
/// Gets the FuncOp associated with a result <id> of OpFunction.
FuncOp getFunction(uint32_t id) { return funcMap.lookup(id); }
/// Processes the SPIR-V function at the current `offset` into `binary`.
/// The operands to the OpFunction instruction is passed in as ``operands`.
/// This method processes each instruction inside the function and dispatches
/// them to their handler method accordingly.
LogicalResult processFunction(ArrayRef<uint32_t> operands);
/// Processes OpFunctionEnd and finalizes function. This wires up block
/// argument created from OpPhi instructions and also structurizes control
/// flow.
LogicalResult processFunctionEnd(ArrayRef<uint32_t> operands);
/// Gets the constant's attribute and type associated with the given <id>.
Optional<std::pair<Attribute, Type>> getConstant(uint32_t id);
/// Gets the constant's integer attribute with the given <id>. Returns a null
/// IntegerAttr if the given is not registered or does not correspond to an
/// integer constant.
IntegerAttr getConstantInt(uint32_t id);
/// Returns a symbol to be used for the function name with the given
/// result <id>. This tries to use the function's OpName if
/// exists; otherwise creates one based on the <id>.
std::string getFunctionSymbol(uint32_t id);
/// Returns a symbol to be used for the specialization constant with the given
/// result <id>. This tries to use the specialization constant's OpName if
/// exists; otherwise creates one based on the <id>.
std::string getSpecConstantSymbol(uint32_t id);
/// Gets the specialization constant with the given result <id>.
spirv::SpecConstantOp getSpecConstant(uint32_t id) {
return specConstMap.lookup(id);
}
/// Creates a spirv::SpecConstantOp.
spirv::SpecConstantOp createSpecConstant(Location loc, uint32_t resultID,
Attribute defaultValue);
/// Processes the OpVariable instructions at current `offset` into `binary`.
/// It is expected that this method is used for variables that are to be
/// defined at module scope and will be deserialized into a spv.globalVariable
/// instruction.
LogicalResult processGlobalVariable(ArrayRef<uint32_t> operands);
/// Gets the global variable associated with a result <id> of OpVariable.
spirv::GlobalVariableOp getGlobalVariable(uint32_t id) {
return globalVariableMap.lookup(id);
}
//===--------------------------------------------------------------------===//
// Type
//===--------------------------------------------------------------------===//
/// Gets type for a given result <id>.
Type getType(uint32_t id) { return typeMap.lookup(id); }
/// Get the type associated with the result <id> of an OpUndef.
Type getUndefType(uint32_t id) { return undefMap.lookup(id); }
/// Returns true if the given `type` is for SPIR-V void type.
bool isVoidType(Type type) const { return type.isa<NoneType>(); }
/// Processes a SPIR-V type instruction with given `opcode` and `operands` and
/// registers the type into `module`.
LogicalResult processType(spirv::Opcode opcode, ArrayRef<uint32_t> operands);
LogicalResult processArrayType(ArrayRef<uint32_t> operands);
LogicalResult processFunctionType(ArrayRef<uint32_t> operands);
LogicalResult processRuntimeArrayType(ArrayRef<uint32_t> operands);
LogicalResult processStructType(ArrayRef<uint32_t> operands);
//===--------------------------------------------------------------------===//
// Constant
//===--------------------------------------------------------------------===//
/// Processes a SPIR-V Op{|Spec}Constant instruction with the given
/// `operands`. `isSpec` indicates whether this is a specialization constant.
LogicalResult processConstant(ArrayRef<uint32_t> operands, bool isSpec);
/// Processes a SPIR-V Op{|Spec}Constant{True|False} instruction with the
/// given `operands`. `isSpec` indicates whether this is a specialization
/// constant.
LogicalResult processConstantBool(bool isTrue, ArrayRef<uint32_t> operands,
bool isSpec);
/// Processes a SPIR-V OpConstantComposite instruction with the given
/// `operands`.
LogicalResult processConstantComposite(ArrayRef<uint32_t> operands);
/// Processes a SPIR-V OpConstantNull instruction with the given `operands`.
LogicalResult processConstantNull(ArrayRef<uint32_t> operands);
//===--------------------------------------------------------------------===//
// Control flow
//===--------------------------------------------------------------------===//
/// Returns the block for the given label <id>.
Block *getBlock(uint32_t id) const { return blockMap.lookup(id); }
// In SPIR-V, structured control flow is explicitly declared using merge
// instructions (OpSelectionMerge and OpLoopMerge). In the SPIR-V dialect,
// we use spv.selection and spv.loop to group structured control flow.
// The deserializer need to turn structured control flow marked with merge
// instructions into using spv.selection/spv.loop ops.
//
// Because structured control flow can nest and the basic block order have
// flexibility, we cannot isolate a structured selection/loop without
// deserializing all the blocks. So we use the following approach:
//
// 1. Deserialize all basic blocks in a function and create MLIR blocks for
// them into the function's region. In the meanwhile, keep a map between
// selection/loop header blocks to their corresponding merge (and continue)
// target blocks.
// 2. For each selection/loop header block, recursively get all basic blocks
// reachable (except the merge block) and put them in a newly created
// spv.selection/spv.loop's region. Structured control flow guarantees
// that we enter and exit in structured ways and the construct is nestable.
// 3. Put the new spv.selection/spv.loop op at the beginning of the old merge
// block and redirect all branches to the old header block to the old
// merge block (which contains the spv.selection/spv.loop op now).
/// For OpPhi instructions, we use block arguments to represent them. OpPhi
/// encodes a list of (value, predecessor) pairs. At the time of handling the
/// block containing an OpPhi instruction, the predecessor block might not be
/// processed yet, also the value sent by it. So we need to defer handling
/// the block argument from the predecessors. We use the following approach:
///
/// 1. For each OpPhi instruction, add a block argument to the current block
/// in construction. Record the block argument in `valueMap` so its uses
/// can be resolved. For the list of (value, predecessor) pairs, update
/// `blockPhiInfo` for bookkeeping.
/// 2. After processing all blocks, loop over `blockPhiInfo` to fix up each
/// block recorded there to create the proper block arguments on their
/// terminators.
/// A data structure for containing a SPIR-V block's phi info. It will be
/// represented as block argument in SPIR-V dialect.
using BlockPhiInfo =
SmallVector<uint32_t, 2>; // The result <id> of the values sent
/// Gets or creates the block corresponding to the given label <id>. The newly
/// created block will always be placed at the end of the current function.
Block *getOrCreateBlock(uint32_t id);
LogicalResult processBranch(ArrayRef<uint32_t> operands);
LogicalResult processBranchConditional(ArrayRef<uint32_t> operands);
/// Processes a SPIR-V OpLabel instruction with the given `operands`.
LogicalResult processLabel(ArrayRef<uint32_t> operands);
/// Processes a SPIR-V OpSelectionMerge instruction with the given `operands`.
LogicalResult processSelectionMerge(ArrayRef<uint32_t> operands);
/// Processes a SPIR-V OpLoopMerge instruction with the given `operands`.
LogicalResult processLoopMerge(ArrayRef<uint32_t> operands);
/// Processes a SPIR-V OpPhi instruction with the given `operands`.
LogicalResult processPhi(ArrayRef<uint32_t> operands);
/// Creates block arguments on predecessors previously recorded when handling
/// OpPhi instructions.
LogicalResult wireUpBlockArgument();
/// Extracts blocks belonging to a structured selection/loop into a
/// spv.selection/spv.loop op. This method iterates until all blocks
/// declared as selection/loop headers are handled.
LogicalResult structurizeControlFlow();
//===--------------------------------------------------------------------===//
// Instruction
//===--------------------------------------------------------------------===//
/// Get the Value associated with a result <id>.
///
/// This method materializes normal constants and inserts "casting" ops
/// (`spv._address_of` and `spv._reference_of`) to turn an symbol into a SSA
/// value for handling uses of module scope constants/variables in functions.
Value getValue(uint32_t id);
/// Slices the first instruction out of `binary` and returns its opcode and
/// operands via `opcode` and `operands` respectively. Returns failure if
/// there is no more remaining instructions (`expectedOpcode` will be used to
/// compose the error message) or the next instruction is malformed.
LogicalResult
sliceInstruction(spirv::Opcode &opcode, ArrayRef<uint32_t> &operands,
Optional<spirv::Opcode> expectedOpcode = llvm::None);
/// Processes a SPIR-V instruction with the given `opcode` and `operands`.
/// This method is the main entrance for handling SPIR-V instruction; it
/// checks the instruction opcode and dispatches to the corresponding handler.
/// Processing of Some instructions (like OpEntryPoint and OpExecutionMode)
/// might need to be deferred, since they contain forward references to <id>s
/// in the deserialized binary, but module in SPIR-V dialect expects these to
/// be ssa-uses.
LogicalResult processInstruction(spirv::Opcode opcode,
ArrayRef<uint32_t> operands,
bool deferInstructions = true);
/// Processes a OpUndef instruction. Adds a spv.Undef operation at the current
/// insertion point.
LogicalResult processUndef(ArrayRef<uint32_t> operands);
/// Processes an OpBitcast instruction.
LogicalResult processBitcast(ArrayRef<uint32_t> words);
/// Method to dispatch to the specialized deserialization function for an
/// operation in SPIR-V dialect that is a mirror of an instruction in the
/// SPIR-V spec. This is auto-generated from ODS. Dispatch is handled for
/// all operations in SPIR-V dialect that have hasOpcode == 1.
LogicalResult dispatchToAutogenDeserialization(spirv::Opcode opcode,
ArrayRef<uint32_t> words);
/// Processes a SPIR-V OpExtInst with given `operands`. This slices the
/// entries of `operands` that specify the extended instruction set <id> and
/// the instruction opcode. The op deserializer is then invoked using the
/// other entries.
LogicalResult processExtInst(ArrayRef<uint32_t> operands);
/// Dispatches the deserialization of extended instruction set operation based
/// on the extended instruction set name, and instruction opcode. This is
/// autogenerated from ODS.
