NativeRegisterContextLinux_arm.cpp 29.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
//===-- NativeRegisterContextLinux_arm.cpp --------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#if defined(__arm__) || defined(__arm64__) || defined(__aarch64__)

#include "NativeRegisterContextLinux_arm.h"

#include "Plugins/Process/Linux/NativeProcessLinux.h"
#include "Plugins/Process/Linux/Procfs.h"
#include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
#include "Plugins/Process/Utility/RegisterInfoPOSIX_arm.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/Status.h"

#include <elf.h>
#include <sys/socket.h>

#define REG_CONTEXT_SIZE (GetGPRSize() + sizeof(m_fpr))

#ifndef PTRACE_GETVFPREGS
#define PTRACE_GETVFPREGS 27
#define PTRACE_SETVFPREGS 28
#endif
#ifndef PTRACE_GETHBPREGS
#define PTRACE_GETHBPREGS 29
#define PTRACE_SETHBPREGS 30
#endif
#if !defined(PTRACE_TYPE_ARG3)
#define PTRACE_TYPE_ARG3 void *
#endif
#if !defined(PTRACE_TYPE_ARG4)
#define PTRACE_TYPE_ARG4 void *
#endif

using namespace lldb;
using namespace lldb_private;
using namespace lldb_private::process_linux;

// arm general purpose registers.
static const uint32_t g_gpr_regnums_arm[] = {
    gpr_r0_arm,         gpr_r1_arm,   gpr_r2_arm,  gpr_r3_arm, gpr_r4_arm,
    gpr_r5_arm,         gpr_r6_arm,   gpr_r7_arm,  gpr_r8_arm, gpr_r9_arm,
    gpr_r10_arm,        gpr_r11_arm,  gpr_r12_arm, gpr_sp_arm, gpr_lr_arm,
    gpr_pc_arm,         gpr_cpsr_arm,
    LLDB_INVALID_REGNUM // register sets need to end with this flag
};
static_assert(((sizeof g_gpr_regnums_arm / sizeof g_gpr_regnums_arm[0]) - 1) ==
                  k_num_gpr_registers_arm,
              "g_gpr_regnums_arm has wrong number of register infos");

// arm floating point registers.
static const uint32_t g_fpu_regnums_arm[] = {
    fpu_s0_arm,         fpu_s1_arm,  fpu_s2_arm,    fpu_s3_arm,  fpu_s4_arm,
    fpu_s5_arm,         fpu_s6_arm,  fpu_s7_arm,    fpu_s8_arm,  fpu_s9_arm,
    fpu_s10_arm,        fpu_s11_arm, fpu_s12_arm,   fpu_s13_arm, fpu_s14_arm,
    fpu_s15_arm,        fpu_s16_arm, fpu_s17_arm,   fpu_s18_arm, fpu_s19_arm,
    fpu_s20_arm,        fpu_s21_arm, fpu_s22_arm,   fpu_s23_arm, fpu_s24_arm,
    fpu_s25_arm,        fpu_s26_arm, fpu_s27_arm,   fpu_s28_arm, fpu_s29_arm,
    fpu_s30_arm,        fpu_s31_arm, fpu_fpscr_arm, fpu_d0_arm,  fpu_d1_arm,
    fpu_d2_arm,         fpu_d3_arm,  fpu_d4_arm,    fpu_d5_arm,  fpu_d6_arm,
    fpu_d7_arm,         fpu_d8_arm,  fpu_d9_arm,    fpu_d10_arm, fpu_d11_arm,
    fpu_d12_arm,        fpu_d13_arm, fpu_d14_arm,   fpu_d15_arm, fpu_d16_arm,
    fpu_d17_arm,        fpu_d18_arm, fpu_d19_arm,   fpu_d20_arm, fpu_d21_arm,
    fpu_d22_arm,        fpu_d23_arm, fpu_d24_arm,   fpu_d25_arm, fpu_d26_arm,
    fpu_d27_arm,        fpu_d28_arm, fpu_d29_arm,   fpu_d30_arm, fpu_d31_arm,
    fpu_q0_arm,         fpu_q1_arm,  fpu_q2_arm,    fpu_q3_arm,  fpu_q4_arm,
    fpu_q5_arm,         fpu_q6_arm,  fpu_q7_arm,    fpu_q8_arm,  fpu_q9_arm,
    fpu_q10_arm,        fpu_q11_arm, fpu_q12_arm,   fpu_q13_arm, fpu_q14_arm,
    fpu_q15_arm,
    LLDB_INVALID_REGNUM // register sets need to end with this flag
};
static_assert(((sizeof g_fpu_regnums_arm / sizeof g_fpu_regnums_arm[0]) - 1) ==
                  k_num_fpr_registers_arm,
              "g_fpu_regnums_arm has wrong number of register infos");

namespace {
// Number of register sets provided by this context.
enum { k_num_register_sets = 2 };
}

