NativeRegisterContextLinux_x86_64.cpp 44.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
//===-- NativeRegisterContextLinux_x86_64.cpp ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#if defined(__i386__) || defined(__x86_64__)

#include "NativeRegisterContextLinux_x86_64.h"

#include "lldb/Host/HostInfo.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/Log.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/Status.h"

#include "Plugins/Process/Utility/RegisterContextLinux_i386.h"
#include "Plugins/Process/Utility/RegisterContextLinux_x86_64.h"
#include <cpuid.h>
#include <linux/elf.h>

// Newer toolchains define __get_cpuid_count in cpuid.h, but some
// older-but-still-supported ones (e.g. gcc 5.4.0) don't, so we
// define it locally here, following the definition in clang/lib/Headers.
static inline int get_cpuid_count(unsigned int __leaf,
                                  unsigned int __subleaf,
                                  unsigned int *__eax, unsigned int *__ebx,
                                  unsigned int *__ecx, unsigned int *__edx)
{
  unsigned int __max_leaf = __get_cpuid_max(__leaf & 0x80000000, nullptr);

  if (__max_leaf == 0 || __max_leaf < __leaf)
    return 0;

  __cpuid_count(__leaf, __subleaf, *__eax, *__ebx, *__ecx, *__edx);
  return 1;
}

using namespace lldb_private;
using namespace lldb_private::process_linux;

// Private namespace.

namespace {
// x86 32-bit general purpose registers.
const uint32_t g_gpr_regnums_i386[] = {
    lldb_eax_i386,      lldb_ebx_i386,    lldb_ecx_i386, lldb_edx_i386,
    lldb_edi_i386,      lldb_esi_i386,    lldb_ebp_i386, lldb_esp_i386,
    lldb_eip_i386,      lldb_eflags_i386, lldb_cs_i386,  lldb_fs_i386,
    lldb_gs_i386,       lldb_ss_i386,     lldb_ds_i386,  lldb_es_i386,
    lldb_ax_i386,       lldb_bx_i386,     lldb_cx_i386,  lldb_dx_i386,
    lldb_di_i386,       lldb_si_i386,     lldb_bp_i386,  lldb_sp_i386,
    lldb_ah_i386,       lldb_bh_i386,     lldb_ch_i386,  lldb_dh_i386,
    lldb_al_i386,       lldb_bl_i386,     lldb_cl_i386,  lldb_dl_i386,
    LLDB_INVALID_REGNUM // register sets need to end with this flag
};
static_assert((sizeof(g_gpr_regnums_i386) / sizeof(g_gpr_regnums_i386[0])) -
                      1 ==
                  k_num_gpr_registers_i386,
              "g_gpr_regnums_i386 has wrong number of register infos");

// x86 32-bit floating point registers.
const uint32_t g_fpu_regnums_i386[] = {
    lldb_fctrl_i386,    lldb_fstat_i386,     lldb_ftag_i386,  lldb_fop_i386,
    lldb_fiseg_i386,    lldb_fioff_i386,     lldb_foseg_i386, lldb_fooff_i386,
    lldb_mxcsr_i386,    lldb_mxcsrmask_i386, lldb_st0_i386,   lldb_st1_i386,
    lldb_st2_i386,      lldb_st3_i386,       lldb_st4_i386,   lldb_st5_i386,
    lldb_st6_i386,      lldb_st7_i386,       lldb_mm0_i386,   lldb_mm1_i386,
    lldb_mm2_i386,      lldb_mm3_i386,       lldb_mm4_i386,   lldb_mm5_i386,
    lldb_mm6_i386,      lldb_mm7_i386,       lldb_xmm0_i386,  lldb_xmm1_i386,
    lldb_xmm2_i386,     lldb_xmm3_i386,      lldb_xmm4_i386,  lldb_xmm5_i386,
    lldb_xmm6_i386,     lldb_xmm7_i386,
    LLDB_INVALID_REGNUM // register sets need to end with this flag
};
static_assert((sizeof(g_fpu_regnums_i386) / sizeof(g_fpu_regnums_i386[0])) -
                      1 ==
                  k_num_fpr_registers_i386,
              "g_fpu_regnums_i386 has wrong number of register infos");

// x86 32-bit AVX registers.
const uint32_t g_avx_regnums_i386[] = {
    lldb_ymm0_i386,     lldb_ymm1_i386, lldb_ymm2_i386, lldb_ymm3_i386,
    lldb_ymm4_i386,     lldb_ymm5_i386, lldb_ymm6_i386, lldb_ymm7_i386,
    LLDB_INVALID_REGNUM // register sets need to end with this flag
};
static_assert((sizeof(g_avx_regnums_i386) / sizeof(g_avx_regnums_i386[0])) -
                      1 ==
                  k_num_avx_registers_i386,
              " g_avx_regnums_i386 has wrong number of register infos");

// x64 32-bit MPX registers.
static const uint32_t g_mpx_regnums_i386[] = {
    lldb_bnd0_i386,     lldb_bnd1_i386, lldb_bnd2_i386, lldb_bnd3_i386,
    lldb_bndcfgu_i386,  lldb_bndstatus_i386,
    LLDB_INVALID_REGNUM // register sets need to end with this flag
};
static_assert((sizeof(g_mpx_regnums_i386) / sizeof(g_mpx_regnums_i386[0])) -
                      1 ==
                  k_num_mpx_registers_i386,
              "g_mpx_regnums_x86_64 has wrong number of register infos");

