ModuleTranslation.cpp 20.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
//===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the translation between an MLIR LLVM dialect module and
// the corresponding LLVMIR module. It only handles core LLVM IR operations.
//
//===----------------------------------------------------------------------===//

#include "mlir/Target/LLVMIR/ModuleTranslation.h"

#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Module.h"
#include "mlir/Support/LLVM.h"

#include "llvm/ADT/SetVector.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Transforms/Utils/Cloning.h"

using namespace mlir;
using namespace mlir::LLVM;

/// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
/// This currently supports integer, floating point, splat and dense element
/// attributes and combinations thereof.  In case of error, report it to `loc`
/// and return nullptr.
llvm::Constant *ModuleTranslation::getLLVMConstant(llvm::Type *llvmType,
                                                   Attribute attr,
                                                   Location loc) {
  if (!attr)
    return llvm::UndefValue::get(llvmType);
  if (auto intAttr = attr.dyn_cast<IntegerAttr>())
    return llvm::ConstantInt::get(llvmType, intAttr.getValue());
  if (auto floatAttr = attr.dyn_cast<FloatAttr>())
    return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
  if (auto funcAttr = attr.dyn_cast<FlatSymbolRefAttr>())
    return functionMapping.lookup(funcAttr.getValue());
  if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) {
    auto *sequentialType = cast<llvm::SequentialType>(llvmType);
    auto elementType = sequentialType->getElementType();
    uint64_t numElements = sequentialType->getNumElements();
    // Splat value is a scalar. Extract it only if the element type is not
    // another sequence type. The recursion terminates because each step removes
    // one outer sequential type.
    llvm::Constant *child = getLLVMConstant(
        elementType,
        isa<llvm::SequentialType>(elementType) ? splatAttr
                                               : splatAttr.getSplatValue(),
        loc);
    if (llvmType->isVectorTy())
      return llvm::ConstantVector::getSplat(numElements, child);
    if (llvmType->isArrayTy()) {
      auto arrayType = llvm::ArrayType::get(elementType, numElements);
      SmallVector<llvm::Constant *, 8> constants(numElements, child);
      return llvm::ConstantArray::get(arrayType, constants);
    }
  }
  if (auto elementsAttr = attr.dyn_cast<ElementsAttr>()) {
    auto *sequentialType = cast<llvm::SequentialType>(llvmType);
    auto elementType = sequentialType->getElementType();
    uint64_t numElements = sequentialType->getNumElements();
    SmallVector<llvm::Constant *, 8> constants;
    constants.reserve(numElements);
    for (auto n : elementsAttr.getValues<Attribute>()) {
      constants.push_back(getLLVMConstant(elementType, n, loc));
      if (!constants.back())
        return nullptr;
    }
    if (llvmType->isVectorTy())
      return llvm::ConstantVector::get(constants);
    if (llvmType->isArrayTy()) {
      auto arrayType = llvm::ArrayType::get(elementType, numElements);
      return llvm::ConstantArray::get(arrayType, constants);
    }
  }
  if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
    return llvm::ConstantDataArray::get(
        llvmModule->getContext(), ArrayRef<char>{stringAttr.getValue().data(),
                                                 stringAttr.getValue().size()});
  }
  emitError(loc, "unsupported constant value");
  return nullptr;
}

/// Convert MLIR integer comparison predicate to LLVM IR comparison predicate.
static llvm::CmpInst::Predicate getLLVMCmpPredicate(ICmpPredicate p) {
  switch (p) {
  case LLVM::ICmpPredicate::eq:
    return llvm::CmpInst::Predicate::ICMP_EQ;
  case LLVM::ICmpPredicate::ne:
    return llvm::CmpInst::Predicate::ICMP_NE;
  case LLVM::ICmpPredicate::slt:
    return llvm::CmpInst::Predicate::ICMP_SLT;
  case LLVM::ICmpPredicate::sle:
    return llvm::CmpInst::Predicate::ICMP_SLE;
  case LLVM::ICmpPredicate::sgt:
    return llvm::CmpInst::Predicate::ICMP_SGT;
  case LLVM::ICmpPredicate::sge:
    return llvm::CmpInst::Predicate::ICMP_SGE;
  case LLVM::ICmpPredicate::ult:
    return llvm::CmpInst::Predicate::ICMP_ULT;
  case LLVM::ICmpPredicate::ule:
    return llvm::CmpInst::Predicate::ICMP_ULE;
  case LLVM::ICmpPredicate::ugt:
    return llvm::CmpInst::Predicate::ICMP_UGT;
  case LLVM::ICmpPredicate::uge:
    return llvm::CmpInst::Predicate::ICMP_UGE;
  }
  llvm_unreachable("incorrect comparison predicate");
}