// Register sets for arm.
static const RegisterSet g_reg_sets_arm[k_num_register_sets] = {
    {"General Purpose Registers", "gpr", k_num_gpr_registers_arm,
     g_gpr_regnums_arm},
    {"Floating Point Registers", "fpu", k_num_fpr_registers_arm,
     g_fpu_regnums_arm}};

#if defined(__arm__)

std::unique_ptr<NativeRegisterContextLinux>
NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux(
    const ArchSpec &target_arch, NativeThreadProtocol &native_thread) {
  return std::make_unique<NativeRegisterContextLinux_arm>(target_arch,
                                                           native_thread);
}

#endif // defined(__arm__)

NativeRegisterContextLinux_arm::NativeRegisterContextLinux_arm(
    const ArchSpec &target_arch, NativeThreadProtocol &native_thread)
    : NativeRegisterContextLinux(native_thread,
                                 new RegisterInfoPOSIX_arm(target_arch)) {
  switch (target_arch.GetMachine()) {
  case llvm::Triple::arm:
    m_reg_info.num_registers = k_num_registers_arm;
    m_reg_info.num_gpr_registers = k_num_gpr_registers_arm;
    m_reg_info.num_fpr_registers = k_num_fpr_registers_arm;
    m_reg_info.last_gpr = k_last_gpr_arm;
    m_reg_info.first_fpr = k_first_fpr_arm;
    m_reg_info.last_fpr = k_last_fpr_arm;
    m_reg_info.first_fpr_v = fpu_s0_arm;
    m_reg_info.last_fpr_v = fpu_s31_arm;
    m_reg_info.gpr_flags = gpr_cpsr_arm;
    break;
  default:
    assert(false && "Unhandled target architecture.");
    break;
  }

  ::memset(&m_fpr, 0, sizeof(m_fpr));
  ::memset(&m_gpr_arm, 0, sizeof(m_gpr_arm));
  ::memset(&m_hwp_regs, 0, sizeof(m_hwp_regs));
  ::memset(&m_hbr_regs, 0, sizeof(m_hbr_regs));

  // 16 is just a maximum value, query hardware for actual watchpoint count
  m_max_hwp_supported = 16;
  m_max_hbp_supported = 16;
  m_refresh_hwdebug_info = true;
}

uint32_t NativeRegisterContextLinux_arm::GetRegisterSetCount() const {
  return k_num_register_sets;
}

uint32_t NativeRegisterContextLinux_arm::GetUserRegisterCount() const {
  uint32_t count = 0;
  for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index)
    count += g_reg_sets_arm[set_index].num_registers;
  return count;
}

const RegisterSet *
NativeRegisterContextLinux_arm::GetRegisterSet(uint32_t set_index) const {
  if (set_index < k_num_register_sets)
    return &g_reg_sets_arm[set_index];

  return nullptr;
}

Status
NativeRegisterContextLinux_arm::ReadRegister(const RegisterInfo *reg_info,
                                             RegisterValue &reg_value) {
  Status error;

  if (!reg_info) {
    error.SetErrorString("reg_info NULL");
    return error;
  }

  const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB];

  if (IsFPR(reg)) {
    error = ReadFPR();
    if (error.Fail())
      return error;
  } else {
    uint32_t full_reg = reg;
    bool is_subreg = reg_info->invalidate_regs &&
                     (reg_info->invalidate_regs[0] != LLDB_INVALID_REGNUM);

    if (is_subreg) {
      // Read the full aligned 64-bit register.
      full_reg = reg_info->invalidate_regs[0];
    }

    error = ReadRegisterRaw(full_reg, reg_value);

    if (error.Success()) {
      // If our read was not aligned (for ah,bh,ch,dh), shift our returned
      // value one byte to the right.
      if (is_subreg && (reg_info->byte_offset & 0x1))
        reg_value.SetUInt64(reg_value.GetAsUInt64() >> 8);