LogicalResult
dispatchToExtensionSetAutogenDeserialization(StringRef extensionSetName,
uint32_t instructionID,
ArrayRef<uint32_t> words);
/// Method to deserialize an operation in the SPIR-V dialect that is a mirror
/// of an instruction in the SPIR-V spec. This is auto generated if hasOpcode
/// == 1 and autogenSerialization == 1 in ODS.
template <typename OpTy> LogicalResult processOp(ArrayRef<uint32_t> words) {
return emitError(unknownLoc, "unsupported deserialization for ")
<< OpTy::getOperationName() << " op";
}
private:
/// The SPIR-V binary module.
ArrayRef<uint32_t> binary;
/// The current word offset into the binary module.
unsigned curOffset = 0;
/// MLIRContext to create SPIR-V ModuleOp into.
MLIRContext *context;
// TODO(antiagainst): create Location subclass for binary blob
Location unknownLoc;
/// The SPIR-V ModuleOp.
Optional<spirv::ModuleOp> module;
/// The current function under construction.
Optional<FuncOp> curFunction;
/// The current block under construction.
Block *curBlock = nullptr;
OpBuilder opBuilder;
/// The list of capabilities used by the module.
llvm::SmallSetVector<spirv::Capability, 4> capabilities;
/// The list of extensions used by the module.
llvm::SmallSetVector<StringRef, 2> extensions;
// Result <id> to type mapping.
DenseMap<uint32_t, Type> typeMap;
// Result <id> to constant attribute and type mapping.
///
/// In the SPIR-V binary format, all constants are placed in the module and
/// shared by instructions at module level and in subsequent functions. But in
/// the SPIR-V dialect, we materialize the constant to where it's used in the
/// function. So when seeing a constant instruction in the binary format, we
/// don't immediately emit a constant op into the module, we keep its value
/// (and type) here. Later when it's used, we materialize the constant.
DenseMap<uint32_t, std::pair<Attribute, Type>> constantMap;
// Result <id> to variable mapping.
DenseMap<uint32_t, spirv::SpecConstantOp> specConstMap;
// Result <id> to variable mapping.
DenseMap<uint32_t, spirv::GlobalVariableOp> globalVariableMap;
// Result <id> to function mapping.
DenseMap<uint32_t, FuncOp> funcMap;
// Result <id> to block mapping.
DenseMap<uint32_t, Block *> blockMap;
// Header block to its merge (and continue) target mapping.
BlockMergeInfoMap blockMergeInfo;
// Block to its phi (block argument) mapping.
DenseMap<Block *, BlockPhiInfo> blockPhiInfo;
// Result <id> to value mapping.
DenseMap<uint32_t, Value> valueMap;
// Mapping from result <id> to undef value of a type.
DenseMap<uint32_t, Type> undefMap;
// Result <id> to name mapping.
DenseMap<uint32_t, StringRef> nameMap;
// Result <id> to decorations mapping.
DenseMap<uint32_t, NamedAttributeList> decorations;
// Result <id> to type decorations.
DenseMap<uint32_t, uint32_t> typeDecorations;
// Result <id> to member decorations.
// decorated-struct-type-<id> ->
// (struct-member-index -> (decoration -> decoration-operands))
DenseMap<uint32_t,
DenseMap<uint32_t, DenseMap<spirv::Decoration, ArrayRef<uint32_t>>>>
memberDecorationMap;
// Result <id> to member name.
// struct-type-<id> -> (struct-member-index -> name)
DenseMap<uint32_t, DenseMap<uint32_t, StringRef>> memberNameMap;
// Result <id> to extended instruction set name.
DenseMap<uint32_t, StringRef> extendedInstSets;
// List of instructions that are processed in a deferred fashion (after an
// initial processing of the entire binary). Some operations like
// OpEntryPoint, and OpExecutionMode use forward references to function
// <id>s. In SPIR-V dialect the corresponding operations (spv.EntryPoint and
// spv.ExecutionMode) need these references resolved. So these instructions
// are deserialized and stored for processing once the entire binary is
// processed.
SmallVector<std::pair<spirv::Opcode, ArrayRef<uint32_t>>, 4>
deferredInstructions;
};
} // namespace
Deserializer::Deserializer(ArrayRef<uint32_t> binary, MLIRContext *context)
: binary(binary), context(context), unknownLoc(UnknownLoc::get(context)),
module(createModuleOp()), opBuilder(module->body()) {}
LogicalResult Deserializer::deserialize() {
LLVM_DEBUG(llvm::dbgs() << "+++ starting deserialization +++\n");
if (failed(processHeader()))
return failure();
spirv::Opcode opcode = spirv::Opcode::OpNop;
ArrayRef<uint32_t> operands;
auto binarySize = binary.size();
while (curOffset < binarySize) {
// Slice the next instruction out and populate `opcode` and `operands`.
// Internally this also updates `curOffset`.
if (failed(sliceInstruction(opcode, operands)))
return failure();
if (failed(processInstruction(opcode, operands)))
return failure();
}
assert(curOffset == binarySize &&
"deserializer should never index beyond the binary end");
for (auto &deferred : deferredInstructions) {
if (failed(processInstruction(deferred.first, deferred.second, false))) {
return failure();
}
}
// Attaches the capabilities/extensions as an attribute to the module.
attachCapabilities();
attachExtensions();
LLVM_DEBUG(llvm::dbgs() << "+++ completed deserialization +++\n");
return success();
}
Optional<spirv::ModuleOp> Deserializer::collect() { return module; }
//===----------------------------------------------------------------------===//
// Module structure
//===----------------------------------------------------------------------===//
spirv::ModuleOp Deserializer::createModuleOp() {
Builder builder(context);
OperationState state(unknownLoc, spirv::ModuleOp::getOperationName());
// TODO(antiagainst): use target environment to select the version
state.addAttribute("major_version", builder.getI32IntegerAttr(1));
state.addAttribute("minor_version", builder.getI32IntegerAttr(0));
spirv::ModuleOp::build(&builder, state);
return cast<spirv::ModuleOp>(Operation::create(state));
}
LogicalResult Deserializer::processHeader() {
if (binary.size() < spirv::kHeaderWordCount)
return emitError(unknownLoc,
"SPIR-V binary module must have a 5-word header");
if (binary[0] != spirv::kMagicNumber)
return emitError(unknownLoc, "incorrect magic number");
// TODO(antiagainst): generator number, bound, schema
curOffset = spirv::kHeaderWordCount;
return success();
}
LogicalResult Deserializer::processCapability(ArrayRef<uint32_t> operands) {
if (operands.size() != 1)
return emitError(unknownLoc, "OpMemoryModel must have one parameter");
auto cap = spirv::symbolizeCapability(operands[0]);
if (!cap)
return emitError(unknownLoc, "unknown capability: ") << operands[0];
capabilities.insert(*cap);
return success();
}
void Deserializer::attachCapabilities() {
if (capabilities.empty())
return;
SmallVector<StringRef, 2> caps;
caps.reserve(capabilities.size());
for (auto cap : capabilities) {
caps.push_back(spirv::stringifyCapability(cap));
}
module->setAttr("capabilities", opBuilder.getStrArrayAttr(caps));
}
LogicalResult Deserializer::processExtension(ArrayRef<uint32_t> words) {
if (words.empty()) {
return emitError(
unknownLoc,
"OpExtension must have a literal string for the extension name");
}
unsigned wordIndex = 0;
StringRef extName = decodeStringLiteral(words, wordIndex);
if (wordIndex != words.size()) {
return emitError(unknownLoc,
"unexpected trailing words in OpExtension instruction");
}
extensions.insert(extName);
return success();
}
LogicalResult Deserializer::processExtInstImport(ArrayRef<uint32_t> words) {
if (words.size() < 2) {
return emitError(unknownLoc,
"OpExtInstImport must have a result <id> and a literal "
"string for the extended instruction set name");
}
unsigned wordIndex = 1;
extendedInstSets[words[0]] = decodeStringLiteral(words, wordIndex);
if (wordIndex != words.size()) {
return emitError(unknownLoc,
"unexpected trailing words in OpExtInstImport");
}
return success();
}
void Deserializer::attachExtensions() {
if (extensions.empty())
return;
module->setAttr("extensions",
opBuilder.getStrArrayAttr(extensions.getArrayRef()));
}
LogicalResult Deserializer::processMemoryModel(ArrayRef<uint32_t> operands) {
if (operands.size() != 2)
return emitError(unknownLoc, "OpMemoryModel must have two operands");
module->setAttr(
"addressing_model",
opBuilder.getI32IntegerAttr(llvm::bit_cast<int32_t>(operands.front())));
module->setAttr(
"memory_model",
opBuilder.getI32IntegerAttr(llvm::bit_cast<int32_t>(operands.back())));
return success();
}
LogicalResult Deserializer::processDecoration(ArrayRef<uint32_t> words) {
// TODO : This function should also be auto-generated. For now, since only a
// few decorations are processed/handled in a meaningful manner, going with a
// manual implementation.
if (words.size() < 2) {
return emitError(
unknownLoc, "OpDecorate must have at least result <id> and Decoration");
}
auto decorationName =
stringifyDecoration(static_cast<spirv::Decoration>(words[1]));
if (decorationName.empty()) {
return emitError(unknownLoc, "invalid Decoration code : ") << words[1];
}
auto attrName = convertToSnakeCase(decorationName);
auto symbol = opBuilder.getIdentifier(attrName);
switch (static_cast<spirv::Decoration>(words[1])) {
case spirv::Decoration::DescriptorSet:
case spirv::Decoration::Binding:
if (words.size() != 3) {
return emitError(unknownLoc, "OpDecorate with ")
<< decorationName << " needs a single integer literal";
}
decorations[words[0]].set(
symbol, opBuilder.getI32IntegerAttr(static_cast<int32_t>(words[2])));
break;
case spirv::Decoration::BuiltIn:
if (words.size() != 3) {
return emitError(unknownLoc, "OpDecorate with ")
<< decorationName << " needs a single integer literal";
}
decorations[words[0]].set(
symbol, opBuilder.getStringAttr(
stringifyBuiltIn(static_cast<spirv::BuiltIn>(words[2]))));
break;
case spirv::Decoration::ArrayStride:
if (words.size() != 3) {
return emitError(unknownLoc, "OpDecorate with ")
<< decorationName << " needs a single integer literal";
}
typeDecorations[words[0]] = words[2];
break;
case spirv::Decoration::Block:
case spirv::Decoration::BufferBlock:
if (words.size() != 2) {
return emitError(unknownLoc, "OpDecoration with ")
<< decorationName << "needs a single target <id>";
}
// Block decoration does not affect spv.struct type, but is still stored for
// verification.
