Builders.cpp 13.1 KB
//===- Builders.cpp - Helpers for constructing MLIR Classes ---------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/IR/Builders.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/Support/Functional.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;

Builder::Builder(ModuleOp module) : context(module.getContext()) {}

Identifier Builder::getIdentifier(StringRef str) {
  return Identifier::get(str, context);
}

//===----------------------------------------------------------------------===//
// Locations.
//===----------------------------------------------------------------------===//

Location Builder::getUnknownLoc() { return UnknownLoc::get(context); }

Location Builder::getFileLineColLoc(Identifier filename, unsigned line,
                                    unsigned column) {
  return FileLineColLoc::get(filename, line, column, context);
}

Location Builder::getFusedLoc(ArrayRef<Location> locs, Attribute metadata) {
  return FusedLoc::get(locs, metadata, context);
}

//===----------------------------------------------------------------------===//
// Types.
//===----------------------------------------------------------------------===//

FloatType Builder::getBF16Type() { return FloatType::getBF16(context); }

FloatType Builder::getF16Type() { return FloatType::getF16(context); }

FloatType Builder::getF32Type() { return FloatType::getF32(context); }

FloatType Builder::getF64Type() { return FloatType::getF64(context); }

IndexType Builder::getIndexType() { return IndexType::get(context); }

IntegerType Builder::getI1Type() { return IntegerType::get(1, context); }

IntegerType Builder::getIntegerType(unsigned width) {
  return IntegerType::get(width, context);
}

FunctionType Builder::getFunctionType(ArrayRef<Type> inputs,
                                      ArrayRef<Type> results) {
  return FunctionType::get(inputs, results, context);
}

TupleType Builder::getTupleType(ArrayRef<Type> elementTypes) {
  return TupleType::get(elementTypes, context);
}

NoneType Builder::getNoneType() { return NoneType::get(context); }

//===----------------------------------------------------------------------===//
// Attributes.
//===----------------------------------------------------------------------===//

NamedAttribute Builder::getNamedAttr(StringRef name, Attribute val) {
  return NamedAttribute(getIdentifier(name), val);
}

UnitAttr Builder::getUnitAttr() { return UnitAttr::get(context); }

BoolAttr Builder::getBoolAttr(bool value) {
  return BoolAttr::get(value, context);
}

DictionaryAttr Builder::getDictionaryAttr(ArrayRef<NamedAttribute> value) {
  return DictionaryAttr::get(value, context);
}

IntegerAttr Builder::getI64IntegerAttr(int64_t value) {
  return IntegerAttr::get(getIntegerType(64), APInt(64, value));
}

DenseIntElementsAttr Builder::getI32VectorAttr(ArrayRef<int32_t> values) {
  return DenseElementsAttr::get(
             VectorType::get(static_cast<int64_t>(values.size()),
                             getIntegerType(32)),
             values)
      .cast<DenseIntElementsAttr>();
}

IntegerAttr Builder::getI32IntegerAttr(int32_t value) {
  return IntegerAttr::get(getIntegerType(32), APInt(32, value));
}

IntegerAttr Builder::getI16IntegerAttr(int16_t value) {
  return IntegerAttr::get(getIntegerType(16), APInt(16, value));
}

IntegerAttr Builder::getI8IntegerAttr(int8_t value) {
  return IntegerAttr::get(getIntegerType(8), APInt(8, value));
}

IntegerAttr Builder::getIntegerAttr(Type type, int64_t value) {
  if (type.isIndex())
    return IntegerAttr::get(type, APInt(64, value));
  return IntegerAttr::get(type, APInt(type.getIntOrFloatBitWidth(), value));
}

IntegerAttr Builder::getIntegerAttr(Type type, const APInt &value) {
  return IntegerAttr::get(type, value);
}

FloatAttr Builder::getF64FloatAttr(double value) {
  return FloatAttr::get(getF64Type(), APFloat(value));
}

FloatAttr Builder::getF32FloatAttr(float value) {
  return FloatAttr::get(getF32Type(), APFloat(value));
}

FloatAttr Builder::getF16FloatAttr(float value) {
  return FloatAttr::get(getF16Type(), value);
}

FloatAttr Builder::getFloatAttr(Type type, double value) {
  return FloatAttr::get(type, value);
}

FloatAttr Builder::getFloatAttr(Type type, const APFloat &value) {
  return FloatAttr::get(type, value);
}

StringAttr Builder::getStringAttr(StringRef bytes) {
  return StringAttr::get(bytes, context);
}