      // If our return byte size was greater than the return value reg size,
      // then use the type specified by reg_info rather than the uint64_t
      // default
      if (reg_value.GetByteSize() > reg_info->byte_size)
        reg_value.SetType(reg_info);
    }
    return error;
  }

  // Get pointer to m_fpr variable and set the data from it.
  uint32_t fpr_offset = CalculateFprOffset(reg_info);
  assert(fpr_offset < sizeof m_fpr);
  uint8_t *src = (uint8_t *)&m_fpr + fpr_offset;
  switch (reg_info->byte_size) {
  case 2:
    reg_value.SetUInt16(*(uint16_t *)src);
    break;
  case 4:
    reg_value.SetUInt32(*(uint32_t *)src);
    break;
  case 8:
    reg_value.SetUInt64(*(uint64_t *)src);
    break;
  case 16:
    reg_value.SetBytes(src, 16, GetByteOrder());
    break;
  default:
    assert(false && "Unhandled data size.");
    error.SetErrorStringWithFormat("unhandled byte size: %" PRIu32,
                                   reg_info->byte_size);
    break;
  }

  return error;
}

Status
NativeRegisterContextLinux_arm::WriteRegister(const RegisterInfo *reg_info,
                                              const RegisterValue &reg_value) {
  if (!reg_info)
    return Status("reg_info NULL");

  const uint32_t reg_index = reg_info->kinds[lldb::eRegisterKindLLDB];
  if (reg_index == LLDB_INVALID_REGNUM)
    return Status("no lldb regnum for %s", reg_info && reg_info->name
                                               ? reg_info->name
                                               : "<unknown register>");

  if (IsGPR(reg_index))
    return WriteRegisterRaw(reg_index, reg_value);

  if (IsFPR(reg_index)) {
    // Get pointer to m_fpr variable and set the data to it.
    uint32_t fpr_offset = CalculateFprOffset(reg_info);
    assert(fpr_offset < sizeof m_fpr);
    uint8_t *dst = (uint8_t *)&m_fpr + fpr_offset;
    switch (reg_info->byte_size) {
    case 2:
      *(uint16_t *)dst = reg_value.GetAsUInt16();
      break;
    case 4:
      *(uint32_t *)dst = reg_value.GetAsUInt32();
      break;
    case 8:
      *(uint64_t *)dst = reg_value.GetAsUInt64();
      break;
    default:
      assert(false && "Unhandled data size.");
      return Status("unhandled register data size %" PRIu32,
                    reg_info->byte_size);
    }

    Status error = WriteFPR();
    if (error.Fail())
      return error;

    return Status();
  }

  return Status("failed - register wasn't recognized to be a GPR or an FPR, "
                "write strategy unknown");
}

Status NativeRegisterContextLinux_arm::ReadAllRegisterValues(
    lldb::DataBufferSP &data_sp) {
  Status error;

  data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0));
  error = ReadGPR();
  if (error.Fail())
    return error;

  error = ReadFPR();
  if (error.Fail())
    return error;

  uint8_t *dst = data_sp->GetBytes();
  ::memcpy(dst, &m_gpr_arm, GetGPRSize());
  dst += GetGPRSize();
  ::memcpy(dst, &m_fpr, sizeof(m_fpr));

  return error;
}

Status NativeRegisterContextLinux_arm::WriteAllRegisterValues(
    const lldb::DataBufferSP &data_sp) {
  Status error;

  if (!data_sp) {
    error.SetErrorStringWithFormat(
        "NativeRegisterContextLinux_x86_64::%s invalid data_sp provided",
        __FUNCTION__);
    return error;
  }

  if (data_sp->GetByteSize() != REG_CONTEXT_SIZE) {
    error.SetErrorStringWithFormat(
        "NativeRegisterContextLinux_x86_64::%s data_sp contained mismatched "
        "data size, expected %" PRIu64 ", actual %" PRIu64,
        __FUNCTION__, (uint64_t)REG_CONTEXT_SIZE, data_sp->GetByteSize());
    return error;
  }

  uint8_t *src = data_sp->GetBytes();
  if (src == nullptr) {
    error.SetErrorStringWithFormat("NativeRegisterContextLinux_x86_64::%s "
                                   "DataBuffer::GetBytes() returned a null "
                                   "pointer",
                                   __FUNCTION__);
    return error;
  }
  ::memcpy(&m_gpr_arm, src, GetRegisterInfoInterface().GetGPRSize());

  error = WriteGPR();
  if (error.Fail())
    return error;