// x86 64-bit general purpose registers.
static const uint32_t g_gpr_regnums_x86_64[] = {
    lldb_rax_x86_64,    lldb_rbx_x86_64,    lldb_rcx_x86_64, lldb_rdx_x86_64,
    lldb_rdi_x86_64,    lldb_rsi_x86_64,    lldb_rbp_x86_64, lldb_rsp_x86_64,
    lldb_r8_x86_64,     lldb_r9_x86_64,     lldb_r10_x86_64, lldb_r11_x86_64,
    lldb_r12_x86_64,    lldb_r13_x86_64,    lldb_r14_x86_64, lldb_r15_x86_64,
    lldb_rip_x86_64,    lldb_rflags_x86_64, lldb_cs_x86_64,  lldb_fs_x86_64,
    lldb_gs_x86_64,     lldb_ss_x86_64,     lldb_ds_x86_64,  lldb_es_x86_64,
    lldb_eax_x86_64,    lldb_ebx_x86_64,    lldb_ecx_x86_64, lldb_edx_x86_64,
    lldb_edi_x86_64,    lldb_esi_x86_64,    lldb_ebp_x86_64, lldb_esp_x86_64,
    lldb_r8d_x86_64,  // Low 32 bits or r8
    lldb_r9d_x86_64,  // Low 32 bits or r9
    lldb_r10d_x86_64, // Low 32 bits or r10
    lldb_r11d_x86_64, // Low 32 bits or r11
    lldb_r12d_x86_64, // Low 32 bits or r12
    lldb_r13d_x86_64, // Low 32 bits or r13
    lldb_r14d_x86_64, // Low 32 bits or r14
    lldb_r15d_x86_64, // Low 32 bits or r15
    lldb_ax_x86_64,     lldb_bx_x86_64,     lldb_cx_x86_64,  lldb_dx_x86_64,
    lldb_di_x86_64,     lldb_si_x86_64,     lldb_bp_x86_64,  lldb_sp_x86_64,
    lldb_r8w_x86_64,  // Low 16 bits or r8
    lldb_r9w_x86_64,  // Low 16 bits or r9
    lldb_r10w_x86_64, // Low 16 bits or r10
    lldb_r11w_x86_64, // Low 16 bits or r11
    lldb_r12w_x86_64, // Low 16 bits or r12
    lldb_r13w_x86_64, // Low 16 bits or r13
    lldb_r14w_x86_64, // Low 16 bits or r14
    lldb_r15w_x86_64, // Low 16 bits or r15
    lldb_ah_x86_64,     lldb_bh_x86_64,     lldb_ch_x86_64,  lldb_dh_x86_64,
    lldb_al_x86_64,     lldb_bl_x86_64,     lldb_cl_x86_64,  lldb_dl_x86_64,
    lldb_dil_x86_64,    lldb_sil_x86_64,    lldb_bpl_x86_64, lldb_spl_x86_64,
    lldb_r8l_x86_64,    // Low 8 bits or r8
    lldb_r9l_x86_64,    // Low 8 bits or r9
    lldb_r10l_x86_64,   // Low 8 bits or r10
    lldb_r11l_x86_64,   // Low 8 bits or r11
    lldb_r12l_x86_64,   // Low 8 bits or r12
    lldb_r13l_x86_64,   // Low 8 bits or r13
    lldb_r14l_x86_64,   // Low 8 bits or r14
    lldb_r15l_x86_64,   // Low 8 bits or r15
    LLDB_INVALID_REGNUM // register sets need to end with this flag
};
static_assert((sizeof(g_gpr_regnums_x86_64) / sizeof(g_gpr_regnums_x86_64[0])) -
                      1 ==
                  k_num_gpr_registers_x86_64,
              "g_gpr_regnums_x86_64 has wrong number of register infos");

// x86 64-bit floating point registers.
static const uint32_t g_fpu_regnums_x86_64[] = {
    lldb_fctrl_x86_64,     lldb_fstat_x86_64, lldb_ftag_x86_64,
    lldb_fop_x86_64,       lldb_fiseg_x86_64, lldb_fioff_x86_64,
    lldb_foseg_x86_64,     lldb_fooff_x86_64, lldb_mxcsr_x86_64,
    lldb_mxcsrmask_x86_64, lldb_st0_x86_64,   lldb_st1_x86_64,
    lldb_st2_x86_64,       lldb_st3_x86_64,   lldb_st4_x86_64,
    lldb_st5_x86_64,       lldb_st6_x86_64,   lldb_st7_x86_64,
    lldb_mm0_x86_64,       lldb_mm1_x86_64,   lldb_mm2_x86_64,
    lldb_mm3_x86_64,       lldb_mm4_x86_64,   lldb_mm5_x86_64,
    lldb_mm6_x86_64,       lldb_mm7_x86_64,   lldb_xmm0_x86_64,
    lldb_xmm1_x86_64,      lldb_xmm2_x86_64,  lldb_xmm3_x86_64,
    lldb_xmm4_x86_64,      lldb_xmm5_x86_64,  lldb_xmm6_x86_64,
    lldb_xmm7_x86_64,      lldb_xmm8_x86_64,  lldb_xmm9_x86_64,
    lldb_xmm10_x86_64,     lldb_xmm11_x86_64, lldb_xmm12_x86_64,
    lldb_xmm13_x86_64,     lldb_xmm14_x86_64, lldb_xmm15_x86_64,
    LLDB_INVALID_REGNUM // register sets need to end with this flag
};
static_assert((sizeof(g_fpu_regnums_x86_64) / sizeof(g_fpu_regnums_x86_64[0])) -
                      1 ==
                  k_num_fpr_registers_x86_64,
              "g_fpu_regnums_x86_64 has wrong number of register infos");

// x86 64-bit AVX registers.
static const uint32_t g_avx_regnums_x86_64[] = {
    lldb_ymm0_x86_64,   lldb_ymm1_x86_64,  lldb_ymm2_x86_64,  lldb_ymm3_x86_64,
    lldb_ymm4_x86_64,   lldb_ymm5_x86_64,  lldb_ymm6_x86_64,  lldb_ymm7_x86_64,
    lldb_ymm8_x86_64,   lldb_ymm9_x86_64,  lldb_ymm10_x86_64, lldb_ymm11_x86_64,
    lldb_ymm12_x86_64,  lldb_ymm13_x86_64, lldb_ymm14_x86_64, lldb_ymm15_x86_64,
    LLDB_INVALID_REGNUM // register sets need to end with this flag
};
static_assert((sizeof(g_avx_regnums_x86_64) / sizeof(g_avx_regnums_x86_64[0])) -
                      1 ==
                  k_num_avx_registers_x86_64,
              "g_avx_regnums_x86_64 has wrong number of register infos");

// x86 64-bit MPX registers.
static const uint32_t g_mpx_regnums_x86_64[] = {
    lldb_bnd0_x86_64,    lldb_bnd1_x86_64,    lldb_bnd2_x86_64,
    lldb_bnd3_x86_64,    lldb_bndcfgu_x86_64, lldb_bndstatus_x86_64,
    LLDB_INVALID_REGNUM // register sets need to end with this flag
};
static_assert((sizeof(g_mpx_regnums_x86_64) / sizeof(g_mpx_regnums_x86_64[0])) -
                      1 ==
                  k_num_mpx_registers_x86_64,
              "g_mpx_regnums_x86_64 has wrong number of register infos");

// Number of register sets provided by this context.
enum { k_num_extended_register_sets = 2, k_num_register_sets = 4 };

// Register sets for x86 32-bit.
static const RegisterSet g_reg_sets_i386[k_num_register_sets] = {
    {"General Purpose Registers", "gpr", k_num_gpr_registers_i386,
     g_gpr_regnums_i386},
    {"Floating Point Registers", "fpu", k_num_fpr_registers_i386,
     g_fpu_regnums_i386},
    {"Advanced Vector Extensions", "avx", k_num_avx_registers_i386,
     g_avx_regnums_i386},
    { "Memory Protection Extensions", "mpx", k_num_mpx_registers_i386,
     g_mpx_regnums_i386}};

// Register sets for x86 64-bit.
static const RegisterSet g_reg_sets_x86_64[k_num_register_sets] = {
    {"General Purpose Registers", "gpr", k_num_gpr_registers_x86_64,
     g_gpr_regnums_x86_64},
    {"Floating Point Registers", "fpu", k_num_fpr_registers_x86_64,
     g_fpu_regnums_x86_64},
    {"Advanced Vector Extensions", "avx", k_num_avx_registers_x86_64,
     g_avx_regnums_x86_64},
    { "Memory Protection Extensions", "mpx", k_num_mpx_registers_x86_64,
     g_mpx_regnums_x86_64}};
}

#define REG_CONTEXT_SIZE (GetRegisterInfoInterface().GetGPRSize() + sizeof(FPR))

// Required ptrace defines.

