ModuleTranslation.cpp
20.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
//===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the translation between an MLIR LLVM dialect module and
// the corresponding LLVMIR module. It only handles core LLVM IR operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Target/LLVMIR/ModuleTranslation.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Module.h"
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Transforms/Utils/Cloning.h"
using namespace mlir;
using namespace mlir::LLVM;
/// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
/// This currently supports integer, floating point, splat and dense element
/// attributes and combinations thereof. In case of error, report it to `loc`
/// and return nullptr.
llvm::Constant *ModuleTranslation::getLLVMConstant(llvm::Type *llvmType,
Attribute attr,
Location loc) {
if (!attr)
return llvm::UndefValue::get(llvmType);
if (auto intAttr = attr.dyn_cast<IntegerAttr>())
return llvm::ConstantInt::get(llvmType, intAttr.getValue());
if (auto floatAttr = attr.dyn_cast<FloatAttr>())
return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>())
return functionMapping.lookup(funcAttr.getValue());
if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) {
auto *sequentialType = cast<llvm::SequentialType>(llvmType);
auto elementType = sequentialType->getElementType();
uint64_t numElements = sequentialType->getNumElements();
// Splat value is a scalar. Extract it only if the element type is not
// another sequence type. The recursion terminates because each step removes
// one outer sequential type.
llvm::Constant *child = getLLVMConstant(
elementType,
isa<llvm::SequentialType>(elementType) ? splatAttr
: splatAttr.getSplatValue(),
loc);
if (llvmType->isVectorTy())
return llvm::ConstantVector::getSplat(numElements, child);
if (llvmType->isArrayTy()) {
auto arrayType = llvm::ArrayType::get(elementType, numElements);
SmallVector<llvm::Constant *, 8> constants(numElements, child);
return llvm::ConstantArray::get(arrayType, constants);
}
}
if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) {
auto *sequentialType = cast<llvm::SequentialType>(llvmType);
auto elementType = sequentialType->getElementType();
uint64_t numElements = sequentialType->getNumElements();
SmallVector<llvm::Constant *, 8> constants;
constants.reserve(numElements);
for (auto n : elementsAttr.getValues<Attribute>()) {
constants.push_back(getLLVMConstant(elementType, n, loc));
if (!constants.back())
return nullptr;
}
if (llvmType->isVectorTy())
return llvm::ConstantVector::get(constants);
if (llvmType->isArrayTy()) {
auto arrayType = llvm::ArrayType::get(elementType, numElements);
return llvm::ConstantArray::get(arrayType, constants);
}
}
if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
return llvm::ConstantDataArray::get(
llvmModule->getContext(), ArrayRef<char>{stringAttr.getValue().data(),
stringAttr.getValue().size()});
}
emitError(loc, "unsupported constant value");
return nullptr;
}
/// Convert MLIR integer comparison predicate to LLVM IR comparison predicate.