  src += GetRegisterInfoInterface().GetGPRSize();
  ::memcpy(&m_fpr, src, sizeof(m_fpr));

  error = WriteFPR();
  if (error.Fail())
    return error;

  return error;
}

bool NativeRegisterContextLinux_arm::IsGPR(unsigned reg) const {
  return reg <= m_reg_info.last_gpr; // GPR's come first.
}

bool NativeRegisterContextLinux_arm::IsFPR(unsigned reg) const {
  return (m_reg_info.first_fpr <= reg && reg <= m_reg_info.last_fpr);
}

uint32_t NativeRegisterContextLinux_arm::NumSupportedHardwareBreakpoints() {
  Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));

  LLDB_LOGF(log, "NativeRegisterContextLinux_arm::%s()", __FUNCTION__);

  Status error;

  // Read hardware breakpoint and watchpoint information.
  error = ReadHardwareDebugInfo();

  if (error.Fail())
    return 0;

  LLDB_LOG(log, "{0}", m_max_hbp_supported);
  return m_max_hbp_supported;
}

uint32_t
NativeRegisterContextLinux_arm::SetHardwareBreakpoint(lldb::addr_t addr,
                                                      size_t size) {
  Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
  LLDB_LOG(log, "addr: {0:x}, size: {1:x}", addr, size);

  // Read hardware breakpoint and watchpoint information.
  Status error = ReadHardwareDebugInfo();

  if (error.Fail())
    return LLDB_INVALID_INDEX32;

  uint32_t control_value = 0, bp_index = 0;

  // Setup address and control values.
  // Use size to get a hint of arm vs thumb modes.
  switch (size) {
  case 2:
    control_value = (0x3 << 5) | 7;
    addr &= ~1;
    break;
  case 4:
    control_value = (0xfu << 5) | 7;
    addr &= ~3;
    break;
  default:
    return LLDB_INVALID_INDEX32;
  }

  // Iterate over stored breakpoints and find a free bp_index
  bp_index = LLDB_INVALID_INDEX32;
  for (uint32_t i = 0; i < m_max_hbp_supported; i++) {
    if ((m_hbr_regs[i].control & 1) == 0) {
      bp_index = i; // Mark last free slot
    } else if (m_hbr_regs[i].address == addr) {
      return LLDB_INVALID_INDEX32; // We do not support duplicate breakpoints.
    }
  }

  if (bp_index == LLDB_INVALID_INDEX32)
    return LLDB_INVALID_INDEX32;

  // Update breakpoint in local cache
  m_hbr_regs[bp_index].real_addr = addr;
  m_hbr_regs[bp_index].address = addr;
  m_hbr_regs[bp_index].control = control_value;

  // PTRACE call to set corresponding hardware breakpoint register.
  error = WriteHardwareDebugRegs(eDREGTypeBREAK, bp_index);

  if (error.Fail()) {
    m_hbr_regs[bp_index].address = 0;
    m_hbr_regs[bp_index].control &= ~1;

    return LLDB_INVALID_INDEX32;
  }

  return bp_index;
}

bool NativeRegisterContextLinux_arm::ClearHardwareBreakpoint(uint32_t hw_idx) {
  Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));
  LLDB_LOG(log, "hw_idx: {0}", hw_idx);

  // Read hardware breakpoint and watchpoint information.
  Status error = ReadHardwareDebugInfo();

  if (error.Fail())
    return false;

  if (hw_idx >= m_max_hbp_supported)
    return false;

  // Create a backup we can revert to in case of failure.
  lldb::addr_t tempAddr = m_hbr_regs[hw_idx].address;
  uint32_t tempControl = m_hbr_regs[hw_idx].control;

  m_hbr_regs[hw_idx].control &= ~1;
  m_hbr_regs[hw_idx].address = 0;

  // PTRACE call to clear corresponding hardware breakpoint register.
  error = WriteHardwareDebugRegs(eDREGTypeBREAK, hw_idx);

  if (error.Fail()) {
    m_hbr_regs[hw_idx].control = tempControl;
    m_hbr_regs[hw_idx].address = tempAddr;

    return false;
  }

  return true;
}

Status NativeRegisterContextLinux_arm::GetHardwareBreakHitIndex(
    uint32_t &bp_index, lldb::addr_t trap_addr) {
  Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));