// Support ptrace extensions even when compiled without required kernel support
#ifndef NT_X86_XSTATE
#define NT_X86_XSTATE 0x202
#endif
#ifndef NT_PRXFPREG
#define NT_PRXFPREG 0x46e62b7f
#endif

// On x86_64 NT_PRFPREG is used to access the FXSAVE area. On i386, we need to
// use NT_PRXFPREG.
static inline unsigned int fxsr_regset(const ArchSpec &arch) {
  return arch.GetAddressByteSize() == 8 ? NT_PRFPREG : NT_PRXFPREG;
}

// Required MPX define.

// Support MPX extensions also if compiled with compiler without MPX support.
#ifndef bit_MPX
#define bit_MPX 0x4000
#endif

// XCR0 extended register sets masks.
#define mask_XSTATE_AVX (1ULL << 2)
#define mask_XSTATE_BNDREGS (1ULL << 3)
#define mask_XSTATE_BNDCFG (1ULL << 4)
#define mask_XSTATE_MPX (mask_XSTATE_BNDREGS | mask_XSTATE_BNDCFG)

std::unique_ptr<NativeRegisterContextLinux>
NativeRegisterContextLinux::CreateHostNativeRegisterContextLinux(
    const ArchSpec &target_arch, NativeThreadProtocol &native_thread) {
  return std::unique_ptr<NativeRegisterContextLinux>(
      new NativeRegisterContextLinux_x86_64(target_arch, native_thread));
}

// NativeRegisterContextLinux_x86_64 members.

static RegisterInfoInterface *
CreateRegisterInfoInterface(const ArchSpec &target_arch) {
  if (HostInfo::GetArchitecture().GetAddressByteSize() == 4) {
    // 32-bit hosts run with a RegisterContextLinux_i386 context.
    return new RegisterContextLinux_i386(target_arch);
  } else {
    assert((HostInfo::GetArchitecture().GetAddressByteSize() == 8) &&
           "Register setting path assumes this is a 64-bit host");
    // X86_64 hosts know how to work with 64-bit and 32-bit EXEs using the
    // x86_64 register context.
    return new RegisterContextLinux_x86_64(target_arch);
  }
}

// Return the size of the XSTATE area supported on this cpu. It is necessary to
// allocate the full size of the area even if we do not use/recognise all of it
// because ptrace(PTRACE_SETREGSET, NT_X86_XSTATE) will refuse to write to it if
// we do not pass it a buffer of sufficient size. The size is always at least
// sizeof(FPR) so that the allocated buffer can be safely cast to FPR*.
static std::size_t GetXSTATESize() {
  unsigned int eax, ebx, ecx, edx;
  // First check whether the XSTATE are is supported at all.
  if (!__get_cpuid(1, &eax, &ebx, &ecx, &edx) || !(ecx & bit_XSAVE))
    return sizeof(FPR);

  // Then fetch the maximum size of the area.
  if (!get_cpuid_count(0x0d, 0, &eax, &ebx, &ecx, &edx))
    return sizeof(FPR);
  return std::max<std::size_t>(ecx, sizeof(FPR));
}

NativeRegisterContextLinux_x86_64::NativeRegisterContextLinux_x86_64(
    const ArchSpec &target_arch, NativeThreadProtocol &native_thread)
    : NativeRegisterContextLinux(native_thread,
                                 CreateRegisterInfoInterface(target_arch)),
      m_xstate_type(XStateType::Invalid), m_ymm_set(), m_mpx_set(),
      m_reg_info(), m_gpr_x86_64() {
  // Set up data about ranges of valid registers.
  switch (target_arch.GetMachine()) {
  case llvm::Triple::x86:
    m_reg_info.num_registers = k_num_registers_i386;
    m_reg_info.num_gpr_registers = k_num_gpr_registers_i386;
    m_reg_info.num_fpr_registers = k_num_fpr_registers_i386;
    m_reg_info.num_avx_registers = k_num_avx_registers_i386;
    m_reg_info.num_mpx_registers = k_num_mpx_registers_i386;
    m_reg_info.last_gpr = k_last_gpr_i386;
    m_reg_info.first_fpr = k_first_fpr_i386;
    m_reg_info.last_fpr = k_last_fpr_i386;
    m_reg_info.first_st = lldb_st0_i386;
    m_reg_info.last_st = lldb_st7_i386;
    m_reg_info.first_mm = lldb_mm0_i386;
    m_reg_info.last_mm = lldb_mm7_i386;
    m_reg_info.first_xmm = lldb_xmm0_i386;
    m_reg_info.last_xmm = lldb_xmm7_i386;
    m_reg_info.first_ymm = lldb_ymm0_i386;
    m_reg_info.last_ymm = lldb_ymm7_i386;
    m_reg_info.first_mpxr = lldb_bnd0_i386;
    m_reg_info.last_mpxr = lldb_bnd3_i386;
    m_reg_info.first_mpxc = lldb_bndcfgu_i386;
    m_reg_info.last_mpxc = lldb_bndstatus_i386;
    m_reg_info.first_dr = lldb_dr0_i386;
    m_reg_info.gpr_flags = lldb_eflags_i386;
    break;
  case llvm::Triple::x86_64:
    m_reg_info.num_registers = k_num_registers_x86_64;
    m_reg_info.num_gpr_registers = k_num_gpr_registers_x86_64;
    m_reg_info.num_fpr_registers = k_num_fpr_registers_x86_64;
    m_reg_info.num_avx_registers = k_num_avx_registers_x86_64;
    m_reg_info.num_mpx_registers = k_num_mpx_registers_x86_64;
    m_reg_info.last_gpr = k_last_gpr_x86_64;
    m_reg_info.first_fpr = k_first_fpr_x86_64;
    m_reg_info.last_fpr = k_last_fpr_x86_64;
    m_reg_info.first_st = lldb_st0_x86_64;
    m_reg_info.last_st = lldb_st7_x86_64;
    m_reg_info.first_mm = lldb_mm0_x86_64;
    m_reg_info.last_mm = lldb_mm7_x86_64;
    m_reg_info.first_xmm = lldb_xmm0_x86_64;
    m_reg_info.last_xmm = lldb_xmm15_x86_64;
    m_reg_info.first_ymm = lldb_ymm0_x86_64;
    m_reg_info.last_ymm = lldb_ymm15_x86_64;
    m_reg_info.first_mpxr = lldb_bnd0_x86_64;
    m_reg_info.last_mpxr = lldb_bnd3_x86_64;
    m_reg_info.first_mpxc = lldb_bndcfgu_x86_64;
    m_reg_info.last_mpxc = lldb_bndstatus_x86_64;
    m_reg_info.first_dr = lldb_dr0_x86_64;
    m_reg_info.gpr_flags = lldb_rflags_x86_64;
    break;
  default:
    assert(false && "Unhandled target architecture.");
    break;
  }