static llvm::CmpInst::Predicate getLLVMCmpPredicate(FCmpPredicate p) {
  switch (p) {
  case LLVM::FCmpPredicate::_false:
    return llvm::CmpInst::Predicate::FCMP_FALSE;
  case LLVM::FCmpPredicate::oeq:
    return llvm::CmpInst::Predicate::FCMP_OEQ;
  case LLVM::FCmpPredicate::ogt:
    return llvm::CmpInst::Predicate::FCMP_OGT;
  case LLVM::FCmpPredicate::oge:
    return llvm::CmpInst::Predicate::FCMP_OGE;
  case LLVM::FCmpPredicate::olt:
    return llvm::CmpInst::Predicate::FCMP_OLT;
  case LLVM::FCmpPredicate::ole:
    return llvm::CmpInst::Predicate::FCMP_OLE;
  case LLVM::FCmpPredicate::one:
    return llvm::CmpInst::Predicate::FCMP_ONE;
  case LLVM::FCmpPredicate::ord:
    return llvm::CmpInst::Predicate::FCMP_ORD;
  case LLVM::FCmpPredicate::ueq:
    return llvm::CmpInst::Predicate::FCMP_UEQ;
  case LLVM::FCmpPredicate::ugt:
    return llvm::CmpInst::Predicate::FCMP_UGT;
  case LLVM::FCmpPredicate::uge:
    return llvm::CmpInst::Predicate::FCMP_UGE;
  case LLVM::FCmpPredicate::ult:
    return llvm::CmpInst::Predicate::FCMP_ULT;
  case LLVM::FCmpPredicate::ule:
    return llvm::CmpInst::Predicate::FCMP_ULE;
  case LLVM::FCmpPredicate::une:
    return llvm::CmpInst::Predicate::FCMP_UNE;
  case LLVM::FCmpPredicate::uno:
    return llvm::CmpInst::Predicate::FCMP_UNO;
  case LLVM::FCmpPredicate::_true:
    return llvm::CmpInst::Predicate::FCMP_TRUE;
  }
  llvm_unreachable("incorrect comparison predicate");
}

/// Given a single MLIR operation, create the corresponding LLVM IR operation
/// using the `builder`.  LLVM IR Builder does not have a generic interface so
/// this has to be a long chain of `if`s calling different functions with a
/// different number of arguments.
LogicalResult ModuleTranslation::convertOperation(Operation &opInst,
                                                  llvm::IRBuilder<> &builder) {
  auto extractPosition = [](ArrayAttr attr) {
    SmallVector<unsigned, 4> position;
    position.reserve(attr.size());
    for (Attribute v : attr)
      position.push_back(v.cast<IntegerAttr>().getValue().getZExtValue());
    return position;
  };

#include "mlir/Dialect/LLVMIR/LLVMConversions.inc"

  // Emit function calls.  If the "callee" attribute is present, this is a
  // direct function call and we also need to look up the remapped function
  // itself.  Otherwise, this is an indirect call and the callee is the first
  // operand, look it up as a normal value.  Return the llvm::Value representing
  // the function result, which may be of llvm::VoidTy type.
  auto convertCall = [this, &builder](Operation &op) -> llvm::Value * {
    auto operands = lookupValues(op.getOperands());
    ArrayRef<llvm::Value *> operandsRef(operands);
    if (auto attr = op.getAttrOfType<FlatSymbolRefAttr>("callee")) {
      return builder.CreateCall(functionMapping.lookup(attr.getValue()),
                                operandsRef);
    } else {
      return builder.CreateCall(operandsRef.front(), operandsRef.drop_front());
    }
  };

  // Emit calls.  If the called function has a result, remap the corresponding
  // value.  Note that LLVM IR dialect CallOp has either 0 or 1 result.
  if (isa<LLVM::CallOp>(opInst)) {
    llvm::Value *result = convertCall(opInst);
    if (opInst.getNumResults() != 0) {
      valueMapping[opInst.getResult(0)] = result;
      return success();
    }
    // Check that LLVM call returns void for 0-result functions.
    return success(result->getType()->isVoidTy());
  }