  LLDB_LOGF(log, "NativeRegisterContextLinux_arm64::%s()", __FUNCTION__);

  lldb::addr_t break_addr;

  for (bp_index = 0; bp_index < m_max_hbp_supported; ++bp_index) {
    break_addr = m_hbr_regs[bp_index].address;

    if ((m_hbr_regs[bp_index].control & 0x1) && (trap_addr == break_addr)) {
      m_hbr_regs[bp_index].hit_addr = trap_addr;
      return Status();
    }
  }

  bp_index = LLDB_INVALID_INDEX32;
  return Status();
}

Status NativeRegisterContextLinux_arm::ClearAllHardwareBreakpoints() {
  Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS));

  LLDB_LOGF(log, "NativeRegisterContextLinux_arm::%s()", __FUNCTION__);

  Status error;

  // Read hardware breakpoint and watchpoint information.
  error = ReadHardwareDebugInfo();

  if (error.Fail())
    return error;

  lldb::addr_t tempAddr = 0;
  uint32_t tempControl = 0;

  for (uint32_t i = 0; i < m_max_hbp_supported; i++) {
    if (m_hbr_regs[i].control & 0x01) {
      // Create a backup we can revert to in case of failure.
      tempAddr = m_hbr_regs[i].address;
      tempControl = m_hbr_regs[i].control;

      // Clear breakpoints in local cache
      m_hbr_regs[i].control &= ~1;
      m_hbr_regs[i].address = 0;

      // Ptrace call to update hardware debug registers
      error = WriteHardwareDebugRegs(eDREGTypeBREAK, i);

      if (error.Fail()) {
        m_hbr_regs[i].control = tempControl;
        m_hbr_regs[i].address = tempAddr;

        return error;
      }
    }
  }

  return Status();
}

uint32_t NativeRegisterContextLinux_arm::NumSupportedHardwareWatchpoints() {
  Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));

  // Read hardware breakpoint and watchpoint information.
  Status error = ReadHardwareDebugInfo();

  if (error.Fail())
    return 0;

  LLDB_LOG(log, "{0}", m_max_hwp_supported);
  return m_max_hwp_supported;
}

uint32_t NativeRegisterContextLinux_arm::SetHardwareWatchpoint(
    lldb::addr_t addr, size_t size, uint32_t watch_flags) {
  Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
  LLDB_LOG(log, "addr: {0:x}, size: {1:x} watch_flags: {2:x}", addr, size,
           watch_flags);

  // Read hardware breakpoint and watchpoint information.
  Status error = ReadHardwareDebugInfo();

  if (error.Fail())
    return LLDB_INVALID_INDEX32;

  uint32_t control_value = 0, wp_index = 0, addr_word_offset = 0, byte_mask = 0;
  lldb::addr_t real_addr = addr;

  // Check if we are setting watchpoint other than read/write/access Also
  // update watchpoint flag to match Arm write-read bit configuration.
  switch (watch_flags) {
  case 1:
    watch_flags = 2;
    break;
  case 2:
    watch_flags = 1;
    break;
  case 3:
    break;
  default:
    return LLDB_INVALID_INDEX32;
  }

  // Can't watch zero bytes
  // Can't watch more than 4 bytes per WVR/WCR pair

  if (size == 0 || size > 4)
    return LLDB_INVALID_INDEX32;

  // Check 4-byte alignment for hardware watchpoint target address. Below is a
  // hack to recalculate address and size in order to make sure we can watch
  // non 4-byte alligned addresses as well.
  if (addr & 0x03) {
    uint8_t watch_mask = (addr & 0x03) + size;

    if (watch_mask > 0x04)
      return LLDB_INVALID_INDEX32;
    else if (watch_mask <= 0x02)
      size = 2;
    else if (watch_mask <= 0x04)
      size = 4;

    addr = addr & (~0x03);
  }

  // We can only watch up to four bytes that follow a 4 byte aligned address
  // per watchpoint register pair, so make sure we can properly encode this.
  addr_word_offset = addr % 4;
  byte_mask = ((1u << size) - 1u) << addr_word_offset;

  // Check if we need multiple watchpoint register
  if (byte_mask > 0xfu)
    return LLDB_INVALID_INDEX32;

  // Setup control value
  // Make the byte_mask into a valid Byte Address Select mask
  control_value = byte_mask << 5;

  // Turn on appropriate watchpoint flags read or write
  control_value |= (watch_flags << 3);

  // Enable this watchpoint and make it stop in privileged or user mode;
  control_value |= 7;