  std::size_t xstate_size = GetXSTATESize();
  m_xstate.reset(static_cast<FPR *>(std::malloc(xstate_size)));
  m_iovec.iov_base = m_xstate.get();
  m_iovec.iov_len = xstate_size;

  // Clear out the FPR state.
  ::memset(m_xstate.get(), 0, xstate_size);

  // Store byte offset of fctrl (i.e. first register of FPR)
  const RegisterInfo *reg_info_fctrl = GetRegisterInfoByName("fctrl");
  m_fctrl_offset_in_userarea = reg_info_fctrl->byte_offset;
}

// CONSIDER after local and llgs debugging are merged, register set support can
// be moved into a base x86-64 class with IsRegisterSetAvailable made virtual.
uint32_t NativeRegisterContextLinux_x86_64::GetRegisterSetCount() const {
  uint32_t sets = 0;
  for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index) {
    if (IsRegisterSetAvailable(set_index))
      ++sets;
  }

  return sets;
}

uint32_t NativeRegisterContextLinux_x86_64::GetUserRegisterCount() const {
  uint32_t count = 0;
  for (uint32_t set_index = 0; set_index < k_num_register_sets; ++set_index) {
    const RegisterSet *set = GetRegisterSet(set_index);
    if (set)
      count += set->num_registers;
  }
  return count;
}

const RegisterSet *
NativeRegisterContextLinux_x86_64::GetRegisterSet(uint32_t set_index) const {
  if (!IsRegisterSetAvailable(set_index))
    return nullptr;

  switch (GetRegisterInfoInterface().GetTargetArchitecture().GetMachine()) {
  case llvm::Triple::x86:
    return &g_reg_sets_i386[set_index];
  case llvm::Triple::x86_64:
    return &g_reg_sets_x86_64[set_index];
  default:
    assert(false && "Unhandled target architecture.");
    return nullptr;
  }

  return nullptr;
}

Status
NativeRegisterContextLinux_x86_64::ReadRegister(const RegisterInfo *reg_info,
                                                RegisterValue &reg_value) {
  Status error;

  if (!reg_info) {
    error.SetErrorString("reg_info NULL");
    return error;
  }

  const uint32_t reg = reg_info->kinds[lldb::eRegisterKindLLDB];
  if (reg == LLDB_INVALID_REGNUM) {
    // This is likely an internal register for lldb use only and should not be
    // directly queried.
    error.SetErrorStringWithFormat("register \"%s\" is an internal-only lldb "
                                   "register, cannot read directly",
                                   reg_info->name);
    return error;
  }

  if (IsFPR(reg) || IsAVX(reg) || IsMPX(reg)) {
    error = ReadFPR();
    if (error.Fail())
      return error;
  } else {
    uint32_t full_reg = reg;
    bool is_subreg = reg_info->invalidate_regs &&
                     (reg_info->invalidate_regs[0] != LLDB_INVALID_REGNUM);

    if (is_subreg) {
      // Read the full aligned 64-bit register.
      full_reg = reg_info->invalidate_regs[0];
    }

    error = ReadRegisterRaw(full_reg, reg_value);

    if (error.Success()) {
      // If our read was not aligned (for ah,bh,ch,dh), shift our returned
      // value one byte to the right.
      if (is_subreg && (reg_info->byte_offset & 0x1))
        reg_value.SetUInt64(reg_value.GetAsUInt64() >> 8);

      // If our return byte size was greater than the return value reg size,
      // then use the type specified by reg_info rather than the uint64_t
      // default
      if (reg_value.GetByteSize() > reg_info->byte_size)
        reg_value.SetType(reg_info);
    }
    return error;
  }

  if (reg_info->encoding == lldb::eEncodingVector) {
    lldb::ByteOrder byte_order = GetByteOrder();

    if (byte_order != lldb::eByteOrderInvalid) {
      if (reg >= m_reg_info.first_st && reg <= m_reg_info.last_st)
        reg_value.SetBytes(
            m_xstate->fxsave.stmm[reg - m_reg_info.first_st].bytes,
            reg_info->byte_size, byte_order);
      if (reg >= m_reg_info.first_mm && reg <= m_reg_info.last_mm)
        reg_value.SetBytes(
            m_xstate->fxsave.stmm[reg - m_reg_info.first_mm].bytes,
            reg_info->byte_size, byte_order);
      if (reg >= m_reg_info.first_xmm && reg <= m_reg_info.last_xmm)
        reg_value.SetBytes(
            m_xstate->fxsave.xmm[reg - m_reg_info.first_xmm].bytes,
            reg_info->byte_size, byte_order);
      if (reg >= m_reg_info.first_ymm && reg <= m_reg_info.last_ymm) {
        // Concatenate ymm using the register halves in xmm.bytes and
        // ymmh.bytes
        if (CopyXSTATEtoYMM(reg, byte_order))
          reg_value.SetBytes(m_ymm_set.ymm[reg - m_reg_info.first_ymm].bytes,
                             reg_info->byte_size, byte_order);
        else {
          error.SetErrorString("failed to copy ymm register value");
          return error;
        }
      }
      if (reg >= m_reg_info.first_mpxr && reg <= m_reg_info.last_mpxr) {
        if (CopyXSTATEtoMPX(reg))
          reg_value.SetBytes(m_mpx_set.mpxr[reg - m_reg_info.first_mpxr].bytes,
                             reg_info->byte_size, byte_order);
        else {
          error.SetErrorString("failed to copy mpx register value");
          return error;
        }
      }
      if (reg >= m_reg_info.first_mpxc && reg <= m_reg_info.last_mpxc) {
        if (CopyXSTATEtoMPX(reg))
          reg_value.SetBytes(m_mpx_set.mpxc[reg - m_reg_info.first_mpxc].bytes,
                             reg_info->byte_size, byte_order);
        else {
          error.SetErrorString("failed to copy mpx register value");
          return error;
        }
      }

      if (reg_value.GetType() != RegisterValue::eTypeBytes)
        error.SetErrorString(
            "write failed - type was expected to be RegisterValue::eTypeBytes");

      return error;
    }

    error.SetErrorString("byte order is invalid");
    return error;
  }

  // Get pointer to m_xstate->fxsave variable and set the data from it.