  // Emit branches.  We need to look up the remapped blocks and ignore the block
  // arguments that were transformed into PHI nodes.
  if (auto brOp = dyn_cast<LLVM::BrOp>(opInst)) {
    builder.CreateBr(blockMapping[brOp.getSuccessor(0)]);
    return success();
  }
  if (auto condbrOp = dyn_cast<LLVM::CondBrOp>(opInst)) {
    builder.CreateCondBr(valueMapping.lookup(condbrOp.getOperand(0)),
                         blockMapping[condbrOp.getSuccessor(0)],
                         blockMapping[condbrOp.getSuccessor(1)]);
    return success();
  }

  // Emit addressof.  We need to look up the global value referenced by the
  // operation and store it in the MLIR-to-LLVM value mapping.  This does not
  // emit any LLVM instruction.
  if (auto addressOfOp = dyn_cast<LLVM::AddressOfOp>(opInst)) {
    LLVM::GlobalOp global = addressOfOp.getGlobal();
    // The verifier should not have allowed this.
    assert(global && "referencing an undefined global");

    valueMapping[addressOfOp.getResult()] = globalsMapping.lookup(global);
    return success();
  }

  return opInst.emitError("unsupported or non-LLVM operation: ")
         << opInst.getName();
}

/// Convert block to LLVM IR.  Unless `ignoreArguments` is set, emit PHI nodes
/// to define values corresponding to the MLIR block arguments.  These nodes
/// are not connected to the source basic blocks, which may not exist yet.
LogicalResult ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments) {
  llvm::IRBuilder<> builder(blockMapping[&bb]);

  // Before traversing operations, make block arguments available through
  // value remapping and PHI nodes, but do not add incoming edges for the PHI
  // nodes just yet: those values may be defined by this or following blocks.
  // This step is omitted if "ignoreArguments" is set.  The arguments of the
  // first block have been already made available through the remapping of
  // LLVM function arguments.
  if (!ignoreArguments) {
    auto predecessors = bb.getPredecessors();
    unsigned numPredecessors =
        std::distance(predecessors.begin(), predecessors.end());
    for (auto arg : bb.getArguments()) {
      auto wrappedType = arg.getType().dyn_cast<LLVM::LLVMType>();
      if (!wrappedType)
        return emitError(bb.front().getLoc(),
                         "block argument does not have an LLVM type");
      llvm::Type *type = wrappedType.getUnderlyingType();
      llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
      valueMapping[arg] = phi;
    }
  }

  // Traverse operations.
  for (auto &op : bb) {
    if (failed(convertOperation(op, builder)))
      return failure();
  }

  return success();
}

/// Convert the LLVM dialect linkage type to LLVM IR linkage type.
llvm::GlobalVariable::LinkageTypes convertLinkageType(LLVM::Linkage linkage) {
  switch (linkage) {
  case LLVM::Linkage::Private:
    return llvm::GlobalValue::PrivateLinkage;
  case LLVM::Linkage::Internal:
    return llvm::GlobalValue::InternalLinkage;
  case LLVM::Linkage::AvailableExternally:
    return llvm::GlobalValue::AvailableExternallyLinkage;
  case LLVM::Linkage::Linkonce:
    return llvm::GlobalValue::LinkOnceAnyLinkage;
  case LLVM::Linkage::Weak:
    return llvm::GlobalValue::WeakAnyLinkage;
  case LLVM::Linkage::Common:
    return llvm::GlobalValue::CommonLinkage;
  case LLVM::Linkage::Appending:
    return llvm::GlobalValue::AppendingLinkage;
  case LLVM::Linkage::ExternWeak:
    return llvm::GlobalValue::ExternalWeakLinkage;
  case LLVM::Linkage::LinkonceODR:
    return llvm::GlobalValue::LinkOnceODRLinkage;
  case LLVM::Linkage::WeakODR:
    return llvm::GlobalValue::WeakODRLinkage;
  case LLVM::Linkage::External:
    return llvm::GlobalValue::ExternalLinkage;
  }
  llvm_unreachable("unknown linkage type");
}