// TODO: Update StructType to contain this information since
// it is needed for many validation rules.
decorations[words[0]].set(symbol, opBuilder.getUnitAttr());
break;
case spirv::Decoration::SpecId:
if (words.size() != 3) {
return emitError(unknownLoc, "OpDecoration with ")
<< decorationName << "needs a single integer literal";
}
decorations[words[0]].set(
symbol, opBuilder.getI32IntegerAttr(static_cast<int32_t>(words[2])));
break;
default:
return emitError(unknownLoc, "unhandled Decoration : '") << decorationName;
}
return success();
}
LogicalResult Deserializer::processMemberDecoration(ArrayRef<uint32_t> words) {
// The binary layout of OpMemberDecorate is different comparing to OpDecorate
if (words.size() < 3) {
return emitError(unknownLoc,
"OpMemberDecorate must have at least 3 operands");
}
auto decoration = static_cast<spirv::Decoration>(words[2]);
if (decoration == spirv::Decoration::Offset && words.size() != 4) {
return emitError(unknownLoc,
" missing offset specification in OpMemberDecorate with "
"Offset decoration");
}
ArrayRef<uint32_t> decorationOperands;
if (words.size() > 3) {
decorationOperands = words.slice(3);
}
memberDecorationMap[words[0]][words[1]][decoration] = decorationOperands;
return success();
}
LogicalResult Deserializer::processMemberName(ArrayRef<uint32_t> words) {
if (words.size() < 3) {
return emitError(unknownLoc, "OpMemberName must have at least 3 operands");
}
unsigned wordIndex = 2;
auto name = decodeStringLiteral(words, wordIndex);
if (wordIndex != words.size()) {
return emitError(unknownLoc,
"unexpected trailing words in OpMemberName instruction");
}
memberNameMap[words[0]][words[1]] = name;
return success();
}
LogicalResult Deserializer::processFunction(ArrayRef<uint32_t> operands) {
if (curFunction) {
return emitError(unknownLoc, "found function inside function");
}
// Get the result type
if (operands.size() != 4) {
return emitError(unknownLoc, "OpFunction must have 4 parameters");
}
Type resultType = getType(operands[0]);
if (!resultType) {
return emitError(unknownLoc, "undefined result type from <id> ")
<< operands[0];
}
if (funcMap.count(operands[1])) {
return emitError(unknownLoc, "duplicate function definition/declaration");
}
auto functionControl = spirv::symbolizeFunctionControl(operands[2]);
if (!functionControl) {
return emitError(unknownLoc, "unknown Function Control: ") << operands[2];
}
if (functionControl.getValue() != spirv::FunctionControl::None) {
/// TODO : Handle different function controls
return emitError(unknownLoc, "unhandled Function Control: '")
<< spirv::stringifyFunctionControl(functionControl.getValue())
<< "'";
}
Type fnType = getType(operands[3]);
if (!fnType || !fnType.isa<FunctionType>()) {
return emitError(unknownLoc, "unknown function type from <id> ")
<< operands[3];
}
auto functionType = fnType.cast<FunctionType>();
if ((isVoidType(resultType) && functionType.getNumResults() != 0) ||
(functionType.getNumResults() == 1 &&
functionType.getResult(0) != resultType)) {
return emitError(unknownLoc, "mismatch in function type ")
<< functionType << " and return type " << resultType << " specified";
}
std::string fnName = getFunctionSymbol(operands[1]);
auto funcOp = opBuilder.create<FuncOp>(unknownLoc, fnName, functionType,
ArrayRef<NamedAttribute>());
curFunction = funcMap[operands[1]] = funcOp;
LLVM_DEBUG(llvm::dbgs() << "-- start function " << fnName << " (type = "
<< fnType << ", id = " << operands[1] << ") --\n");
auto *entryBlock = funcOp.addEntryBlock();
LLVM_DEBUG(llvm::dbgs() << "[block] created entry block " << entryBlock
<< "\n");
// Parse the op argument instructions
if (functionType.getNumInputs()) {
for (size_t i = 0, e = functionType.getNumInputs(); i != e; ++i) {
auto argType = functionType.getInput(i);
spirv::Opcode opcode = spirv::Opcode::OpNop;
ArrayRef<uint32_t> operands;
if (failed(sliceInstruction(opcode, operands,
spirv::Opcode::OpFunctionParameter))) {
return failure();
}
if (opcode != spirv::Opcode::OpFunctionParameter) {
return emitError(
unknownLoc,
"missing OpFunctionParameter instruction for argument ")
<< i;
}
if (operands.size() != 2) {
return emitError(
unknownLoc,
"expected result type and result <id> for OpFunctionParameter");
}
auto argDefinedType = getType(operands[0]);
if (!argDefinedType || argDefinedType != argType) {
return emitError(unknownLoc,
"mismatch in argument type between function type "
"definition ")
<< functionType << " and argument type definition "
<< argDefinedType << " at argument " << i;
}
if (getValue(operands[1])) {
return emitError(unknownLoc, "duplicate definition of result <id> '")
<< operands[1];
}
auto argValue = funcOp.getArgument(i);
valueMap[operands[1]] = argValue;
}
}
// RAII guard to reset the insertion point to the module's region after
// deserializing the body of this function.
OpBuilder::InsertionGuard moduleInsertionGuard(opBuilder);
spirv::Opcode opcode = spirv::Opcode::OpNop;
ArrayRef<uint32_t> instOperands;
// Special handling for the entry block. We need to make sure it starts with
// an OpLabel instruction. The entry block takes the same parameters as the
// function. All other blocks do not take any parameter. We have already
// created the entry block, here we need to register it to the correct label
// <id>.
if (failed(sliceInstruction(opcode, instOperands,
spirv::Opcode::OpFunctionEnd))) {
return failure();
}
if (opcode == spirv::Opcode::OpFunctionEnd) {
LLVM_DEBUG(llvm::dbgs()
<< "-- completed function '" << fnName << "' (type = " << fnType
<< ", id = " << operands[1] << ") --\n");
return processFunctionEnd(instOperands);
}
if (opcode != spirv::Opcode::OpLabel) {
return emitError(unknownLoc, "a basic block must start with OpLabel");
}
if (instOperands.size() != 1) {
return emitError(unknownLoc, "OpLabel should only have result <id>");
}
blockMap[instOperands[0]] = entryBlock;
if (failed(processLabel(instOperands))) {
return failure();
}
// Then process all the other instructions in the function until we hit
// OpFunctionEnd.
while (succeeded(sliceInstruction(opcode, instOperands,
spirv::Opcode::OpFunctionEnd)) &&
opcode != spirv::Opcode::OpFunctionEnd) {
if (failed(processInstruction(opcode, instOperands))) {
return failure();
}
}
if (opcode != spirv::Opcode::OpFunctionEnd) {
return failure();
}
LLVM_DEBUG(llvm::dbgs() << "-- completed function '" << fnName << "' (type = "
<< fnType << ", id = " << operands[1] << ") --\n");
return processFunctionEnd(instOperands);
}
LogicalResult Deserializer::processFunctionEnd(ArrayRef<uint32_t> operands) {
// Process OpFunctionEnd.
if (!operands.empty()) {
return emitError(unknownLoc, "unexpected operands for OpFunctionEnd");
}
// Wire up block arguments from OpPhi instructions.
// Put all structured control flow in spv.selection/spv.loop ops.
if (failed(wireUpBlockArgument()) || failed(structurizeControlFlow())) {
return failure();
}
curBlock = nullptr;
curFunction = llvm::None;
return success();
}
Optional<std::pair<Attribute, Type>> Deserializer::getConstant(uint32_t id) {
auto constIt = constantMap.find(id);
if (constIt == constantMap.end())
return llvm::None;
return constIt->getSecond();
}
std::string Deserializer::getFunctionSymbol(uint32_t id) {
auto funcName = nameMap.lookup(id).str();
if (funcName.empty()) {
funcName = "spirv_fn_" + std::to_string(id);
}
return funcName;
}
std::string Deserializer::getSpecConstantSymbol(uint32_t id) {
auto constName = nameMap.lookup(id).str();
if (constName.empty()) {
constName = "spirv_spec_const_" + std::to_string(id);
}
return constName;
}
spirv::SpecConstantOp Deserializer::createSpecConstant(Location loc,
uint32_t resultID,
Attribute defaultValue) {
auto symName = opBuilder.getStringAttr(getSpecConstantSymbol(resultID));
auto op = opBuilder.create<spirv::SpecConstantOp>(unknownLoc, symName,
defaultValue);
if (decorations.count(resultID)) {
for (auto attr : decorations[resultID].getAttrs())
op.setAttr(attr.first, attr.second);
}
specConstMap[resultID] = op;
return op;
}
LogicalResult Deserializer::processGlobalVariable(ArrayRef<uint32_t> operands) {
unsigned wordIndex = 0;
if (operands.size() < 3) {
return emitError(
unknownLoc,
"OpVariable needs at least 3 operands, type, <id> and storage class");
}
// Result Type.
auto type = getType(operands[wordIndex]);
if (!type) {
return emitError(unknownLoc, "unknown result type <id> : ")
<< operands[wordIndex];
}
auto ptrType = type.dyn_cast<spirv::PointerType>();
if (!ptrType) {
return emitError(unknownLoc,
"expected a result type <id> to be a spv.ptr, found : ")
<< type;
}
wordIndex++;
// Result <id>.
auto variableID = operands[wordIndex];
auto variableName = nameMap.lookup(variableID).str();
if (variableName.empty()) {
variableName = "spirv_var_" + std::to_string(variableID);
}
wordIndex++;
// Storage class.
auto storageClass = static_cast<spirv::StorageClass>(operands[wordIndex]);
if (ptrType.getStorageClass() != storageClass) {
return emitError(unknownLoc, "mismatch in storage class of pointer type ")
<< type << " and that specified in OpVariable instruction : "
<< stringifyStorageClass(storageClass);
}
wordIndex++;
// Initializer.