  // Make sure bits 1:0 are clear in our address
  addr &= ~((lldb::addr_t)3);

  // Iterate over stored watchpoints and find a free wp_index
  wp_index = LLDB_INVALID_INDEX32;
  for (uint32_t i = 0; i < m_max_hwp_supported; i++) {
    if ((m_hwp_regs[i].control & 1) == 0) {
      wp_index = i; // Mark last free slot
    } else if (m_hwp_regs[i].address == addr) {
      return LLDB_INVALID_INDEX32; // We do not support duplicate watchpoints.
    }
  }

  if (wp_index == LLDB_INVALID_INDEX32)
    return LLDB_INVALID_INDEX32;

  // Update watchpoint in local cache
  m_hwp_regs[wp_index].real_addr = real_addr;
  m_hwp_regs[wp_index].address = addr;
  m_hwp_regs[wp_index].control = control_value;

  // PTRACE call to set corresponding watchpoint register.
  error = WriteHardwareDebugRegs(eDREGTypeWATCH, wp_index);

  if (error.Fail()) {
    m_hwp_regs[wp_index].address = 0;
    m_hwp_regs[wp_index].control &= ~1;

    return LLDB_INVALID_INDEX32;
  }

  return wp_index;
}

bool NativeRegisterContextLinux_arm::ClearHardwareWatchpoint(
    uint32_t wp_index) {
  Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
  LLDB_LOG(log, "wp_index: {0}", wp_index);

  // Read hardware breakpoint and watchpoint information.
  Status error = ReadHardwareDebugInfo();

  if (error.Fail())
    return false;

  if (wp_index >= m_max_hwp_supported)
    return false;

  // Create a backup we can revert to in case of failure.
  lldb::addr_t tempAddr = m_hwp_regs[wp_index].address;
  uint32_t tempControl = m_hwp_regs[wp_index].control;

  // Update watchpoint in local cache
  m_hwp_regs[wp_index].control &= ~1;
  m_hwp_regs[wp_index].address = 0;

  // Ptrace call to update hardware debug registers
  error = WriteHardwareDebugRegs(eDREGTypeWATCH, wp_index);

  if (error.Fail()) {
    m_hwp_regs[wp_index].control = tempControl;
    m_hwp_regs[wp_index].address = tempAddr;

    return false;
  }

  return true;
}

Status NativeRegisterContextLinux_arm::ClearAllHardwareWatchpoints() {
  // Read hardware breakpoint and watchpoint information.
  Status error = ReadHardwareDebugInfo();

  if (error.Fail())
    return error;

  lldb::addr_t tempAddr = 0;
  uint32_t tempControl = 0;

  for (uint32_t i = 0; i < m_max_hwp_supported; i++) {
    if (m_hwp_regs[i].control & 0x01) {
      // Create a backup we can revert to in case of failure.
      tempAddr = m_hwp_regs[i].address;
      tempControl = m_hwp_regs[i].control;

      // Clear watchpoints in local cache
      m_hwp_regs[i].control &= ~1;
      m_hwp_regs[i].address = 0;

      // Ptrace call to update hardware debug registers
      error = WriteHardwareDebugRegs(eDREGTypeWATCH, i);

      if (error.Fail()) {
        m_hwp_regs[i].control = tempControl;
        m_hwp_regs[i].address = tempAddr;

        return error;
      }
    }
  }

  return Status();
}

uint32_t NativeRegisterContextLinux_arm::GetWatchpointSize(uint32_t wp_index) {
  Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
  LLDB_LOG(log, "wp_index: {0}", wp_index);

  switch ((m_hwp_regs[wp_index].control >> 5) & 0x0f) {
  case 0x01:
    return 1;
  case 0x03:
    return 2;
  case 0x07:
    return 3;
  case 0x0f:
    return 4;
  default:
    return 0;
  }
}
bool NativeRegisterContextLinux_arm::WatchpointIsEnabled(uint32_t wp_index) {
  Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
  LLDB_LOG(log, "wp_index: {0}", wp_index);

  if ((m_hwp_regs[wp_index].control & 0x1) == 0x1)
    return true;
  else
    return false;
}