ArrayAttr Builder::getArrayAttr(ArrayRef<Attribute> value) {
  return ArrayAttr::get(value, context);
}

FlatSymbolRefAttr Builder::getSymbolRefAttr(Operation *value) {
  auto symName =
      value->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName());
  assert(symName && "value does not have a valid symbol name");
  return getSymbolRefAttr(symName.getValue());
}
FlatSymbolRefAttr Builder::getSymbolRefAttr(StringRef value) {
  return SymbolRefAttr::get(value, getContext());
}
SymbolRefAttr
Builder::getSymbolRefAttr(StringRef value,
                          ArrayRef<FlatSymbolRefAttr> nestedReferences) {
  return SymbolRefAttr::get(value, nestedReferences, getContext());
}

ArrayAttr Builder::getI32ArrayAttr(ArrayRef<int32_t> values) {
  auto attrs = functional::map(
      [this](int32_t v) -> Attribute { return getI32IntegerAttr(v); }, values);
  return getArrayAttr(attrs);
}

ArrayAttr Builder::getI64ArrayAttr(ArrayRef<int64_t> values) {
  auto attrs = functional::map(
      [this](int64_t v) -> Attribute { return getI64IntegerAttr(v); }, values);
  return getArrayAttr(attrs);
}

ArrayAttr Builder::getIndexArrayAttr(ArrayRef<int64_t> values) {
  auto attrs = functional::map(
      [this](int64_t v) -> Attribute {
        return getIntegerAttr(IndexType::get(getContext()), v);
      },
      values);
  return getArrayAttr(attrs);
}

ArrayAttr Builder::getF32ArrayAttr(ArrayRef<float> values) {
  auto attrs = functional::map(
      [this](float v) -> Attribute { return getF32FloatAttr(v); }, values);
  return getArrayAttr(attrs);
}

ArrayAttr Builder::getF64ArrayAttr(ArrayRef<double> values) {
  auto attrs = functional::map(
      [this](double v) -> Attribute { return getF64FloatAttr(v); }, values);
  return getArrayAttr(attrs);
}

ArrayAttr Builder::getStrArrayAttr(ArrayRef<StringRef> values) {
  auto attrs = functional::map(
      [this](StringRef v) -> Attribute { return getStringAttr(v); }, values);
  return getArrayAttr(attrs);
}

ArrayAttr Builder::getAffineMapArrayAttr(ArrayRef<AffineMap> values) {
  auto attrs = functional::map(
      [](AffineMap v) -> Attribute { return AffineMapAttr::get(v); }, values);
  return getArrayAttr(attrs);
}

Attribute Builder::getZeroAttr(Type type) {
  switch (type.getKind()) {
  case StandardTypes::BF16:
  case StandardTypes::F16:
  case StandardTypes::F32:
  case StandardTypes::F64:
    return getFloatAttr(type, 0.0);
  case StandardTypes::Integer: {
    auto width = type.cast<IntegerType>().getWidth();
    if (width == 1)
      return getBoolAttr(false);
    return getIntegerAttr(type, APInt(width, 0));
  }
  case StandardTypes::Vector:
  case StandardTypes::RankedTensor: {
    auto vtType = type.cast<ShapedType>();
    auto element = getZeroAttr(vtType.getElementType());
    if (!element)
      return {};
    return DenseElementsAttr::get(vtType, element);
  }
  default:
    break;
  }
  return {};
}

//===----------------------------------------------------------------------===//
// Affine Expressions, Affine Maps, and Integer Sets.
//===----------------------------------------------------------------------===//

AffineExpr Builder::getAffineDimExpr(unsigned position) {
  return mlir::getAffineDimExpr(position, context);
}

AffineExpr Builder::getAffineSymbolExpr(unsigned position) {
  return mlir::getAffineSymbolExpr(position, context);
}

AffineExpr Builder::getAffineConstantExpr(int64_t constant) {
  return mlir::getAffineConstantExpr(constant, context);
}

AffineMap Builder::getEmptyAffineMap() { return AffineMap::get(context); }

AffineMap Builder::getConstantAffineMap(int64_t val) {
  return AffineMap::get(/*dimCount=*/0, /*symbolCount=*/0,
                        {getAffineConstantExpr(val)});
}

AffineMap Builder::getDimIdentityMap() {
  return AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0,
                        {getAffineDimExpr(0)});
}

AffineMap Builder::getMultiDimIdentityMap(unsigned rank) {
  SmallVector<AffineExpr, 4> dimExprs;
  dimExprs.reserve(rank);
  for (unsigned i = 0; i < rank; ++i)
    dimExprs.push_back(getAffineDimExpr(i));
  return AffineMap::get(/*dimCount=*/rank, /*symbolCount=*/0, dimExprs);
}