FlatSymbolRefAttr initializer = nullptr;
if (wordIndex < operands.size()) {
auto initializerOp = getGlobalVariable(operands[wordIndex]);
if (!initializerOp) {
return emitError(unknownLoc, "unknown <id> ")
<< operands[wordIndex] << "used as initializer";
}
wordIndex++;
initializer = opBuilder.getSymbolRefAttr(initializerOp.getOperation());
}
if (wordIndex != operands.size()) {
return emitError(unknownLoc,
"found more operands than expected when deserializing "
"OpVariable instruction, only ")
<< wordIndex << " of " << operands.size() << " processed";
}
auto varOp = opBuilder.create<spirv::GlobalVariableOp>(
unknownLoc, TypeAttr::get(type), opBuilder.getStringAttr(variableName),
initializer);
// Decorations.
if (decorations.count(variableID)) {
for (auto attr : decorations[variableID].getAttrs()) {
varOp.setAttr(attr.first, attr.second);
}
}
globalVariableMap[variableID] = varOp;
return success();
}
IntegerAttr Deserializer::getConstantInt(uint32_t id) {
auto constInfo = getConstant(id);
if (!constInfo) {
return nullptr;
}
return constInfo->first.dyn_cast<IntegerAttr>();
}
LogicalResult Deserializer::processName(ArrayRef<uint32_t> operands) {
if (operands.size() < 2) {
return emitError(unknownLoc, "OpName needs at least 2 operands");
}
if (!nameMap.lookup(operands[0]).empty()) {
return emitError(unknownLoc, "duplicate name found for result <id> ")
<< operands[0];
}
unsigned wordIndex = 1;
StringRef name = decodeStringLiteral(operands, wordIndex);
if (wordIndex != operands.size()) {
return emitError(unknownLoc,
"unexpected trailing words in OpName instruction");
}
nameMap[operands[0]] = name;
return success();
}
//===----------------------------------------------------------------------===//
// Type
//===----------------------------------------------------------------------===//
LogicalResult Deserializer::processType(spirv::Opcode opcode,
ArrayRef<uint32_t> operands) {
if (operands.empty()) {
return emitError(unknownLoc, "type instruction with opcode ")
<< spirv::stringifyOpcode(opcode) << " needs at least one <id>";
}
/// TODO: Types might be forward declared in some instructions and need to be
/// handled appropriately.
if (typeMap.count(operands[0])) {
return emitError(unknownLoc, "duplicate definition for result <id> ")
<< operands[0];
}
switch (opcode) {
case spirv::Opcode::OpTypeVoid:
if (operands.size() != 1) {
return emitError(unknownLoc, "OpTypeVoid must have no parameters");
}
typeMap[operands[0]] = opBuilder.getNoneType();
break;
case spirv::Opcode::OpTypeBool:
if (operands.size() != 1) {
return emitError(unknownLoc, "OpTypeBool must have no parameters");
}
typeMap[operands[0]] = opBuilder.getI1Type();
break;
case spirv::Opcode::OpTypeInt:
if (operands.size() != 3) {
return emitError(
unknownLoc, "OpTypeInt must have bitwidth and signedness parameters");
}
// TODO: Ignoring the signedness right now. Need to handle this effectively
// in the MLIR representation.
typeMap[operands[0]] = opBuilder.getIntegerType(operands[1]);
break;
case spirv::Opcode::OpTypeFloat: {
if (operands.size() != 2) {
return emitError(unknownLoc, "OpTypeFloat must have bitwidth parameter");
}
Type floatTy;
switch (operands[1]) {
case 16:
floatTy = opBuilder.getF16Type();
break;
case 32:
floatTy = opBuilder.getF32Type();
break;
case 64:
floatTy = opBuilder.getF64Type();
break;
default:
return emitError(unknownLoc, "unsupported OpTypeFloat bitwidth: ")
<< operands[1];
}
typeMap[operands[0]] = floatTy;
} break;
case spirv::Opcode::OpTypeVector: {
if (operands.size() != 3) {
return emitError(
unknownLoc,
"OpTypeVector must have element type and count parameters");
}
Type elementTy = getType(operands[1]);
if (!elementTy) {
return emitError(unknownLoc, "OpTypeVector references undefined <id> ")
<< operands[1];
}
typeMap[operands[0]] = VectorType::get({operands[2]}, elementTy);
} break;
case spirv::Opcode::OpTypePointer: {
if (operands.size() != 3) {
return emitError(unknownLoc, "OpTypePointer must have two parameters");
}
auto pointeeType = getType(operands[2]);
if (!pointeeType) {
return emitError(unknownLoc, "unknown OpTypePointer pointee type <id> ")
<< operands[2];
}
auto storageClass = static_cast<spirv::StorageClass>(operands[1]);
typeMap[operands[0]] = spirv::PointerType::get(pointeeType, storageClass);
} break;
case spirv::Opcode::OpTypeArray:
return processArrayType(operands);
case spirv::Opcode::OpTypeFunction:
return processFunctionType(operands);
case spirv::Opcode::OpTypeRuntimeArray:
return processRuntimeArrayType(operands);
case spirv::Opcode::OpTypeStruct:
return processStructType(operands);
default:
return emitError(unknownLoc, "unhandled type instruction");
}
return success();
}
LogicalResult Deserializer::processArrayType(ArrayRef<uint32_t> operands) {
if (operands.size() != 3) {
return emitError(unknownLoc,
"OpTypeArray must have element type and count parameters");
}
Type elementTy = getType(operands[1]);
if (!elementTy) {
return emitError(unknownLoc, "OpTypeArray references undefined <id> ")
<< operands[1];
}
unsigned count = 0;
// TODO(antiagainst): The count can also come frome a specialization constant.
auto countInfo = getConstant(operands[2]);
if (!countInfo) {
return emitError(unknownLoc, "OpTypeArray count <id> ")
<< operands[2] << "can only come from normal constant right now";
}
if (auto intVal = countInfo->first.dyn_cast<IntegerAttr>()) {
count = intVal.getInt();
} else {
return emitError(unknownLoc, "OpTypeArray count must come from a "
"scalar integer constant instruction");
}
typeMap[operands[0]] = spirv::ArrayType::get(
elementTy, count, typeDecorations.lookup(operands[0]));
return success();
}
LogicalResult Deserializer::processFunctionType(ArrayRef<uint32_t> operands) {
assert(!operands.empty() && "No operands for processing function type");
if (operands.size() == 1) {
return emitError(unknownLoc, "missing return type for OpTypeFunction");
}
auto returnType = getType(operands[1]);
if (!returnType) {
return emitError(unknownLoc, "unknown return type in OpTypeFunction");
}
SmallVector<Type, 1> argTypes;
for (size_t i = 2, e = operands.size(); i < e; ++i) {
auto ty = getType(operands[i]);
if (!ty) {
return emitError(unknownLoc, "unknown argument type in OpTypeFunction");
}
argTypes.push_back(ty);
}
ArrayRef<Type> returnTypes;
if (!isVoidType(returnType)) {
returnTypes = llvm::makeArrayRef(returnType);
}
typeMap[operands[0]] = FunctionType::get(argTypes, returnTypes, context);
return success();
}
LogicalResult
Deserializer::processRuntimeArrayType(ArrayRef<uint32_t> operands) {
if (operands.size() != 2) {
return emitError(unknownLoc, "OpTypeRuntimeArray must have two operands");
}
Type memberType = getType(operands[1]);
if (!memberType) {
return emitError(unknownLoc,
"OpTypeRuntimeArray references undefined <id> ")
<< operands[1];
}
typeMap[operands[0]] = spirv::RuntimeArrayType::get(memberType);
return success();
}
LogicalResult Deserializer::processStructType(ArrayRef<uint32_t> operands) {
if (operands.empty()) {
return emitError(unknownLoc, "OpTypeStruct must have at least result <id>");
}
if (operands.size() == 1) {
// Handle empty struct.
typeMap[operands[0]] = spirv::StructType::getEmpty(context);
return success();
}
SmallVector<Type, 0> memberTypes;
for (auto op : llvm::drop_begin(operands, 1)) {
Type memberType = getType(op);
if (!memberType) {
return emitError(unknownLoc, "OpTypeStruct references undefined <id> ")
<< op;
}
memberTypes.push_back(memberType);
}
SmallVector<spirv::StructType::LayoutInfo, 0> layoutInfo;
SmallVector<spirv::StructType::MemberDecorationInfo, 0> memberDecorationsInfo;
if (memberDecorationMap.count(operands[0])) {
auto &allMemberDecorations = memberDecorationMap[operands[0]];
for (auto memberIndex : llvm::seq<uint32_t>(0, memberTypes.size())) {
if (allMemberDecorations.count(memberIndex)) {
for (auto &memberDecoration : allMemberDecorations[memberIndex]) {
// Check for offset.
if (memberDecoration.first == spirv::Decoration::Offset) {
// If layoutInfo is empty, resize to the number of members;
if (layoutInfo.empty()) {
layoutInfo.resize(memberTypes.size());
}
layoutInfo[memberIndex] = memberDecoration.second[0];
} else {
if (!memberDecoration.second.empty()) {
return emitError(unknownLoc,
"unhandled OpMemberDecoration with decoration ")
<< stringifyDecoration(memberDecoration.first)
<< " which has additional operands";
}
memberDecorationsInfo.emplace_back(memberIndex,
memberDecoration.first);
}
}
}
}
}
typeMap[operands[0]] =
spirv::StructType::get(memberTypes, layoutInfo, memberDecorationsInfo);
// TODO(ravishankarm): Update StructType to have member name as attribute as
// well.