static llvm::CmpInst::Predicate getLLVMCmpPredicate(ICmpPredicate p) {
switch (p) {
case LLVM::ICmpPredicate::eq:
return llvm::CmpInst::Predicate::ICMP_EQ;
case LLVM::ICmpPredicate::ne:
return llvm::CmpInst::Predicate::ICMP_NE;
case LLVM::ICmpPredicate::slt:
return llvm::CmpInst::Predicate::ICMP_SLT;
case LLVM::ICmpPredicate::sle:
return llvm::CmpInst::Predicate::ICMP_SLE;
case LLVM::ICmpPredicate::sgt:
return llvm::CmpInst::Predicate::ICMP_SGT;
case LLVM::ICmpPredicate::sge:
return llvm::CmpInst::Predicate::ICMP_SGE;
case LLVM::ICmpPredicate::ult:
return llvm::CmpInst::Predicate::ICMP_ULT;
case LLVM::ICmpPredicate::ule:
return llvm::CmpInst::Predicate::ICMP_ULE;
case LLVM::ICmpPredicate::ugt:
return llvm::CmpInst::Predicate::ICMP_UGT;
case LLVM::ICmpPredicate::uge:
return llvm::CmpInst::Predicate::ICMP_UGE;
}
llvm_unreachable("incorrect comparison predicate");
}
static llvm::CmpInst::Predicate getLLVMCmpPredicate(FCmpPredicate p) {
switch (p) {
case LLVM::FCmpPredicate::_false:
return llvm::CmpInst::Predicate::FCMP_FALSE;
case LLVM::FCmpPredicate::oeq:
return llvm::CmpInst::Predicate::FCMP_OEQ;
case LLVM::FCmpPredicate::ogt:
return llvm::CmpInst::Predicate::FCMP_OGT;
case LLVM::FCmpPredicate::oge:
return llvm::CmpInst::Predicate::FCMP_OGE;
case LLVM::FCmpPredicate::olt:
return llvm::CmpInst::Predicate::FCMP_OLT;
case LLVM::FCmpPredicate::ole:
return llvm::CmpInst::Predicate::FCMP_OLE;
case LLVM::FCmpPredicate::one:
return llvm::CmpInst::Predicate::FCMP_ONE;
case LLVM::FCmpPredicate::ord:
return llvm::CmpInst::Predicate::FCMP_ORD;
case LLVM::FCmpPredicate::ueq:
return llvm::CmpInst::Predicate::FCMP_UEQ;
case LLVM::FCmpPredicate::ugt:
return llvm::CmpInst::Predicate::FCMP_UGT;
case LLVM::FCmpPredicate::uge:
return llvm::CmpInst::Predicate::FCMP_UGE;
case LLVM::FCmpPredicate::ult:
return llvm::CmpInst::Predicate::FCMP_ULT;
case LLVM::FCmpPredicate::ule:
return llvm::CmpInst::Predicate::FCMP_ULE;
case LLVM::FCmpPredicate::une:
return llvm::CmpInst::Predicate::FCMP_UNE;
case LLVM::FCmpPredicate::uno:
return llvm::CmpInst::Predicate::FCMP_UNO;
case LLVM::FCmpPredicate::_true:
return llvm::CmpInst::Predicate::FCMP_TRUE;
}
llvm_unreachable("incorrect comparison predicate");
}
/// Given a single MLIR operation, create the corresponding LLVM IR operation
/// using the `builder`. LLVM IR Builder does not have a generic interface so
/// this has to be a long chain of `if`s calling different functions with a
/// different number of arguments.
LogicalResult ModuleTranslation::convertOperation(Operation &opInst,
llvm::IRBuilder<> &builder) {
auto extractPosition = [](ArrayAttr attr) {
SmallVector<unsigned, 4> position;
position.reserve(attr.size());
for (Attribute v : attr)
position.push_back(v.cast<IntegerAttr>().getValue().getZExtValue());
return position;
};
#include "mlir/Dialect/LLVMIR/LLVMConversions.inc"
// Emit function calls. If the "callee" attribute is present, this is a
// direct function call and we also need to look up the remapped function
// itself. Otherwise, this is an indirect call and the callee is the first
// operand, look it up as a normal value. Return the llvm::Value representing
// the function result, which may be of llvm::VoidTy type.
auto convertCall = [this, &builder](Operation &op) -> llvm::Value * {
auto operands = lookupValues(op.getOperands());
ArrayRef<llvm::Value *> operandsRef(operands);
if (auto attr = op.getAttrOfType<FlatSymbolRefAttr>("callee")) {
return builder.CreateCall(functionMapping.lookup(attr.getValue()),
operandsRef);
} else {
return builder.CreateCall(operandsRef.front(), operandsRef.drop_front());
}
};
// Emit calls. If the called function has a result, remap the corresponding
// value. Note that LLVM IR dialect CallOp has either 0 or 1 result.
if (isa<LLVM::CallOp>(opInst)) {
llvm::Value *result = convertCall(opInst);
if (opInst.getNumResults() != 0) {
valueMapping[opInst.getResult(0)] = result;
return success();
}
// Check that LLVM call returns void for 0-result functions.