AffineMap Builder::getSymbolIdentityMap() {
  return AffineMap::get(/*dimCount=*/0, /*symbolCount=*/1,
                        {getAffineSymbolExpr(0)});
}

AffineMap Builder::getSingleDimShiftAffineMap(int64_t shift) {
  // expr = d0 + shift.
  auto expr = getAffineDimExpr(0) + shift;
  return AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0, {expr});
}

AffineMap Builder::getShiftedAffineMap(AffineMap map, int64_t shift) {
  SmallVector<AffineExpr, 4> shiftedResults;
  shiftedResults.reserve(map.getNumResults());
  for (auto resultExpr : map.getResults())
    shiftedResults.push_back(resultExpr + shift);
  return AffineMap::get(map.getNumDims(), map.getNumSymbols(), shiftedResults);
}

//===----------------------------------------------------------------------===//
// OpBuilder.
//===----------------------------------------------------------------------===//

OpBuilder::~OpBuilder() {}

/// Insert the given operation at the current insertion point and return it.
Operation *OpBuilder::insert(Operation *op) {
  if (block)
    block->getOperations().insert(insertPoint, op);
  return op;
}

/// Add new block and set the insertion point to the end of it. The block is
/// inserted at the provided insertion point of 'parent'.
Block *OpBuilder::createBlock(Region *parent, Region::iterator insertPt) {
  assert(parent && "expected valid parent region");
  if (insertPt == Region::iterator())
    insertPt = parent->end();

  Block *b = new Block();
  parent->getBlocks().insert(insertPt, b);
  setInsertionPointToEnd(b);
  return b;
}

/// Add new block and set the insertion point to the end of it.  The block is
/// placed before 'insertBefore'.
Block *OpBuilder::createBlock(Block *insertBefore) {
  assert(insertBefore && "expected valid insertion block");
  return createBlock(insertBefore->getParent(), Region::iterator(insertBefore));
}

/// Create an operation given the fields represented as an OperationState.
Operation *OpBuilder::createOperation(const OperationState &state) {
  return insert(Operation::create(state));
}

/// Attempts to fold the given operation and places new results within
/// 'results'. Returns success if the operation was folded, failure otherwise.
/// Note: This function does not erase the operation on a successful fold.
LogicalResult OpBuilder::tryFold(Operation *op,
                                 SmallVectorImpl<Value> &results) {
  results.reserve(op->getNumResults());
  auto cleanupFailure = [&] {
    results.assign(op->result_begin(), op->result_end());
    return failure();
  };

  // If this operation is already a constant, there is nothing to do.
  if (matchPattern(op, m_Constant()))
    return cleanupFailure();

  // Check to see if any operands to the operation is constant and whether
  // the operation knows how to constant fold itself.
  SmallVector<Attribute, 4> constOperands(op->getNumOperands());
  for (unsigned i = 0, e = op->getNumOperands(); i != e; ++i)
    matchPattern(op->getOperand(i), m_Constant(&constOperands[i]));

  // Try to fold the operation.
  SmallVector<OpFoldResult, 4> foldResults;
  if (failed(op->fold(constOperands, foldResults)) || foldResults.empty())
    return cleanupFailure();

  // A temporary builder used for creating constants during folding.
  OpBuilder cstBuilder(context);
  SmallVector<Operation *, 1> generatedConstants;

  // Populate the results with the folded results.
  Dialect *dialect = op->getDialect();
  for (auto &it : llvm::enumerate(foldResults)) {
    // Normal values get pushed back directly.
    if (auto value = it.value().dyn_cast<Value>()) {
      results.push_back(value);
      continue;
    }

    // Otherwise, try to materialize a constant operation.
    if (!dialect)
      return cleanupFailure();

    // Ask the dialect to materialize a constant operation for this value.
    Attribute attr = it.value().get<Attribute>();
    auto *constOp = dialect->materializeConstant(
        cstBuilder, attr, op->getResult(it.index()).getType(), op->getLoc());
    if (!constOp) {
      // Erase any generated constants.
      for (Operation *cst : generatedConstants)
        cst->erase();
      return cleanupFailure();
    }
    assert(matchPattern(constOp, m_Constant(&attr)));

    generatedConstants.push_back(constOp);
    results.push_back(constOp->getResult(0));
  }

  // If we were successful, insert any generated constants.
  for (Operation *cst : generatedConstants)
    insert(cst);

  return success();
}