return success();
}
//===----------------------------------------------------------------------===//
// Constant
//===----------------------------------------------------------------------===//
LogicalResult Deserializer::processConstant(ArrayRef<uint32_t> operands,
bool isSpec) {
StringRef opname = isSpec ? "OpSpecConstant" : "OpConstant";
if (operands.size() < 2) {
return emitError(unknownLoc)
<< opname << " must have type <id> and result <id>";
}
if (operands.size() < 3) {
return emitError(unknownLoc)
<< opname << " must have at least 1 more parameter";
}
Type resultType = getType(operands[0]);
if (!resultType) {
return emitError(unknownLoc, "undefined result type from <id> ")
<< operands[0];
}
auto checkOperandSizeForBitwidth = [&](unsigned bitwidth) -> LogicalResult {
if (bitwidth == 64) {
if (operands.size() == 4) {
return success();
}
return emitError(unknownLoc)
<< opname << " should have 2 parameters for 64-bit values";
}
if (bitwidth <= 32) {
if (operands.size() == 3) {
return success();
}
return emitError(unknownLoc)
<< opname
<< " should have 1 parameter for values with no more than 32 bits";
}
return emitError(unknownLoc, "unsupported OpConstant bitwidth: ")
<< bitwidth;
};
auto resultID = operands[1];
if (auto intType = resultType.dyn_cast<IntegerType>()) {
auto bitwidth = intType.getWidth();
if (failed(checkOperandSizeForBitwidth(bitwidth))) {
return failure();
}
APInt value;
if (bitwidth == 64) {
// 64-bit integers are represented with two SPIR-V words. According to
// SPIR-V spec: "When the type’s bit width is larger than one word, the
// literal’s low-order words appear first."
struct DoubleWord {
uint32_t word1;
uint32_t word2;
} words = {operands[2], operands[3]};
value = APInt(64, llvm::bit_cast<uint64_t>(words), /*isSigned=*/true);
} else if (bitwidth <= 32) {
value = APInt(bitwidth, operands[2], /*isSigned=*/true);
}
auto attr = opBuilder.getIntegerAttr(intType, value);
if (isSpec) {
createSpecConstant(unknownLoc, resultID, attr);
} else {
// For normal constants, we just record the attribute (and its type) for
// later materialization at use sites.
constantMap.try_emplace(resultID, attr, intType);
}
return success();
}
if (auto floatType = resultType.dyn_cast<FloatType>()) {
auto bitwidth = floatType.getWidth();
if (failed(checkOperandSizeForBitwidth(bitwidth))) {
return failure();
}
APFloat value(0.f);
if (floatType.isF64()) {
// Double values are represented with two SPIR-V words. According to
// SPIR-V spec: "When the type’s bit width is larger than one word, the
// literal’s low-order words appear first."
struct DoubleWord {
uint32_t word1;
uint32_t word2;
} words = {operands[2], operands[3]};
value = APFloat(llvm::bit_cast<double>(words));
} else if (floatType.isF32()) {
value = APFloat(llvm::bit_cast<float>(operands[2]));
} else if (floatType.isF16()) {
APInt data(16, operands[2]);
value = APFloat(APFloat::IEEEhalf(), data);
}
auto attr = opBuilder.getFloatAttr(floatType, value);
if (isSpec) {
createSpecConstant(unknownLoc, resultID, attr);
} else {
// For normal constants, we just record the attribute (and its type) for
// later materialization at use sites.
constantMap.try_emplace(resultID, attr, floatType);
}
return success();
}
return emitError(unknownLoc, "OpConstant can only generate values of "
"scalar integer or floating-point type");
}
LogicalResult Deserializer::processConstantBool(bool isTrue,
ArrayRef<uint32_t> operands,
bool isSpec) {
if (operands.size() != 2) {
return emitError(unknownLoc, "Op")
<< (isSpec ? "Spec" : "") << "Constant"
<< (isTrue ? "True" : "False")
<< " must have type <id> and result <id>";
}
auto attr = opBuilder.getBoolAttr(isTrue);
auto resultID = operands[1];
if (isSpec) {
createSpecConstant(unknownLoc, resultID, attr);
} else {
// For normal constants, we just record the attribute (and its type) for
// later materialization at use sites.
constantMap.try_emplace(resultID, attr, opBuilder.getI1Type());
}
return success();
}
LogicalResult
Deserializer::processConstantComposite(ArrayRef<uint32_t> operands) {
if (operands.size() < 2) {
return emitError(unknownLoc,
"OpConstantComposite must have type <id> and result <id>");
}
if (operands.size() < 3) {
return emitError(unknownLoc,
"OpConstantComposite must have at least 1 parameter");
}
Type resultType = getType(operands[0]);
if (!resultType) {
return emitError(unknownLoc, "undefined result type from <id> ")
<< operands[0];
}
SmallVector<Attribute, 4> elements;
elements.reserve(operands.size() - 2);
for (unsigned i = 2, e = operands.size(); i < e; ++i) {
auto elementInfo = getConstant(operands[i]);
if (!elementInfo) {
return emitError(unknownLoc, "OpConstantComposite component <id> ")
<< operands[i] << " must come from a normal constant";
}
elements.push_back(elementInfo->first);
}
auto resultID = operands[1];
if (auto vectorType = resultType.dyn_cast<VectorType>()) {
auto attr = DenseElementsAttr::get(vectorType, elements);
// For normal constants, we just record the attribute (and its type) for
// later materialization at use sites.
constantMap.try_emplace(resultID, attr, resultType);
} else if (auto arrayType = resultType.dyn_cast<spirv::ArrayType>()) {
auto attr = opBuilder.getArrayAttr(elements);
constantMap.try_emplace(resultID, attr, resultType);
} else {
return emitError(unknownLoc, "unsupported OpConstantComposite type: ")
<< resultType;
}
return success();
}
LogicalResult Deserializer::processConstantNull(ArrayRef<uint32_t> operands) {
if (operands.size() != 2) {
return emitError(unknownLoc,
"OpConstantNull must have type <id> and result <id>");
}
Type resultType = getType(operands[0]);
if (!resultType) {
return emitError(unknownLoc, "undefined result type from <id> ")
<< operands[0];
}
auto resultID = operands[1];
if (resultType.isa<IntegerType>() || resultType.isa<FloatType>() ||
resultType.isa<VectorType>()) {
auto attr = opBuilder.getZeroAttr(resultType);
// For normal constants, we just record the attribute (and its type) for
// later materialization at use sites.
constantMap.try_emplace(resultID, attr, resultType);
return success();
}
return emitError(unknownLoc, "unsupported OpConstantNull type: ")
<< resultType;
}
//===----------------------------------------------------------------------===//
// Control flow
//===----------------------------------------------------------------------===//
Block *Deserializer::getOrCreateBlock(uint32_t id) {
if (auto *block = getBlock(id)) {
LLVM_DEBUG(llvm::dbgs() << "[block] got exiting block for id = " << id
<< " @ " << block << "\n");
return block;
}
// We don't know where this block will be placed finally (in a spv.selection
// or spv.loop or function). Create it into the function for now and sort
// out the proper place later.
auto *block = curFunction->addBlock();
LLVM_DEBUG(llvm::dbgs() << "[block] created block for id = " << id << " @ "
<< block << "\n");
return blockMap[id] = block;
}
LogicalResult Deserializer::processBranch(ArrayRef<uint32_t> operands) {
if (!curBlock) {
return emitError(unknownLoc, "OpBranch must appear inside a block");
}
if (operands.size() != 1) {
return emitError(unknownLoc, "OpBranch must take exactly one target label");
}
auto *target = getOrCreateBlock(operands[0]);
opBuilder.create<spirv::BranchOp>(unknownLoc, target);
return success();
}
LogicalResult
Deserializer::processBranchConditional(ArrayRef<uint32_t> operands) {
if (!curBlock) {
return emitError(unknownLoc,
"OpBranchConditional must appear inside a block");
}
if (operands.size() != 3 && operands.size() != 5) {
return emitError(unknownLoc,
"OpBranchConditional must have condition, true label, "
"false label, and optionally two branch weights");
}
auto condition = getValue(operands[0]);
auto *trueBlock = getOrCreateBlock(operands[1]);
auto *falseBlock = getOrCreateBlock(operands[2]);
Optional<std::pair<uint32_t, uint32_t>> weights;
if (operands.size() == 5) {
weights = std::make_pair(operands[3], operands[4]);
}
opBuilder.create<spirv::BranchConditionalOp>(
unknownLoc, condition, trueBlock,
/*trueArguments=*/ArrayRef<Value>(), falseBlock,
/*falseArguments=*/ArrayRef<Value>(), weights);
return success();
}
LogicalResult Deserializer::processLabel(ArrayRef<uint32_t> operands) {
if (!curFunction) {
return emitError(unknownLoc, "OpLabel must appear inside a function");
}
if (operands.size() != 1) {
return emitError(unknownLoc, "OpLabel should only have result <id>");
}
auto labelID = operands[0];
// We may have forward declared this block.
auto *block = getOrCreateBlock(labelID);
LLVM_DEBUG(llvm::dbgs() << "[block] populating block " << block << "\n");
// If we have seen this block, make sure it was just a forward declaration.
assert(block->empty() && "re-deserialize the same block!");
opBuilder.setInsertionPointToStart(block);
blockMap[labelID] = curBlock = block;
return success();
}
LogicalResult Deserializer::processSelectionMerge(ArrayRef<uint32_t> operands) {
if (!curBlock) {
return emitError(unknownLoc, "OpSelectionMerge must appear in a block");
}
if (operands.size() < 2) {
return emitError(
unknownLoc,
"OpSelectionMerge must specify merge target and selection control");
}
if (static_cast<uint32_t>(spirv::SelectionControl::None) != operands[1]) {
return emitError(unknownLoc,
"unimplmented OpSelectionMerge selection control: ")
<< operands[2];
}
auto *mergeBlock = getOrCreateBlock(operands[0]);
if (!blockMergeInfo.try_emplace(curBlock, mergeBlock).second) {
return emitError(
unknownLoc,
"a block cannot have more than one OpSelectionMerge instruction");
}
return success();
}
LogicalResult Deserializer::processLoopMerge(ArrayRef<uint32_t> operands) {
if (!curBlock) {
return emitError(unknownLoc, "OpLoopMerge must appear in a block");
}
if (operands.size() < 3) {
return emitError(unknownLoc, "OpLoopMerge must specify merge target, "
"continue target and loop control");
}
if (static_cast<uint32_t>(spirv::LoopControl::None) != operands[2]) {
return emitError(unknownLoc, "unimplmented OpLoopMerge loop control: ")
<< operands[2];
}
auto *mergeBlock = getOrCreateBlock(operands[0]);
auto *continueBlock = getOrCreateBlock(operands[1]);
if (!blockMergeInfo.try_emplace(curBlock, mergeBlock, continueBlock).second) {
return emitError(
unknownLoc,
"a block cannot have more than one OpLoopMerge instruction");
}
return success();
}
LogicalResult Deserializer::processPhi(ArrayRef<uint32_t> operands) {
if (!curBlock) {
return emitError(unknownLoc, "OpPhi must appear in a block");
}
if (operands.size() < 4) {
return emitError(unknownLoc, "OpPhi must specify result type, result <id>, "
"and variable-parent pairs");
}
// Create a block argument for this OpPhi instruction.