Status
NativeRegisterContextLinux_arm::GetWatchpointHitIndex(uint32_t &wp_index,
                                                      lldb::addr_t trap_addr) {
  Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
  LLDB_LOG(log, "wp_index: {0}, trap_addr: {1:x}", wp_index, trap_addr);

  uint32_t watch_size;
  lldb::addr_t watch_addr;

  for (wp_index = 0; wp_index < m_max_hwp_supported; ++wp_index) {
    watch_size = GetWatchpointSize(wp_index);
    watch_addr = m_hwp_regs[wp_index].address;

    if (WatchpointIsEnabled(wp_index) && trap_addr >= watch_addr &&
        trap_addr < watch_addr + watch_size) {
      m_hwp_regs[wp_index].hit_addr = trap_addr;
      return Status();
    }
  }

  wp_index = LLDB_INVALID_INDEX32;
  return Status();
}

lldb::addr_t
NativeRegisterContextLinux_arm::GetWatchpointAddress(uint32_t wp_index) {
  Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
  LLDB_LOG(log, "wp_index: {0}", wp_index);

  if (wp_index >= m_max_hwp_supported)
    return LLDB_INVALID_ADDRESS;

  if (WatchpointIsEnabled(wp_index))
    return m_hwp_regs[wp_index].real_addr;
  else
    return LLDB_INVALID_ADDRESS;
}

lldb::addr_t
NativeRegisterContextLinux_arm::GetWatchpointHitAddress(uint32_t wp_index) {
  Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_WATCHPOINTS));
  LLDB_LOG(log, "wp_index: {0}", wp_index);

  if (wp_index >= m_max_hwp_supported)
    return LLDB_INVALID_ADDRESS;

  if (WatchpointIsEnabled(wp_index))
    return m_hwp_regs[wp_index].hit_addr;
  else
    return LLDB_INVALID_ADDRESS;
}

Status NativeRegisterContextLinux_arm::ReadHardwareDebugInfo() {
  Status error;

  if (!m_refresh_hwdebug_info) {
    return Status();
  }

  unsigned int cap_val;

  error = NativeProcessLinux::PtraceWrapper(PTRACE_GETHBPREGS, m_thread.GetID(),
                                            nullptr, &cap_val,
                                            sizeof(unsigned int));

  if (error.Fail())
    return error;

  m_max_hwp_supported = (cap_val >> 8) & 0xff;
  m_max_hbp_supported = cap_val & 0xff;
  m_refresh_hwdebug_info = false;

  return error;
}

Status NativeRegisterContextLinux_arm::WriteHardwareDebugRegs(int hwbType,
                                                              int hwb_index) {
  Status error;

  lldb::addr_t *addr_buf;
  uint32_t *ctrl_buf;

  if (hwbType == eDREGTypeWATCH) {
    addr_buf = &m_hwp_regs[hwb_index].address;
    ctrl_buf = &m_hwp_regs[hwb_index].control;

    error = NativeProcessLinux::PtraceWrapper(
        PTRACE_SETHBPREGS, m_thread.GetID(),
        (PTRACE_TYPE_ARG3)(intptr_t) - ((hwb_index << 1) + 1), addr_buf,
        sizeof(unsigned int));

    if (error.Fail())
      return error;

    error = NativeProcessLinux::PtraceWrapper(
        PTRACE_SETHBPREGS, m_thread.GetID(),
        (PTRACE_TYPE_ARG3)(intptr_t) - ((hwb_index << 1) + 2), ctrl_buf,
        sizeof(unsigned int));
  } else {
    addr_buf = &m_hbr_regs[hwb_index].address;
    ctrl_buf = &m_hbr_regs[hwb_index].control;

    error = NativeProcessLinux::PtraceWrapper(
        PTRACE_SETHBPREGS, m_thread.GetID(),
        (PTRACE_TYPE_ARG3)(intptr_t)((hwb_index << 1) + 1), addr_buf,
        sizeof(unsigned int));

    if (error.Fail())
      return error;

    error = NativeProcessLinux::PtraceWrapper(
        PTRACE_SETHBPREGS, m_thread.GetID(),
        (PTRACE_TYPE_ARG3)(intptr_t)((hwb_index << 1) + 2), ctrl_buf,
        sizeof(unsigned int));
  }

  return error;
}

uint32_t NativeRegisterContextLinux_arm::CalculateFprOffset(
    const RegisterInfo *reg_info) const {
  return reg_info->byte_offset -
         GetRegisterInfoAtIndex(m_reg_info.first_fpr)->byte_offset;
}