/// Create named global variables that correspond to llvm.mlir.global
/// definitions.
void ModuleTranslation::convertGlobals() {
  for (auto op : getModuleBody(mlirModule).getOps<LLVM::GlobalOp>()) {
    llvm::Type *type = op.getType().getUnderlyingType();
    llvm::Constant *cst = llvm::UndefValue::get(type);
    if (op.getValueOrNull()) {
      // String attributes are treated separately because they cannot appear as
      // in-function constants and are thus not supported by getLLVMConstant.
      if (auto strAttr = op.getValueOrNull().dyn_cast_or_null<StringAttr>()) {
        cst = llvm::ConstantDataArray::getString(
            llvmModule->getContext(), strAttr.getValue(), /*AddNull=*/false);
        type = cst->getType();
      } else {
        cst = getLLVMConstant(type, op.getValueOrNull(), op.getLoc());
      }
    } else if (Block *initializer = op.getInitializerBlock()) {
      llvm::IRBuilder<> builder(llvmModule->getContext());
      for (auto &op : initializer->without_terminator()) {
        if (failed(convertOperation(op, builder)) ||
            !isa<llvm::Constant>(valueMapping.lookup(op.getResult(0)))) {
          emitError(op.getLoc(), "unemittable constant value");
          return;
        }
      }
      ReturnOp ret = cast<ReturnOp>(initializer->getTerminator());
      cst = cast<llvm::Constant>(valueMapping.lookup(ret.getOperand(0)));
    }

    auto linkage = convertLinkageType(op.linkage());
    bool anyExternalLinkage =
        (linkage == llvm::GlobalVariable::ExternalLinkage ||
         linkage == llvm::GlobalVariable::ExternalWeakLinkage);
    auto addrSpace = op.addr_space().getLimitedValue();
    auto *var = new llvm::GlobalVariable(
        *llvmModule, type, op.constant(), linkage,
        anyExternalLinkage ? nullptr : cst, op.sym_name(),
        /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal, addrSpace);

    globalsMapping.try_emplace(op, var);
  }
}

/// Get the SSA value passed to the current block from the terminator operation
/// of its predecessor.
static Value getPHISourceValue(Block *current, Block *pred,
                               unsigned numArguments, unsigned index) {
  auto &terminator = *pred->getTerminator();
  if (isa<LLVM::BrOp>(terminator)) {
    return terminator.getOperand(index);
  }

  // For conditional branches, we need to check if the current block is reached
  // through the "true" or the "false" branch and take the relevant operands.
  auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator);
  assert(condBranchOp &&
         "only branch operations can be terminators of a block that "
         "has successors");
  assert((condBranchOp.getSuccessor(0) != condBranchOp.getSuccessor(1)) &&
         "successors with arguments in LLVM conditional branches must be "
         "different blocks");

  return condBranchOp.getSuccessor(0) == current
             ? terminator.getSuccessorOperand(0, index)
             : terminator.getSuccessorOperand(1, index);
}

void ModuleTranslation::connectPHINodes(LLVMFuncOp func) {
  // Skip the first block, it cannot be branched to and its arguments correspond
  // to the arguments of the LLVM function.
  for (auto it = std::next(func.begin()), eit = func.end(); it != eit; ++it) {
    Block *bb = &*it;
    llvm::BasicBlock *llvmBB = blockMapping.lookup(bb);
    auto phis = llvmBB->phis();
    auto numArguments = bb->getNumArguments();
    assert(numArguments == std::distance(phis.begin(), phis.end()));
    for (auto &numberedPhiNode : llvm::enumerate(phis)) {
      auto &phiNode = numberedPhiNode.value();
      unsigned index = numberedPhiNode.index();
      for (auto *pred : bb->getPredecessors()) {
        phiNode.addIncoming(valueMapping.lookup(getPHISourceValue(
                                bb, pred, numArguments, index)),
                            blockMapping.lookup(pred));
      }
    }
  }
}

// TODO(mlir-team): implement an iterative version
static void topologicalSortImpl(llvm::SetVector<Block *> &blocks, Block *b) {
  blocks.insert(b);
  for (Block *bb : b->getSuccessors()) {
    if (blocks.count(bb) == 0)
      topologicalSortImpl(blocks, bb);
  }
}