Type blockArgType = getType(operands[0]);
BlockArgument blockArg = curBlock->addArgument(blockArgType);
valueMap[operands[1]] = blockArg;
LLVM_DEBUG(llvm::dbgs() << "[phi] created block argument " << blockArg
<< " id = " << operands[1] << " of type "
<< blockArgType << '\n');
// For each (value, predecessor) pair, insert the value to the predecessor's
// blockPhiInfo entry so later we can fix the block argument there.
for (unsigned i = 2, e = operands.size(); i < e; i += 2) {
uint32_t value = operands[i];
Block *predecessor = getOrCreateBlock(operands[i + 1]);
blockPhiInfo[predecessor].push_back(value);
LLVM_DEBUG(llvm::dbgs() << "[phi] predecessor @ " << predecessor
<< " with arg id = " << value << '\n');
}
return success();
}
namespace {
/// A class for putting all blocks in a structured selection/loop in a
/// spv.selection/spv.loop op.
class ControlFlowStructurizer {
public:
/// Structurizes the loop at the given `headerBlock`.
///
/// This method will create an spv.loop op in the `mergeBlock` and move all
/// blocks in the structured loop into the spv.loop's region. All branches to
/// the `headerBlock` will be redirected to the `mergeBlock`.
/// This method will also update `mergeInfo` by remapping all blocks inside to
/// the newly cloned ones inside structured control flow op's regions.
static LogicalResult structurize(Location loc, BlockMergeInfoMap &mergeInfo,
Block *headerBlock, Block *mergeBlock,
Block *continueBlock) {
return ControlFlowStructurizer(loc, mergeInfo, headerBlock, mergeBlock,
continueBlock)
.structurizeImpl();
}
private:
ControlFlowStructurizer(Location loc, BlockMergeInfoMap &mergeInfo,
Block *header, Block *merge, Block *cont)
: location(loc), blockMergeInfo(mergeInfo), headerBlock(header),
mergeBlock(merge), continueBlock(cont) {}
/// Creates a new spv.selection op at the beginning of the `mergeBlock`.
spirv::SelectionOp createSelectionOp();
/// Creates a new spv.loop op at the beginning of the `mergeBlock`.
spirv::LoopOp createLoopOp();
/// Collects all blocks reachable from `headerBlock` except `mergeBlock`.
void collectBlocksInConstruct();
LogicalResult structurizeImpl();
Location location;
BlockMergeInfoMap &blockMergeInfo;
Block *headerBlock;
Block *mergeBlock;
Block *continueBlock; // nullptr for spv.selection
llvm::SetVector<Block *> constructBlocks;
};
} // namespace
spirv::SelectionOp ControlFlowStructurizer::createSelectionOp() {
// Create a builder and set the insertion point to the beginning of the
// merge block so that the newly created SelectionOp will be inserted there.
OpBuilder builder(&mergeBlock->front());
auto control = builder.getI32IntegerAttr(
static_cast<uint32_t>(spirv::SelectionControl::None));
auto selectionOp = builder.create<spirv::SelectionOp>(location, control);
selectionOp.addMergeBlock();
return selectionOp;
}
spirv::LoopOp ControlFlowStructurizer::createLoopOp() {
// Create a builder and set the insertion point to the beginning of the
// merge block so that the newly created LoopOp will be inserted there.
OpBuilder builder(&mergeBlock->front());
// TODO(antiagainst): handle loop control properly
auto loopOp = builder.create<spirv::LoopOp>(location);
loopOp.addEntryAndMergeBlock();
return loopOp;
}
void ControlFlowStructurizer::collectBlocksInConstruct() {
assert(constructBlocks.empty() && "expected empty constructBlocks");
// Put the header block in the work list first.
constructBlocks.insert(headerBlock);
// For each item in the work list, add its successors excluding the merge
// block.
for (unsigned i = 0; i < constructBlocks.size(); ++i) {
for (auto *successor : constructBlocks[i]->getSuccessors())
if (successor != mergeBlock)
constructBlocks.insert(successor);
}
}
LogicalResult ControlFlowStructurizer::structurizeImpl() {
Operation *op = nullptr;
bool isLoop = continueBlock != nullptr;
if (isLoop) {
if (auto loopOp = createLoopOp())
op = loopOp.getOperation();
} else {
if (auto selectionOp = createSelectionOp())
op = selectionOp.getOperation();
}
if (!op)
return failure();
Region &body = op->getRegion(0);
BlockAndValueMapping mapper;
// All references to the old merge block should be directed to the
// selection/loop merge block in the SelectionOp/LoopOp's region.
mapper.map(mergeBlock, &body.back());
collectBlocksInConstruct();
// We've identified all blocks belonging to the selection/loop's region. Now
// need to "move" them into the selection/loop. Instead of really moving the
// blocks, in the following we copy them and remap all values and branches.
// This is because:
// * Inserting a block into a region requires the block not in any region
// before. But selections/loops can nest so we can create selection/loop ops
// in a nested manner, which means some blocks may already be in a
// selection/loop region when to be moved again.
// * It's much trickier to fix up the branches into and out of the loop's
// region: we need to treat not-moved blocks and moved blocks differently:
// Not-moved blocks jumping to the loop header block need to jump to the
// merge point containing the new loop op but not the loop continue block's
// back edge. Moved blocks jumping out of the loop need to jump to the
// merge block inside the loop region but not other not-moved blocks.
// We cannot use replaceAllUsesWith clearly and it's harder to follow the
// logic.
// Create a corresponding block in the SelectionOp/LoopOp's region for each
// block in this loop construct.
OpBuilder builder(body);
for (auto *block : constructBlocks) {
// Create a block and insert it before the selection/loop merge block in the
// SelectionOp/LoopOp's region.
auto *newBlock = builder.createBlock(&body.back());
mapper.map(block, newBlock);
LLVM_DEBUG(llvm::dbgs() << "[cf] cloned block " << newBlock
<< " from block " << block << "\n");
if (!isFnEntryBlock(block)) {
for (BlockArgument blockArg : block->getArguments()) {
auto newArg = newBlock->addArgument(blockArg.getType());
mapper.map(blockArg, newArg);
LLVM_DEBUG(llvm::dbgs() << "[cf] remapped block argument " << blockArg
<< " to " << newArg << '\n');
}
} else {
LLVM_DEBUG(llvm::dbgs()
<< "[cf] block " << block << " is a function entry block\n");
}
for (auto &op : *block)
newBlock->push_back(op.clone(mapper));
}
// Go through all ops and remap the operands.
auto remapOperands = [&](Operation *op) {
for (auto &operand : op->getOpOperands())
if (auto mappedOp = mapper.lookupOrNull(operand.get()))
operand.set(mappedOp);
for (auto &succOp : op->getBlockOperands())
if (auto mappedOp = mapper.lookupOrNull(succOp.get()))
succOp.set(mappedOp);
};
for (auto &block : body) {
block.walk(remapOperands);
}
// We have created the SelectionOp/LoopOp and "moved" all blocks belonging to
// the selection/loop construct into its region. Next we need to fix the
// connections between this new SelectionOp/LoopOp with existing blocks.
// All existing incoming branches should go to the merge block, where the
// SelectionOp/LoopOp resides right now.
headerBlock->replaceAllUsesWith(mergeBlock);
if (isLoop) {
// The loop selection/loop header block may have block arguments. Since now
// we place the selection/loop op inside the old merge block, we need to
// make sure the old merge block has the same block argument list.
assert(mergeBlock->args_empty() && "OpPhi in loop merge block unsupported");
for (BlockArgument blockArg : headerBlock->getArguments()) {
mergeBlock->addArgument(blockArg.getType());
}
// If the loop header block has block arguments, make sure the spv.branch op
// matches.
SmallVector<Value, 4> blockArgs;
if (!headerBlock->args_empty())
blockArgs = {mergeBlock->args_begin(), mergeBlock->args_end()};
// The loop entry block should have a unconditional branch jumping to the
// loop header block.
builder.setInsertionPointToEnd(&body.front());
builder.create<spirv::BranchOp>(location, mapper.lookupOrNull(headerBlock),
ArrayRef<Value>(blockArgs));
}
// All the blocks cloned into the SelectionOp/LoopOp's region can now be
// cleaned up.
LLVM_DEBUG(llvm::dbgs() << "[cf] cleaning up blocks after clone\n");
// First we need to drop all operands' references inside all blocks. This is
// needed because we can have blocks referencing SSA values from one another.
for (auto *block : constructBlocks)
block->dropAllReferences();
// Then erase all old blocks.
for (auto *block : constructBlocks) {
// We've cloned all blocks belonging to this construct into the structured
// control flow op's region. Among these blocks, some may compose another
// selection/loop. If so, they will be recorded within blockMergeInfo.
// We need to update the pointers there to the newly remapped ones so we can
// continue structurizing them later.
// TODO(antiagainst): The asserts in the following assumes input SPIR-V blob
// forms correctly nested selection/loop constructs. We should relax this
// and support error cases better.
auto it = blockMergeInfo.find(block);
if (it != blockMergeInfo.end()) {
Block *newHeader = mapper.lookupOrNull(block);
assert(newHeader && "nested loop header block should be remapped!");
Block *newContinue = it->second.continueBlock;
if (newContinue) {
newContinue = mapper.lookupOrNull(newContinue);
assert(newContinue && "nested loop continue block should be remapped!");
}
Block *newMerge = it->second.mergeBlock;
if (Block *mappedTo = mapper.lookupOrNull(newMerge))
newMerge = mappedTo;
// The iterator should be erased before adding a new entry into
// blockMergeInfo to avoid iterator invalidation.
blockMergeInfo.erase(it);
blockMergeInfo.try_emplace(newHeader, newMerge, newContinue);
}
// The structured selection/loop's entry block does not have arguments.