  // Byte offsets of all registers are calculated wrt 'UserArea' structure.
  // However, ReadFPR() reads fpu registers {using ptrace(PTRACE_GETFPREGS,..)}
  // and stores them in 'm_fpr' (of type FPR structure). To extract values of
  // fpu registers, m_fpr should be read at byte offsets calculated wrt to FPR
  // structure.

  // Since, FPR structure is also one of the member of UserArea structure.
  // byte_offset(fpu wrt FPR) = byte_offset(fpu wrt UserArea) -
  // byte_offset(fctrl wrt UserArea)
  assert((reg_info->byte_offset - m_fctrl_offset_in_userarea) < sizeof(FPR));
  uint8_t *src = (uint8_t *)m_xstate.get() + reg_info->byte_offset -
                 m_fctrl_offset_in_userarea;
  switch (reg_info->byte_size) {
  case 1:
    reg_value.SetUInt8(*(uint8_t *)src);
    break;
  case 2:
    reg_value.SetUInt16(*(uint16_t *)src);
    break;
  case 4:
    reg_value.SetUInt32(*(uint32_t *)src);
    break;
  case 8:
    reg_value.SetUInt64(*(uint64_t *)src);
    break;
  default:
    assert(false && "Unhandled data size.");
    error.SetErrorStringWithFormat("unhandled byte size: %" PRIu32,
                                   reg_info->byte_size);
    break;
  }

  return error;
}

void NativeRegisterContextLinux_x86_64::UpdateXSTATEforWrite(
    uint32_t reg_index) {
  XSAVE_HDR::XFeature &xstate_bv = m_xstate->xsave.header.xstate_bv;
  if (IsFPR(reg_index)) {
    // IsFPR considers both %st and %xmm registers as floating point, but these
    // map to two features. Set both flags, just in case.
    xstate_bv |= XSAVE_HDR::XFeature::FP | XSAVE_HDR::XFeature::SSE;
  } else if (IsAVX(reg_index)) {
    // Lower bytes of some %ymm registers are shared with %xmm registers.
    xstate_bv |= XSAVE_HDR::XFeature::YMM | XSAVE_HDR::XFeature::SSE;
  } else if (IsMPX(reg_index)) {
    // MPX registers map to two XSAVE features.
    xstate_bv |= XSAVE_HDR::XFeature::BNDREGS | XSAVE_HDR::XFeature::BNDCSR;
  }
}

Status NativeRegisterContextLinux_x86_64::WriteRegister(
    const RegisterInfo *reg_info, const RegisterValue &reg_value) {
  assert(reg_info && "reg_info is null");

  const uint32_t reg_index = reg_info->kinds[lldb::eRegisterKindLLDB];
  if (reg_index == LLDB_INVALID_REGNUM)
    return Status("no lldb regnum for %s", reg_info && reg_info->name
                                               ? reg_info->name
                                               : "<unknown register>");

  UpdateXSTATEforWrite(reg_index);

  if (IsGPR(reg_index))
    return WriteRegisterRaw(reg_index, reg_value);

  if (IsFPR(reg_index) || IsAVX(reg_index) || IsMPX(reg_index)) {
    if (reg_info->encoding == lldb::eEncodingVector) {
      if (reg_index >= m_reg_info.first_st && reg_index <= m_reg_info.last_st)
        ::memcpy(m_xstate->fxsave.stmm[reg_index - m_reg_info.first_st].bytes,
                 reg_value.GetBytes(), reg_value.GetByteSize());

      if (reg_index >= m_reg_info.first_mm && reg_index <= m_reg_info.last_mm)
        ::memcpy(m_xstate->fxsave.stmm[reg_index - m_reg_info.first_mm].bytes,
                 reg_value.GetBytes(), reg_value.GetByteSize());

      if (reg_index >= m_reg_info.first_xmm && reg_index <= m_reg_info.last_xmm)
        ::memcpy(m_xstate->fxsave.xmm[reg_index - m_reg_info.first_xmm].bytes,
                 reg_value.GetBytes(), reg_value.GetByteSize());

      if (reg_index >= m_reg_info.first_ymm &&
          reg_index <= m_reg_info.last_ymm) {
        // Store ymm register content, and split into the register halves in
        // xmm.bytes and ymmh.bytes
        ::memcpy(m_ymm_set.ymm[reg_index - m_reg_info.first_ymm].bytes,
                 reg_value.GetBytes(), reg_value.GetByteSize());
        if (!CopyYMMtoXSTATE(reg_index, GetByteOrder()))
          return Status("CopyYMMtoXSTATE() failed");
      }

      if (reg_index >= m_reg_info.first_mpxr &&
          reg_index <= m_reg_info.last_mpxr) {
        ::memcpy(m_mpx_set.mpxr[reg_index - m_reg_info.first_mpxr].bytes,
                 reg_value.GetBytes(), reg_value.GetByteSize());
        if (!CopyMPXtoXSTATE(reg_index))
          return Status("CopyMPXtoXSTATE() failed");
      }

      if (reg_index >= m_reg_info.first_mpxc &&
          reg_index <= m_reg_info.last_mpxc) {
        ::memcpy(m_mpx_set.mpxc[reg_index - m_reg_info.first_mpxc].bytes,
                 reg_value.GetBytes(), reg_value.GetByteSize());
        if (!CopyMPXtoXSTATE(reg_index))
          return Status("CopyMPXtoXSTATE() failed");
      }
    } else {
      // Get pointer to m_xstate->fxsave variable and set the data to it.

      // Byte offsets of all registers are calculated wrt 'UserArea' structure.
      // However, WriteFPR() takes m_fpr (of type FPR structure) and writes
      // only fpu registers using ptrace(PTRACE_SETFPREGS,..) API. Hence fpu
      // registers should be written in m_fpr at byte offsets calculated wrt
      // FPR structure.