Status NativeRegisterContextLinux_arm::DoReadRegisterValue(
    uint32_t offset, const char *reg_name, uint32_t size,
    RegisterValue &value) {
  // PTRACE_PEEKUSER don't work in the aarch64 linux kernel used on android
  // devices (always return "Bad address"). To avoid using PTRACE_PEEKUSER we
  // read out the full GPR register set instead. This approach is about 4 times
  // slower but the performance overhead is negligible in comparision to
  // processing time in lldb-server.
  assert(offset % 4 == 0 && "Try to write a register with unaligned offset");
  if (offset + sizeof(uint32_t) > sizeof(m_gpr_arm))
    return Status("Register isn't fit into the size of the GPR area");

  Status error = ReadGPR();
  if (error.Fail())
    return error;

  value.SetUInt32(m_gpr_arm[offset / sizeof(uint32_t)]);
  return Status();
}

Status NativeRegisterContextLinux_arm::DoWriteRegisterValue(
    uint32_t offset, const char *reg_name, const RegisterValue &value) {
  // PTRACE_POKEUSER don't work in the aarch64 linux kernel used on android
  // devices (always return "Bad address"). To avoid using PTRACE_POKEUSER we
  // read out the full GPR register set, modify the requested register and
  // write it back. This approach is about 4 times slower but the performance
  // overhead is negligible in comparision to processing time in lldb-server.
  assert(offset % 4 == 0 && "Try to write a register with unaligned offset");
  if (offset + sizeof(uint32_t) > sizeof(m_gpr_arm))
    return Status("Register isn't fit into the size of the GPR area");

  Status error = ReadGPR();
  if (error.Fail())
    return error;

  uint32_t reg_value = value.GetAsUInt32();
  // As precaution for an undefined behavior encountered while setting PC we
  // will clear thumb bit of new PC if we are already in thumb mode; that is
  // CPSR thumb mode bit is set.
  if (offset / sizeof(uint32_t) == gpr_pc_arm) {
    // Check if we are already in thumb mode and thumb bit of current PC is
    // read out to be zero and thumb bit of next PC is read out to be one.
    if ((m_gpr_arm[gpr_cpsr_arm] & 0x20) && !(m_gpr_arm[gpr_pc_arm] & 0x01) &&
        (value.GetAsUInt32() & 0x01)) {
      reg_value &= (~1ull);
    }
  }

  m_gpr_arm[offset / sizeof(uint32_t)] = reg_value;
  return WriteGPR();
}

Status NativeRegisterContextLinux_arm::ReadGPR() {
#ifdef __arm__
  return NativeRegisterContextLinux::ReadGPR();
#else  // __aarch64__
  struct iovec ioVec;
  ioVec.iov_base = GetGPRBuffer();
  ioVec.iov_len = GetGPRSize();

  return ReadRegisterSet(&ioVec, GetGPRSize(), NT_PRSTATUS);
#endif // __arm__
}

Status NativeRegisterContextLinux_arm::WriteGPR() {
#ifdef __arm__
  return NativeRegisterContextLinux::WriteGPR();
#else  // __aarch64__
  struct iovec ioVec;
  ioVec.iov_base = GetGPRBuffer();
  ioVec.iov_len = GetGPRSize();

  return WriteRegisterSet(&ioVec, GetGPRSize(), NT_PRSTATUS);
#endif // __arm__
}

Status NativeRegisterContextLinux_arm::ReadFPR() {
#ifdef __arm__
  return NativeProcessLinux::PtraceWrapper(PTRACE_GETVFPREGS, m_thread.GetID(),
                                           nullptr, GetFPRBuffer(),
                                           GetFPRSize());
#else  // __aarch64__
  struct iovec ioVec;
  ioVec.iov_base = GetFPRBuffer();
  ioVec.iov_len = GetFPRSize();

  return ReadRegisterSet(&ioVec, GetFPRSize(), NT_ARM_VFP);
#endif // __arm__
}

Status NativeRegisterContextLinux_arm::WriteFPR() {
#ifdef __arm__
  return NativeProcessLinux::PtraceWrapper(PTRACE_SETVFPREGS, m_thread.GetID(),
                                           nullptr, GetFPRBuffer(),
                                           GetFPRSize());
#else  // __aarch64__
  struct iovec ioVec;
  ioVec.iov_base = GetFPRBuffer();
  ioVec.iov_len = GetFPRSize();

  return WriteRegisterSet(&ioVec, GetFPRSize(), NT_ARM_VFP);
#endif // __arm__
}

#endif // defined(__arm__) || defined(__arm64__) || defined(__aarch64__)