return success(result->getType()->isVoidTy());
}
// Emit branches. We need to look up the remapped blocks and ignore the block
// arguments that were transformed into PHI nodes.
if (auto brOp = dyn_cast<LLVM::BrOp>(opInst)) {
builder.CreateBr(blockMapping[brOp.getSuccessor(0)]);
return success();
}
if (auto condbrOp = dyn_cast<LLVM::CondBrOp>(opInst)) {
builder.CreateCondBr(valueMapping.lookup(condbrOp.getOperand(0)),
blockMapping[condbrOp.getSuccessor(0)],
blockMapping[condbrOp.getSuccessor(1)]);
return success();
}
// Emit addressof. We need to look up the global value referenced by the
// operation and store it in the MLIR-to-LLVM value mapping. This does not
// emit any LLVM instruction.
if (auto addressOfOp = dyn_cast<LLVM::AddressOfOp>(opInst)) {
LLVM::GlobalOp global = addressOfOp.getGlobal();
// The verifier should not have allowed this.
assert(global && "referencing an undefined global");
valueMapping[addressOfOp.getResult()] = globalsMapping.lookup(global);
return success();
}
return opInst.emitError("unsupported or non-LLVM operation: ")
<< opInst.getName();
}
/// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes
/// to define values corresponding to the MLIR block arguments. These nodes
/// are not connected to the source basic blocks, which may not exist yet.
LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments) {
llvm::IRBuilder<> builder(blockMapping[&bb]);
// Before traversing operations, make block arguments available through
// value remapping and PHI nodes, but do not add incoming edges for the PHI
// nodes just yet: those values may be defined by this or following blocks.
// This step is omitted if "ignoreArguments" is set. The arguments of the
// first block have been already made available through the remapping of
// LLVM function arguments.
if (!ignoreArguments) {
auto predecessors = bb.getPredecessors();
unsigned numPredecessors =
std::distance(predecessors.begin(), predecessors.end());
for (auto arg : bb.getArguments()) {
auto wrappedType = arg.getType().dyn_cast<LLVM::LLVMType>();
if (!wrappedType)
return emitError(bb.front().getLoc(),
"block argument does not have an LLVM type");
llvm::Type *type = wrappedType.getUnderlyingType();
llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
valueMapping[arg] = phi;
}
}
// Traverse operations.
for (auto &op : bb) {
if (failed(convertOperation(op, builder)))
return failure();
}
return success();
}
/// Convert the LLVM dialect linkage type to LLVM IR linkage type.
llvm::GlobalVariable::LinkageTypes convertLinkageType(LLVM::Linkage linkage) {
switch (linkage) {
case LLVM::Linkage::Private:
return llvm::GlobalValue::PrivateLinkage;
case LLVM::Linkage::Internal:
return llvm::GlobalValue::InternalLinkage;
case LLVM::Linkage::AvailableExternally:
return llvm::GlobalValue::AvailableExternallyLinkage;
case LLVM::Linkage::Linkonce:
return llvm::GlobalValue::LinkOnceAnyLinkage;
case LLVM::Linkage::Weak:
return llvm::GlobalValue::WeakAnyLinkage;
case LLVM::Linkage::Common:
return llvm::GlobalValue::CommonLinkage;
case LLVM::Linkage::Appending:
return llvm::GlobalValue::AppendingLinkage;
case LLVM::Linkage::ExternWeak:
return llvm::GlobalValue::ExternalWeakLinkage;
case LLVM::Linkage::LinkonceODR:
return llvm::GlobalValue::LinkOnceODRLinkage;
case LLVM::Linkage::WeakODR:
return llvm::GlobalValue::WeakODRLinkage;
case LLVM::Linkage::External:
return llvm::GlobalValue::ExternalLinkage;
}
llvm_unreachable("unknown linkage type");
}
/// Create named global variables that correspond to llvm.mlir.global
/// definitions.