      // Since, FPR structure is also one of the member of UserArea structure.
      // byte_offset(fpu wrt FPR) = byte_offset(fpu wrt UserArea) -
      // byte_offset(fctrl wrt UserArea)
      assert((reg_info->byte_offset - m_fctrl_offset_in_userarea) <
             sizeof(FPR));
      uint8_t *dst = (uint8_t *)m_xstate.get() + reg_info->byte_offset -
                     m_fctrl_offset_in_userarea;
      switch (reg_info->byte_size) {
      case 1:
        *(uint8_t *)dst = reg_value.GetAsUInt8();
        break;
      case 2:
        *(uint16_t *)dst = reg_value.GetAsUInt16();
        break;
      case 4:
        *(uint32_t *)dst = reg_value.GetAsUInt32();
        break;
      case 8:
        *(uint64_t *)dst = reg_value.GetAsUInt64();
        break;
      default:
        assert(false && "Unhandled data size.");
        return Status("unhandled register data size %" PRIu32,
                      reg_info->byte_size);
      }
    }

    Status error = WriteFPR();
    if (error.Fail())
      return error;

    if (IsAVX(reg_index)) {
      if (!CopyYMMtoXSTATE(reg_index, GetByteOrder()))
        return Status("CopyYMMtoXSTATE() failed");
    }

    if (IsMPX(reg_index)) {
      if (!CopyMPXtoXSTATE(reg_index))
        return Status("CopyMPXtoXSTATE() failed");
    }
    return Status();
  }
  return Status("failed - register wasn't recognized to be a GPR or an FPR, "
                "write strategy unknown");
}

Status NativeRegisterContextLinux_x86_64::ReadAllRegisterValues(
    lldb::DataBufferSP &data_sp) {
  Status error;

  data_sp.reset(new DataBufferHeap(REG_CONTEXT_SIZE, 0));
  error = ReadGPR();
  if (error.Fail())
    return error;

  error = ReadFPR();
  if (error.Fail())
    return error;

  uint8_t *dst = data_sp->GetBytes();
  ::memcpy(dst, &m_gpr_x86_64, GetRegisterInfoInterface().GetGPRSize());
  dst += GetRegisterInfoInterface().GetGPRSize();
  if (m_xstate_type == XStateType::FXSAVE)
    ::memcpy(dst, &m_xstate->fxsave, sizeof(m_xstate->fxsave));
  else if (m_xstate_type == XStateType::XSAVE) {
    lldb::ByteOrder byte_order = GetByteOrder();

    if (IsCPUFeatureAvailable(RegSet::avx)) {
      // Assemble the YMM register content from the register halves.
      for (uint32_t reg = m_reg_info.first_ymm; reg <= m_reg_info.last_ymm;
           ++reg) {
        if (!CopyXSTATEtoYMM(reg, byte_order)) {
          error.SetErrorStringWithFormat(
              "NativeRegisterContextLinux_x86_64::%s "
              "CopyXSTATEtoYMM() failed for reg num "
              "%" PRIu32,
              __FUNCTION__, reg);
          return error;
        }
      }
    }

    if (IsCPUFeatureAvailable(RegSet::mpx)) {
      for (uint32_t reg = m_reg_info.first_mpxr; reg <= m_reg_info.last_mpxc;
           ++reg) {
        if (!CopyXSTATEtoMPX(reg)) {
          error.SetErrorStringWithFormat(
              "NativeRegisterContextLinux_x86_64::%s "
              "CopyXSTATEtoMPX() failed for reg num "
              "%" PRIu32,
              __FUNCTION__, reg);
          return error;
        }
      }
    }
    // Copy the extended register state including the assembled ymm registers.
    ::memcpy(dst, m_xstate.get(), sizeof(FPR));
  } else {
    assert(false && "how do we save the floating point registers?");
    error.SetErrorString("unsure how to save the floating point registers");
  }
  /** The following code is specific to Linux x86 based architectures,
   *  where the register orig_eax (32 bit)/orig_rax (64 bit) is set to
   *  -1 to solve the bug 23659, such a setting prevents the automatic
   *  decrement of the instruction pointer which was causing the SIGILL
   *  exception.
   * **/

  RegisterValue value((uint64_t)-1);
  const RegisterInfo *reg_info =
      GetRegisterInfoInterface().GetDynamicRegisterInfo("orig_eax");
  if (reg_info == nullptr)
    reg_info = GetRegisterInfoInterface().GetDynamicRegisterInfo("orig_rax");

  if (reg_info != nullptr)
    return DoWriteRegisterValue(reg_info->byte_offset, reg_info->name, value);

  return error;
}

Status NativeRegisterContextLinux_x86_64::WriteAllRegisterValues(
    const lldb::DataBufferSP &data_sp) {
  Status error;

  if (!data_sp) {
    error.SetErrorStringWithFormat(
        "NativeRegisterContextLinux_x86_64::%s invalid data_sp provided",
        __FUNCTION__);
    return error;
  }

  if (data_sp->GetByteSize() != REG_CONTEXT_SIZE) {
    error.SetErrorStringWithFormatv(
        "data_sp contained mismatched data size, expected {0}, actual {1}",
        REG_CONTEXT_SIZE, data_sp->GetByteSize());
    return error;
  }

  uint8_t *src = data_sp->GetBytes();
  if (src == nullptr) {
    error.SetErrorStringWithFormat("NativeRegisterContextLinux_x86_64::%s "
                                   "DataBuffer::GetBytes() returned a null "
                                   "pointer",
                                   __FUNCTION__);
    return error;
  }
  ::memcpy(&m_gpr_x86_64, src, GetRegisterInfoInterface().GetGPRSize());

  error = WriteGPR();
  if (error.Fail())
    return error;

  src += GetRegisterInfoInterface().GetGPRSize();
  if (m_xstate_type == XStateType::FXSAVE)
    ::memcpy(&m_xstate->fxsave, src, sizeof(m_xstate->fxsave));
  else if (m_xstate_type == XStateType::XSAVE)
    ::memcpy(&m_xstate->xsave, src, sizeof(m_xstate->xsave));

  error = WriteFPR();
  if (error.Fail())
    return error;

  if (m_xstate_type == XStateType::XSAVE) {
    lldb::ByteOrder byte_order = GetByteOrder();

    if (IsCPUFeatureAvailable(RegSet::avx)) {
      // Parse the YMM register content from the register halves.
      for (uint32_t reg = m_reg_info.first_ymm; reg <= m_reg_info.last_ymm;
           ++reg) {
        if (!CopyYMMtoXSTATE(reg, byte_order)) {
          error.SetErrorStringWithFormat(
              "NativeRegisterContextLinux_x86_64::%s "
              "CopyYMMtoXSTATE() failed for reg num "
              "%" PRIu32,
              __FUNCTION__, reg);
          return error;
        }
      }
    }

    if (IsCPUFeatureAvailable(RegSet::mpx)) {
      for (uint32_t reg = m_reg_info.first_mpxr; reg <= m_reg_info.last_mpxc;
           ++reg) {
        if (!CopyMPXtoXSTATE(reg)) {
          error.SetErrorStringWithFormat(
              "NativeRegisterContextLinux_x86_64::%s "
              "CopyMPXtoXSTATE() failed for reg num "
              "%" PRIu32,
              __FUNCTION__, reg);
          return error;
        }
      }
    }
  }