// If the function's header block is also part of the structured control
// flow, we cannot just simply erase it because it may contain arguments
// matching the function signature and used by the cloned blocks.
if (isFnEntryBlock(block)) {
LLVM_DEBUG(llvm::dbgs() << "[cf] changing entry block " << block
<< " to only contain a spv.Branch op\n");
// Still keep the function entry block for the potential block arguments,
// but replace all ops inside with a branch to the merge block.
block->clear();
builder.setInsertionPointToEnd(block);
builder.create<spirv::BranchOp>(location, mergeBlock);
} else {
LLVM_DEBUG(llvm::dbgs() << "[cf] erasing block " << block << "\n");
block->erase();
}
}
LLVM_DEBUG(
llvm::dbgs() << "[cf] after structurizing construct with header block "
<< headerBlock << ":\n"
<< *op << '\n');
return success();
}
LogicalResult Deserializer::wireUpBlockArgument() {
LLVM_DEBUG(llvm::dbgs() << "[phi] start wiring up block arguments\n");
OpBuilder::InsertionGuard guard(opBuilder);
for (const auto &info : blockPhiInfo) {
Block *block = info.first;
const BlockPhiInfo &phiInfo = info.second;
LLVM_DEBUG(llvm::dbgs() << "[phi] block " << block << "\n");
LLVM_DEBUG(llvm::dbgs() << "[phi] before creating block argument:\n");
LLVM_DEBUG(block->getParentOp()->print(llvm::dbgs()));
LLVM_DEBUG(llvm::dbgs() << '\n');
// Set insertion point to before this block's terminator early because we
// may materialize ops via getValue() call.
auto *op = block->getTerminator();
opBuilder.setInsertionPoint(op);
SmallVector<Value, 4> blockArgs;
blockArgs.reserve(phiInfo.size());
for (uint32_t valueId : phiInfo) {
if (Value value = getValue(valueId)) {
blockArgs.push_back(value);
LLVM_DEBUG(llvm::dbgs() << "[phi] block argument " << value
<< " id = " << valueId << '\n');
} else {
return emitError(unknownLoc, "OpPhi references undefined value!");
}
}
if (auto branchOp = dyn_cast<spirv::BranchOp>(op)) {
// Replace the previous branch op with a new one with block arguments.
opBuilder.create<spirv::BranchOp>(branchOp.getLoc(), branchOp.getTarget(),
blockArgs);
branchOp.erase();
} else {
return emitError(unknownLoc, "unimplemented terminator for Phi creation");
}
LLVM_DEBUG(llvm::dbgs() << "[phi] after creating block argument:\n");
LLVM_DEBUG(block->getParentOp()->print(llvm::dbgs()));
LLVM_DEBUG(llvm::dbgs() << '\n');
}
blockPhiInfo.clear();
LLVM_DEBUG(llvm::dbgs() << "[phi] completed wiring up block arguments\n");
return success();
}
LogicalResult Deserializer::structurizeControlFlow() {
LLVM_DEBUG(llvm::dbgs() << "[cf] start structurizing control flow\n");
while (!blockMergeInfo.empty()) {
Block *headerBlock = blockMergeInfo.begin()->first;
BlockMergeInfo mergeInfo = blockMergeInfo.begin()->second;
LLVM_DEBUG(llvm::dbgs() << "[cf] header block " << headerBlock << ":\n");
LLVM_DEBUG(headerBlock->print(llvm::dbgs()));
auto *mergeBlock = mergeInfo.mergeBlock;
assert(mergeBlock && "merge block cannot be nullptr");
if (!mergeBlock->args_empty())
return emitError(unknownLoc, "OpPhi in loop merge block unimplemented");
LLVM_DEBUG(llvm::dbgs() << "[cf] merge block " << mergeBlock << ":\n");
LLVM_DEBUG(mergeBlock->print(llvm::dbgs()));
auto *continueBlock = mergeInfo.continueBlock;
if (continueBlock) {
LLVM_DEBUG(llvm::dbgs()
<< "[cf] continue block " << continueBlock << ":\n");
LLVM_DEBUG(continueBlock->print(llvm::dbgs()));
}
// Erase this case before calling into structurizer, who will update
// blockMergeInfo.
blockMergeInfo.erase(blockMergeInfo.begin());
if (failed(ControlFlowStructurizer::structurize(unknownLoc, blockMergeInfo,
headerBlock, mergeBlock,
continueBlock)))
return failure();
}
LLVM_DEBUG(llvm::dbgs() << "[cf] completed structurizing control flow\n");
return success();
}
//===----------------------------------------------------------------------===//
// Instruction
//===----------------------------------------------------------------------===//
Value Deserializer::getValue(uint32_t id) {
if (auto constInfo = getConstant(id)) {
// Materialize a `spv.constant` op at every use site.
return opBuilder.create<spirv::ConstantOp>(unknownLoc, constInfo->second,
constInfo->first);
}
if (auto varOp = getGlobalVariable(id)) {
auto addressOfOp = opBuilder.create<spirv::AddressOfOp>(
unknownLoc, varOp.type(),
opBuilder.getSymbolRefAttr(varOp.getOperation()));
return addressOfOp.pointer();
}
if (auto constOp = getSpecConstant(id)) {
auto referenceOfOp = opBuilder.create<spirv::ReferenceOfOp>(
unknownLoc, constOp.default_value().getType(),
opBuilder.getSymbolRefAttr(constOp.getOperation()));
return referenceOfOp.reference();
}
if (auto undef = getUndefType(id)) {
return opBuilder.create<spirv::UndefOp>(unknownLoc, undef);
}
return valueMap.lookup(id);
}
LogicalResult
Deserializer::sliceInstruction(spirv::Opcode &opcode,
ArrayRef<uint32_t> &operands,
Optional<spirv::Opcode> expectedOpcode) {
auto binarySize = binary.size();
if (curOffset >= binarySize) {
return emitError(unknownLoc, "expected ")
<< (expectedOpcode ? spirv::stringifyOpcode(*expectedOpcode)
: "more")
<< " instruction";
}
// For each instruction, get its word count from the first word to slice it
// from the stream properly, and then dispatch to the instruction handler.
uint32_t wordCount = binary[curOffset] >> 16;
if (wordCount == 0)
return emitError(unknownLoc, "word count cannot be zero");
uint32_t nextOffset = curOffset + wordCount;
if (nextOffset > binarySize)
return emitError(unknownLoc, "insufficient words for the last instruction");
opcode = extractOpcode(binary[curOffset]);
operands = binary.slice(curOffset + 1, wordCount - 1);
curOffset = nextOffset;
return success();
}
LogicalResult Deserializer::processInstruction(spirv::Opcode opcode,
ArrayRef<uint32_t> operands,
bool deferInstructions) {
LLVM_DEBUG(llvm::dbgs() << "[inst] processing instruction "
<< spirv::stringifyOpcode(opcode) << "\n");
// First dispatch all the instructions whose opcode does not correspond to
// those that have a direct mirror in the SPIR-V dialect
switch (opcode) {
case spirv::Opcode::OpBitcast:
return processBitcast(operands);
case spirv::Opcode::OpCapability:
return processCapability(operands);
case spirv::Opcode::OpExtension:
return processExtension(operands);
case spirv::Opcode::OpExtInst:
return processExtInst(operands);
case spirv::Opcode::OpExtInstImport:
return processExtInstImport(operands);
case spirv::Opcode::OpMemberName:
return processMemberName(operands);
case spirv::Opcode::OpMemoryModel:
return processMemoryModel(operands);
case spirv::Opcode::OpEntryPoint:
case spirv::Opcode::OpExecutionMode:
if (deferInstructions) {
deferredInstructions.emplace_back(opcode, operands);
return success();
}
break;
case spirv::Opcode::OpVariable:
if (isa<spirv::ModuleOp>(opBuilder.getBlock()->getParentOp())) {
return processGlobalVariable(operands);
}
break;
case spirv::Opcode::OpName:
return processName(operands);
case spirv::Opcode::OpModuleProcessed:
case spirv::Opcode::OpString:
case spirv::Opcode::OpSource:
case spirv::Opcode::OpSourceContinued:
case spirv::Opcode::OpSourceExtension:
// TODO: This is debug information embedded in the binary which should be
// translated into the spv.module.
return success();
case spirv::Opcode::OpTypeVoid:
case spirv::Opcode::OpTypeBool:
case spirv::Opcode::OpTypeInt:
case spirv::Opcode::OpTypeFloat:
case spirv::Opcode::OpTypeVector:
case spirv::Opcode::OpTypeArray:
case spirv::Opcode::OpTypeFunction:
case spirv::Opcode::OpTypeRuntimeArray:
case spirv::Opcode::OpTypeStruct:
case spirv::Opcode::OpTypePointer:
return processType(opcode, operands);
case spirv::Opcode::OpConstant:
return processConstant(operands, /*isSpec=*/false);
case spirv::Opcode::OpSpecConstant:
return processConstant(operands, /*isSpec=*/true);
case spirv::Opcode::OpConstantComposite:
return processConstantComposite(operands);
case spirv::Opcode::OpConstantTrue:
return processConstantBool(/*isTrue=*/true, operands, /*isSpec=*/false);
case spirv::Opcode::OpSpecConstantTrue:
return processConstantBool(/*isTrue=*/true, operands, /*isSpec=*/true);
case spirv::Opcode::OpConstantFalse:
return processConstantBool(/*isTrue=*/false, operands, /*isSpec=*/false);
case spirv::Opcode::OpSpecConstantFalse:
return processConstantBool(/*isTrue=*/false, operands, /*isSpec=*/true);
case spirv::Opcode::OpConstantNull:
return processConstantNull(operands);
case spirv::Opcode::OpDecorate:
return processDecoration(operands);
case spirv::Opcode::OpMemberDecorate:
return processMemberDecoration(operands);
case spirv::Opcode::OpFunction:
return processFunction(operands);
case spirv::Opcode::OpLabel:
return processLabel(operands);
case spirv::Opcode::OpBranch:
return processBranch(operands);
case spirv::Opcode::OpBranchConditional:
return processBranchConditional(operands);
case spirv::Opcode::OpSelectionMerge:
return processSelectionMerge(operands);
case spirv::Opcode::OpLoopMerge:
return processLoopMerge(operands);
case spirv::Opcode::OpPhi:
return processPhi(operands);
case spirv::Opcode::OpUndef:
return processUndef(operands);
default:
break;
}
return dispatchToAutogenDeserialization(opcode, operands);
}
LogicalResult Deserializer::processUndef(ArrayRef<uint32_t> operands) {
if (operands.size() != 2) {
return emitError(unknownLoc, "OpUndef instruction must have two operands");
}
auto type = getType(operands[0]);
if (!type) {
return emitError(unknownLoc, "unknown type <id> with OpUndef instruction");
}
undefMap[operands[1]] = type;
return success();
}
// TODO(b/130356985): This method is copied from the auto-generated
// deserialization function for OpBitcast instruction. This is to avoid
// generating a Bitcast operations for cast from signed integer to unsigned
// integer and viceversa. MLIR doesn't have native support for this so they both
// end up mapping to the same type right now which is illegal according to
// OpBitcast semantics (and enforced by the SPIR-V dialect).