void ModuleTranslation::convertGlobals() {
for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
llvm::Type *type = op.getType().getUnderlyingType();
llvm::Constant *cst = llvm::UndefValue::get(type);
if (op.getValueOrNull()) {
// String attributes are treated separately because they cannot appear as
// in-function constants and are thus not supported by getLLVMConstant.
if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) {
cst = llvm::ConstantDataArray::getString(
llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
type = cst->getType();
} else {
cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc());
}
} else if (Block *initializer = op.getInitializerBlock()) {
llvm::IRBuilder<> builder(llvmModule->getContext());
for (auto &op : initializer->without_terminator()) {
if (failed(convertOperation(op, builder)) ||
!isa<llvm::Constant>(valueMapping.lookup(op.getResult(0)))) {
emitError(op.getLoc(), "unemittable constant value");
return;
}
}
ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
cst = cast<llvm::Constant>(valueMapping.lookup(ret.getOperand(0)));
}
auto linkage = convertLinkageType(op.linkage());
bool anyExternalLinkage =
(linkage == llvm::GlobalVariable::ExternalLinkage ||
linkage == llvm::GlobalVariable::ExternalWeakLinkage);
auto addrSpace = op.addr_space().getLimitedValue();
auto *var = new llvm::GlobalVariable(
*llvmModule, type, op.constant(), linkage,
anyExternalLinkage ? nullptr : cst, op.sym_name(),
/*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace);
globalsMapping.try_emplace(op, var);
}
}
/// Get the SSA value passed to the current block from the terminator operation
/// of its predecessor.
static Value getPHISourceValue(Block *current, Block *pred,
unsigned numArguments, unsigned index) {
auto &terminator = *pred->getTerminator();
if (isa<LLVM::BrOp>(terminator)) {
return terminator.getOperand(index);
}
// For conditional branches, we need to check if the current block is reached
// through the "true" or the "false" branch and take the relevant operands.
auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator);
assert(condBranchOp &&
"only branch operations can be terminators of a block that "
"has successors");
assert((condBranchOp.getSuccessor(0) != condBranchOp.getSuccessor(1)) &&
"successors with arguments in LLVM conditional branches must be "
"different blocks");
return condBranchOp.getSuccessor(0) == current
? terminator.getSuccessorOperand(0, index)
: terminator.getSuccessorOperand(1, index);
}
void ModuleTranslation::connectPHINodes(LLVMFuncOp func) {
// Skip the first block, it cannot be branched to and its arguments correspond
// to the arguments of the LLVM function.
for (auto it = std::next(func.begin()), eit = func.end(); it != eit; ++it) {
Block *bb = &*it;
llvm::BasicBlock *llvmBB = blockMapping.lookup(bb);
auto phis = llvmBB->phis();
auto numArguments = bb->getNumArguments();
assert(numArguments == std::distance(phis.begin(), phis.end()));
for (auto &numberedPhiNode : llvm::enumerate(phis)) {
auto &phiNode = numberedPhiNode.value();
unsigned index = numberedPhiNode.index();
for (auto *pred : bb->getPredecessors()) {
phiNode.addIncoming(valueMapping.lookup(getPHISourceValue(
bb, pred, numArguments, index)),
blockMapping.lookup(pred));
}
}
}
}
// TODO(mlir-team): implement an iterative version
static void topologicalSortImpl(llvm::SetVector<Block *> &blocks, Block *b) {
blocks.insert(b);
for (Block *bb : b->getSuccessors()) {
if (blocks.count(bb) == 0)
topologicalSortImpl(blocks, bb);
}
}
/// Sort function blocks topologically.
static llvm::SetVector<Block *> topologicalSort(LLVMFuncOp f) {
// For each blocks that has not been visited yet (i.e. that has no
// predecessors), add it to the list and traverse its successors in DFS
// preorder.
llvm::SetVector<Block *> blocks;
for (Block &b : f.getBlocks()) {
if (blocks.count(&b) == 0)
topologicalSortImpl(blocks, &b);
}
assert(blocks.size() == f.getBlocks().size() && "some blocks are not sorted");
return blocks;
}
LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
// Clear the block and value mappings, they are only relevant within one
// function.
blockMapping.clear();
valueMapping.clear();
llvm::Function *llvmFunc = functionMapping.lookup(func.getName());
// Add function arguments to the value remapping table.