  return error;
}

bool NativeRegisterContextLinux_x86_64::IsCPUFeatureAvailable(
    RegSet feature_code) const {
  if (m_xstate_type == XStateType::Invalid) {
    if (const_cast<NativeRegisterContextLinux_x86_64 *>(this)->ReadFPR().Fail())
      return false;
  }
  switch (feature_code) {
  case RegSet::gpr:
  case RegSet::fpu:
    return true;
  case RegSet::avx: // Check if CPU has AVX and if there is kernel support, by
                    // reading in the XCR0 area of XSAVE.
    if ((m_xstate->xsave.i387.xcr0 & mask_XSTATE_AVX) == mask_XSTATE_AVX)
      return true;
     break;
  case RegSet::mpx: // Check if CPU has MPX and if there is kernel support, by
                    // reading in the XCR0 area of XSAVE.
    if ((m_xstate->xsave.i387.xcr0 & mask_XSTATE_MPX) == mask_XSTATE_MPX)
      return true;
    break;
  }
  return false;
}

bool NativeRegisterContextLinux_x86_64::IsRegisterSetAvailable(
    uint32_t set_index) const {
  uint32_t num_sets = k_num_register_sets - k_num_extended_register_sets;

  switch (static_cast<RegSet>(set_index)) {
  case RegSet::gpr:
  case RegSet::fpu:
    return (set_index < num_sets);
  case RegSet::avx:
    return IsCPUFeatureAvailable(RegSet::avx);
  case RegSet::mpx:
    return IsCPUFeatureAvailable(RegSet::mpx);
  }
  return false;
}

bool NativeRegisterContextLinux_x86_64::IsGPR(uint32_t reg_index) const {
  // GPRs come first.
  return reg_index <= m_reg_info.last_gpr;
}

bool NativeRegisterContextLinux_x86_64::IsFPR(uint32_t reg_index) const {
  return (m_reg_info.first_fpr <= reg_index &&
          reg_index <= m_reg_info.last_fpr);
}

Status NativeRegisterContextLinux_x86_64::WriteFPR() {
  switch (m_xstate_type) {
  case XStateType::FXSAVE:
    return WriteRegisterSet(
        &m_iovec, sizeof(m_xstate->fxsave),
        fxsr_regset(GetRegisterInfoInterface().GetTargetArchitecture()));
  case XStateType::XSAVE:
    return WriteRegisterSet(&m_iovec, sizeof(m_xstate->xsave), NT_X86_XSTATE);
  default:
    return Status("Unrecognized FPR type.");
  }
}

bool NativeRegisterContextLinux_x86_64::IsAVX(uint32_t reg_index) const {
  if (!IsCPUFeatureAvailable(RegSet::avx))
    return false;
  return (m_reg_info.first_ymm <= reg_index &&
          reg_index <= m_reg_info.last_ymm);
}

bool NativeRegisterContextLinux_x86_64::CopyXSTATEtoYMM(
    uint32_t reg_index, lldb::ByteOrder byte_order) {
  if (!IsAVX(reg_index))
    return false;

  if (byte_order == lldb::eByteOrderLittle) {
    uint32_t reg_no = reg_index - m_reg_info.first_ymm;
    m_ymm_set.ymm[reg_no] = XStateToYMM(
        m_xstate->fxsave.xmm[reg_no].bytes,
        m_xstate->xsave.ymmh[reg_no].bytes);
    return true;
  }

  return false; // unsupported or invalid byte order
}

bool NativeRegisterContextLinux_x86_64::CopyYMMtoXSTATE(
    uint32_t reg, lldb::ByteOrder byte_order) {
  if (!IsAVX(reg))
    return false;

  if (byte_order == lldb::eByteOrderLittle) {
    uint32_t reg_no = reg - m_reg_info.first_ymm;
    YMMToXState(m_ymm_set.ymm[reg_no],
        m_xstate->fxsave.xmm[reg_no].bytes,
        m_xstate->xsave.ymmh[reg_no].bytes);
    return true;
  }

  return false; // unsupported or invalid byte order
}

void *NativeRegisterContextLinux_x86_64::GetFPRBuffer() {
  switch (m_xstate_type) {
  case XStateType::FXSAVE:
    return &m_xstate->fxsave;
  case XStateType::XSAVE:
    return &m_iovec;
  default:
    return nullptr;
  }
}

size_t NativeRegisterContextLinux_x86_64::GetFPRSize() {
  switch (m_xstate_type) {
  case XStateType::FXSAVE:
    return sizeof(m_xstate->fxsave);
  case XStateType::XSAVE:
    return sizeof(m_iovec);
  default:
    return 0;
  }
}

Status NativeRegisterContextLinux_x86_64::ReadFPR() {
  Status error;

  // Probe XSAVE and if it is not supported fall back to FXSAVE.
  if (m_xstate_type != XStateType::FXSAVE) {
    error = ReadRegisterSet(&m_iovec, sizeof(m_xstate->xsave), NT_X86_XSTATE);
    if (!error.Fail()) {
      m_xstate_type = XStateType::XSAVE;
      return error;
    }
  }
  error = ReadRegisterSet(
      &m_iovec, sizeof(m_xstate->xsave),
      fxsr_regset(GetRegisterInfoInterface().GetTargetArchitecture()));
  if (!error.Fail()) {
    m_xstate_type = XStateType::FXSAVE;
    return error;
  }
  return Status("Unrecognized FPR type.");
}

bool NativeRegisterContextLinux_x86_64::IsMPX(uint32_t reg_index) const {
  if (!IsCPUFeatureAvailable(RegSet::mpx))
    return false;
  return (m_reg_info.first_mpxr <= reg_index &&
          reg_index <= m_reg_info.last_mpxc);
}

bool NativeRegisterContextLinux_x86_64::CopyXSTATEtoMPX(uint32_t reg) {
  if (!IsMPX(reg))
    return false;

  if (reg >= m_reg_info.first_mpxr && reg <= m_reg_info.last_mpxr) {
    ::memcpy(m_mpx_set.mpxr[reg - m_reg_info.first_mpxr].bytes,
             m_xstate->xsave.mpxr[reg - m_reg_info.first_mpxr].bytes,
             sizeof(MPXReg));
  } else {
    ::memcpy(m_mpx_set.mpxc[reg - m_reg_info.first_mpxc].bytes,
             m_xstate->xsave.mpxc[reg - m_reg_info.first_mpxc].bytes,
             sizeof(MPXCsr));
  }
  return true;
}

bool NativeRegisterContextLinux_x86_64::CopyMPXtoXSTATE(uint32_t reg) {
  if (!IsMPX(reg))
    return false;

  if (reg >= m_reg_info.first_mpxr && reg <= m_reg_info.last_mpxr) {
    ::memcpy(m_xstate->xsave.mpxr[reg - m_reg_info.first_mpxr].bytes,
             m_mpx_set.mpxr[reg - m_reg_info.first_mpxr].bytes, sizeof(MPXReg));
  } else {
    ::memcpy(m_xstate->xsave.mpxc[reg - m_reg_info.first_mpxc].bytes,
             m_mpx_set.mpxc[reg - m_reg_info.first_mpxc].bytes, sizeof(MPXCsr));
  }
  return true;
}