/// Sort function blocks topologically.
static llvm::SetVector<Block *> topologicalSort(LLVMFuncOp f) {
  // For each blocks that has not been visited yet (i.e. that has no
  // predecessors), add it to the list and traverse its successors in DFS
  // preorder.
  llvm::SetVector<Block *> blocks;
  for (Block &b : f.getBlocks()) {
    if (blocks.count(&b) == 0)
      topologicalSortImpl(blocks, &b);
  }
  assert(blocks.size() == f.getBlocks().size() && "some blocks are not sorted");

  return blocks;
}

LogicalResult ModuleTranslation::convertOneFunction(LLVMFuncOp func) {
  // Clear the block and value mappings, they are only relevant within one
  // function.
  blockMapping.clear();
  valueMapping.clear();
  llvm::Function *llvmFunc = functionMapping.lookup(func.getName());
  // Add function arguments to the value remapping table.
  // If there was noalias info then we decorate each argument accordingly.
  unsigned int argIdx = 0;
  for (auto kvp : llvm::zip(func.getArguments(), llvmFunc->args())) {
    llvm::Argument &llvmArg = std::get<1>(kvp);
    BlockArgument mlirArg = std::get<0>(kvp);

    if (auto attr = func.getArgAttrOfType<BoolAttr>(argIdx, "llvm.noalias")) {
      // NB: Attribute already verified to be boolean, so check if we can indeed
      // attach the attribute to this argument, based on its type.
      auto argTy = mlirArg.getType().dyn_cast<LLVM::LLVMType>();
      if (!argTy.getUnderlyingType()->isPointerTy())
        return func.emitError(
            "llvm.noalias attribute attached to LLVM non-pointer argument");
      if (attr.getValue())
        llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias);
    }
    valueMapping[mlirArg] = &llvmArg;
    argIdx++;
  }

  // First, create all blocks so we can jump to them.
  llvm::LLVMContext &llvmContext = llvmFunc->getContext();
  for (auto &bb : func) {
    auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
    llvmBB->insertInto(llvmFunc);
    blockMapping[&bb] = llvmBB;
  }

  // Then, convert blocks one by one in topological order to ensure defs are
  // converted before uses.
  auto blocks = topologicalSort(func);
  for (auto indexedBB : llvm::enumerate(blocks)) {
    auto *bb = indexedBB.value();
    if (failed(convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0)))
      return failure();
  }

  // Finally, after all blocks have been traversed and values mapped, connect
  // the PHI nodes to the results of preceding blocks.
  connectPHINodes(func);
  return success();
}

LogicalResult ModuleTranslation::checkSupportedModuleOps(Operation *m) {
  for (Operation &o : getModuleBody(m).getOperations())
    if (!isa<LLVM::LLVMFuncOp>(&o) && !isa<LLVM::GlobalOp>(&o) &&
        !o.isKnownTerminator())
      return o.emitOpError("unsupported module-level operation");
  return success();
}

LogicalResult ModuleTranslation::convertFunctions() {
  // Declare all functions first because there may be function calls that form a
  // call graph with cycles.
  for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
    llvm::FunctionCallee llvmFuncCst = llvmModule->getOrInsertFunction(
        function.getName(),
        cast<llvm::FunctionType>(function.getType().getUnderlyingType()));
    assert(isa<llvm::Function>(llvmFuncCst.getCallee()));
    functionMapping[function.getName()] =
        cast<llvm::Function>(llvmFuncCst.getCallee());
  }

  // Convert functions.
  for (auto function : getModuleBody(mlirModule).getOps<LLVMFuncOp>()) {
    // Ignore external functions.
    if (function.isExternal())
      continue;

    if (failed(convertOneFunction(function)))
      return failure();
  }

  return success();
}

/// A helper to look up remapped operands in the value remapping table.`
SmallVector<llvm::Value *, 8>
ModuleTranslation::lookupValues(ValueRange values) {
  SmallVector<llvm::Value *, 8> remapped;
  remapped.reserve(values.size());
  for (Value v : values)
    remapped.push_back(valueMapping.lookup(v));
  return remapped;
}

std::unique_ptr<llvm::Module>
ModuleTranslation::prepareLLVMModule(Operation *m) {
  auto *dialect = m->getContext()->getRegisteredDialect<LLVM::LLVMDialect>();
  assert(dialect && "LLVM dialect must be registered");

  auto llvmModule = llvm::CloneModule(dialect->getLLVMModule());
  if (!llvmModule)
    return nullptr;

  llvm::LLVMContext &llvmContext = llvmModule->getContext();
  llvm::IRBuilder<> builder(llvmContext);

  // Inject declarations for `malloc` and `free` functions that can be used in
  // memref allocation/deallocation coming from standard ops lowering.
  llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(),
                                  builder.getInt64Ty());
  llvmModule->getOrInsertFunction("free", builder.getVoidTy(),
                                  builder.getInt8PtrTy());

  return llvmModule;
}