// If there was noalias info then we decorate each argument accordingly.
unsigned int argIdx = 0;
for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) {
llvm::Argument &llvmArg = std::get<1>(kvp);
BlockArgument mlirArg = std::get<0>(kvp);
if (auto attr = func.getArgAttrOfType<BoolAttr>(argIdx, "llvm.noalias")) {
// NB: Attribute already verified to be boolean, so check if we can indeed
// attach the attribute to this argument, based on its type.
auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>();
if (!argTy.getUnderlyingType()->isPointerTy())
return func.emitError(
"llvm.noalias attribute attached to LLVM non-pointer argument");
if (attr.getValue())
llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias);
}
valueMapping[mlirArg] = &llvmArg;
argIdx++;
}
// First, create all blocks so we can jump to them.
llvm::LLVMContext &llvmContext = llvmFunc->getContext();
for (auto &bb : func) {
auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
llvmBB->insertInto(llvmFunc);
blockMapping[&bb] = llvmBB;
}
// Then, convert blocks one by one in topological order to ensure defs are
// converted before uses.
auto blocks = topologicalSort(func);
for (auto indexedBB : llvm::enumerate(blocks)) {
auto *bb = indexedBB.value();
if (failed(convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0)))
return failure();
}
// Finally, after all blocks have been traversed and values mapped, connect
// the PHI nodes to the results of preceding blocks.
connectPHINodes(func);
return success();
}
LogicalResult ModuleTranslation::checkSupportedModuleOps(Operation *m) {
for (Operation &o : getModuleBody(m).getOperations())
if (!isa<LLVM::LLVMFuncOp>(&o) && !isa<LLVM::GlobalOp>(&o) &&
!o.isKnownTerminator())
return o.emitOpError("unsupported module-level operation");
return success();
}
LogicalResult ModuleTranslation::convertFunctions() {
// Declare all functions first because there may be function calls that form a
// call graph with cycles.
for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
function.getName(),
cast<llvm::FunctionType>(function.getType().getUnderlyingType()));
assert(isa<llvm::Function>(llvmFuncCst.getCallee()));
functionMapping[function.getName()] =
cast<llvm::Function>(llvmFuncCst.getCallee());
}
// Convert functions.
for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
// Ignore external functions.
if (function.isExternal())
continue;
if (failed(convertOneFunction(function)))
return failure();
}
return success();
}
/// A helper to look up remapped operands in the value remapping table.`
SmallVector<llvm::Value *, 8>
ModuleTranslation::lookupValues(ValueRange values) {
SmallVector<llvm::Value *, 8> remapped;
remapped.reserve(values.size());
for (Value v : values)
remapped.push_back(valueMapping.lookup(v));
return remapped;
}
std::unique_ptr<llvm::Module>
ModuleTranslation::prepareLLVMModule(Operation *m) {
auto *dialect = m->getContext()->getRegisteredDialect<LLVM::LLVMDialect>();
assert(dialect && "LLVM dialect must be registered");
auto llvmModule = llvm::CloneModule(dialect->getLLVMModule());
if (!llvmModule)
return nullptr;
llvm::LLVMContext &llvmContext = llvmModule->getContext();
llvm::IRBuilder<> builder(llvmContext);
// Inject declarations for `malloc` and `free` functions that can be used in
// memref allocation/deallocation coming from standard ops lowering.
llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(),
builder.getInt64Ty());
llvmModule->getOrInsertFunction("free", builder.getVoidTy(),
builder.getInt8PtrTy());
return llvmModule;
}