LogicalResult Deserializer::processBitcast(ArrayRef<uint32_t> words) {
SmallVector<Type, 1> resultTypes;
size_t wordIndex = 0;
(void)wordIndex;
uint32_t valueID = 0;
(void)valueID;
{
if (wordIndex >= words.size()) {
return emitError(
unknownLoc,
"expected result type <id> while deserializing spirv::BitcastOp");
}
auto ty = getType(words[wordIndex]);
if (!ty) {
return emitError(unknownLoc, "unknown type result <id> : ")
<< words[wordIndex];
}
resultTypes.push_back(ty);
wordIndex++;
if (wordIndex >= words.size()) {
return emitError(
unknownLoc,
"expected result <id> while deserializing spirv::BitcastOp");
}
}
valueID = words[wordIndex++];
SmallVector<Value, 4> operands;
SmallVector<NamedAttribute, 4> attributes;
if (wordIndex < words.size()) {
auto arg = getValue(words[wordIndex]);
if (!arg) {
return emitError(unknownLoc, "unknown result <id> : ")
<< words[wordIndex];
}
operands.push_back(arg);
wordIndex++;
}
if (wordIndex != words.size()) {
return emitError(unknownLoc,
"found more operands than expected when deserializing "
"spirv::BitcastOp, only ")
<< wordIndex << " of " << words.size() << " processed";
}
if (resultTypes[0] == operands[0].getType() &&
resultTypes[0].isa<IntegerType>()) {
// TODO(b/130356985): This check is added to ignore error in Op verification
// due to both signed and unsigned integers mapping to the same
// type. Without this check this method is same as what is auto-generated.
valueMap[valueID] = operands[0];
return success();
}
auto op = opBuilder.create<spirv::BitcastOp>(unknownLoc, resultTypes,
operands, attributes);
(void)op;
valueMap[valueID] = op.getResult();
if (decorations.count(valueID)) {
auto attrs = decorations[valueID].getAttrs();
attributes.append(attrs.begin(), attrs.end());
}
return success();
}
LogicalResult Deserializer::processExtInst(ArrayRef<uint32_t> operands) {
if (operands.size() < 4) {
return emitError(unknownLoc,
"OpExtInst must have at least 4 operands, result type "
"<id>, result <id>, set <id> and instruction opcode");
}
if (!extendedInstSets.count(operands[2])) {
return emitError(unknownLoc, "undefined set <id> in OpExtInst");
}
SmallVector<uint32_t, 4> slicedOperands;
slicedOperands.append(operands.begin(), std::next(operands.begin(), 2));
slicedOperands.append(std::next(operands.begin(), 4), operands.end());
return dispatchToExtensionSetAutogenDeserialization(
extendedInstSets[operands[2]], operands[3], slicedOperands);
}
namespace {
template <>
LogicalResult
Deserializer::processOp<spirv::EntryPointOp>(ArrayRef<uint32_t> words) {
unsigned wordIndex = 0;
if (wordIndex >= words.size()) {
return emitError(unknownLoc,
"missing Execution Model specification in OpEntryPoint");
}
auto exec_model = opBuilder.getI32IntegerAttr(words[wordIndex++]);
if (wordIndex >= words.size()) {
return emitError(unknownLoc, "missing <id> in OpEntryPoint");
}
// Get the function <id>
auto fnID = words[wordIndex++];
// Get the function name
auto fnName = decodeStringLiteral(words, wordIndex);
// Verify that the function <id> matches the fnName
auto parsedFunc = getFunction(fnID);
if (!parsedFunc) {
return emitError(unknownLoc, "no function matching <id> ") << fnID;
}
if (parsedFunc.getName() != fnName) {
return emitError(unknownLoc, "function name mismatch between OpEntryPoint "
"and OpFunction with <id> ")
<< fnID << ": " << fnName << " vs. " << parsedFunc.getName();
}
SmallVector<Attribute, 4> interface;
while (wordIndex < words.size()) {
auto arg = getGlobalVariable(words[wordIndex]);
if (!arg) {
return emitError(unknownLoc, "undefined result <id> ")
<< words[wordIndex] << " while decoding OpEntryPoint";
}
interface.push_back(opBuilder.getSymbolRefAttr(arg.getOperation()));
wordIndex++;
}
opBuilder.create<spirv::EntryPointOp>(unknownLoc, exec_model,
opBuilder.getSymbolRefAttr(fnName),
opBuilder.getArrayAttr(interface));
return success();
}
template <>
LogicalResult
Deserializer::processOp<spirv::ExecutionModeOp>(ArrayRef<uint32_t> words) {
unsigned wordIndex = 0;
if (wordIndex >= words.size()) {
return emitError(unknownLoc,
"missing function result <id> in OpExecutionMode");
}
// Get the function <id> to get the name of the function
auto fnID = words[wordIndex++];
auto fn = getFunction(fnID);
if (!fn) {
return emitError(unknownLoc, "no function matching <id> ") << fnID;
}
// Get the Execution mode
if (wordIndex >= words.size()) {
return emitError(unknownLoc, "missing Execution Mode in OpExecutionMode");
}
auto execMode = opBuilder.getI32IntegerAttr(words[wordIndex++]);
// Get the values
SmallVector<Attribute, 4> attrListElems;
while (wordIndex < words.size()) {
attrListElems.push_back(opBuilder.getI32IntegerAttr(words[wordIndex++]));
}
auto values = opBuilder.getArrayAttr(attrListElems);
opBuilder.create<spirv::ExecutionModeOp>(
unknownLoc, opBuilder.getSymbolRefAttr(fn.getName()), execMode, values);
return success();
}
template <>
LogicalResult
Deserializer::processOp<spirv::ControlBarrierOp>(ArrayRef<uint32_t> operands) {
if (operands.size() != 3) {
return emitError(
unknownLoc,
"OpControlBarrier must have execution scope <id>, memory scope <id> "
"and memory semantics <id>");
}
SmallVector<IntegerAttr, 3> argAttrs;
for (auto operand : operands) {
auto argAttr = getConstantInt(operand);
if (!argAttr) {
return emitError(unknownLoc,
"expected 32-bit integer constant from <id> ")
<< operand << " for OpControlBarrier";
}
argAttrs.push_back(argAttr);
}
opBuilder.create<spirv::ControlBarrierOp>(unknownLoc, argAttrs[0],
argAttrs[1], argAttrs[2]);
return success();
}
template <>
LogicalResult
Deserializer::processOp<spirv::FunctionCallOp>(ArrayRef<uint32_t> operands) {
if (operands.size() < 3) {
return emitError(unknownLoc,
"OpFunctionCall must have at least 3 operands");
}
Type resultType = getType(operands[0]);
if (!resultType) {
return emitError(unknownLoc, "undefined result type from <id> ")
<< operands[0];
}
auto resultID = operands[1];
auto functionID = operands[2];
auto functionName = getFunctionSymbol(functionID);
SmallVector<Value, 4> arguments;
for (auto operand : llvm::drop_begin(operands, 3)) {
auto value = getValue(operand);
if (!value) {
return emitError(unknownLoc, "unknown <id> ")
<< operand << " used by OpFunctionCall";
}
arguments.push_back(value);
}
SmallVector<Type, 1> resultTypes;
if (!isVoidType(resultType)) {
resultTypes.push_back(resultType);
}
auto opFunctionCall = opBuilder.create<spirv::FunctionCallOp>(
unknownLoc, resultTypes, opBuilder.getSymbolRefAttr(functionName),
arguments);
if (!resultTypes.empty()) {
valueMap[resultID] = opFunctionCall.getResult(0);
}
return success();
}
template <>
LogicalResult
Deserializer::processOp<spirv::MemoryBarrierOp>(ArrayRef<uint32_t> operands) {
if (operands.size() != 2) {
return emitError(unknownLoc, "OpMemoryBarrier must have memory scope <id> "
"and memory semantics <id>");
}
SmallVector<IntegerAttr, 2> argAttrs;
for (auto operand : operands) {
auto argAttr = getConstantInt(operand);
if (!argAttr) {
return emitError(unknownLoc,
"expected 32-bit integer constant from <id> ")
<< operand << " for OpMemoryBarrier";
}
argAttrs.push_back(argAttr);
}
opBuilder.create<spirv::MemoryBarrierOp>(unknownLoc, argAttrs[0],
argAttrs[1]);
return success();
}
// Pull in auto-generated Deserializer::dispatchToAutogenDeserialization() and
// various Deserializer::processOp<...>() specializations.
#define GET_DESERIALIZATION_FNS
#include "mlir/Dialect/SPIRV/SPIRVSerialization.inc"
} // namespace
Optional<spirv::ModuleOp> spirv::deserialize(ArrayRef<uint32_t> binary,
MLIRContext *context) {
Deserializer deserializer(binary, context);
if (failed(deserializer.deserialize()))
return llvm::None;
return deserializer.collect();
}