Status NativeRegisterContextLinux_x86_64::IsWatchpointHit(uint32_t wp_index,
                                                          bool &is_hit) {
  if (wp_index >= NumSupportedHardwareWatchpoints())
    return Status("Watchpoint index out of range");

  RegisterValue reg_value;
  Status error = ReadRegisterRaw(m_reg_info.first_dr + 6, reg_value);
  if (error.Fail()) {
    is_hit = false;
    return error;
  }

  uint64_t status_bits = reg_value.GetAsUInt64();

  is_hit = status_bits & (1 << wp_index);

  return error;
}

Status NativeRegisterContextLinux_x86_64::GetWatchpointHitIndex(
    uint32_t &wp_index, lldb::addr_t trap_addr) {
  uint32_t num_hw_wps = NumSupportedHardwareWatchpoints();
  for (wp_index = 0; wp_index < num_hw_wps; ++wp_index) {
    bool is_hit;
    Status error = IsWatchpointHit(wp_index, is_hit);
    if (error.Fail()) {
      wp_index = LLDB_INVALID_INDEX32;
      return error;
    } else if (is_hit) {
      return error;
    }
  }
  wp_index = LLDB_INVALID_INDEX32;
  return Status();
}

Status NativeRegisterContextLinux_x86_64::IsWatchpointVacant(uint32_t wp_index,
                                                             bool &is_vacant) {
  if (wp_index >= NumSupportedHardwareWatchpoints())
    return Status("Watchpoint index out of range");

  RegisterValue reg_value;
  Status error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value);
  if (error.Fail()) {
    is_vacant = false;
    return error;
  }

  uint64_t control_bits = reg_value.GetAsUInt64();

  is_vacant = !(control_bits & (1 << (2 * wp_index)));

  return error;
}

Status NativeRegisterContextLinux_x86_64::SetHardwareWatchpointWithIndex(
    lldb::addr_t addr, size_t size, uint32_t watch_flags, uint32_t wp_index) {

  if (wp_index >= NumSupportedHardwareWatchpoints())
    return Status("Watchpoint index out of range");

  // Read only watchpoints aren't supported on x86_64. Fall back to read/write
  // waitchpoints instead.
  // TODO: Add logic to detect when a write happens and ignore that watchpoint
  // hit.
  if (watch_flags == 0x2)
    watch_flags = 0x3;

  if (watch_flags != 0x1 && watch_flags != 0x3)
    return Status("Invalid read/write bits for watchpoint");

  if (size != 1 && size != 2 && size != 4 && size != 8)
    return Status("Invalid size for watchpoint");

  bool is_vacant;
  Status error = IsWatchpointVacant(wp_index, is_vacant);
  if (error.Fail())
    return error;
  if (!is_vacant)
    return Status("Watchpoint index not vacant");

  RegisterValue reg_value;
  error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value);
  if (error.Fail())
    return error;

  // for watchpoints 0, 1, 2, or 3, respectively, set bits 1, 3, 5, or 7
  uint64_t enable_bit = 1 << (2 * wp_index);

  // set bits 16-17, 20-21, 24-25, or 28-29
  // with 0b01 for write, and 0b11 for read/write
  uint64_t rw_bits = watch_flags << (16 + 4 * wp_index);

  // set bits 18-19, 22-23, 26-27, or 30-31
  // with 0b00, 0b01, 0b10, or 0b11
  // for 1, 2, 8 (if supported), or 4 bytes, respectively
  uint64_t size_bits = (size == 8 ? 0x2 : size - 1) << (18 + 4 * wp_index);

  uint64_t bit_mask = (0x3 << (2 * wp_index)) | (0xF << (16 + 4 * wp_index));

  uint64_t control_bits = reg_value.GetAsUInt64() & ~bit_mask;

  control_bits |= enable_bit | rw_bits | size_bits;

  error = WriteRegisterRaw(m_reg_info.first_dr + wp_index, RegisterValue(addr));
  if (error.Fail())
    return error;

  error =
      WriteRegisterRaw(m_reg_info.first_dr + 7, RegisterValue(control_bits));
  if (error.Fail())
    return error;

  error.Clear();
  return error;
}

bool NativeRegisterContextLinux_x86_64::ClearHardwareWatchpoint(
    uint32_t wp_index) {
  if (wp_index >= NumSupportedHardwareWatchpoints())
    return false;

  RegisterValue reg_value;

  // for watchpoints 0, 1, 2, or 3, respectively, clear bits 0, 1, 2, or 3 of
  // the debug status register (DR6)
  Status error = ReadRegisterRaw(m_reg_info.first_dr + 6, reg_value);
  if (error.Fail())
    return false;
  uint64_t bit_mask = 1 << wp_index;
  uint64_t status_bits = reg_value.GetAsUInt64() & ~bit_mask;
  error = WriteRegisterRaw(m_reg_info.first_dr + 6, RegisterValue(status_bits));
  if (error.Fail())
    return false;

  // for watchpoints 0, 1, 2, or 3, respectively, clear bits {0-1,16-19},
  // {2-3,20-23}, {4-5,24-27}, or {6-7,28-31} of the debug control register
  // (DR7)
  error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value);
  if (error.Fail())
    return false;
  bit_mask = (0x3 << (2 * wp_index)) | (0xF << (16 + 4 * wp_index));
  uint64_t control_bits = reg_value.GetAsUInt64() & ~bit_mask;
  return WriteRegisterRaw(m_reg_info.first_dr + 7, RegisterValue(control_bits))
      .Success();
}

Status NativeRegisterContextLinux_x86_64::ClearAllHardwareWatchpoints() {
  RegisterValue reg_value;

  // clear bits {0-4} of the debug status register (DR6)
  Status error = ReadRegisterRaw(m_reg_info.first_dr + 6, reg_value);
  if (error.Fail())
    return error;
  uint64_t bit_mask = 0xF;
  uint64_t status_bits = reg_value.GetAsUInt64() & ~bit_mask;
  error = WriteRegisterRaw(m_reg_info.first_dr + 6, RegisterValue(status_bits));
  if (error.Fail())
    return error;

  // clear bits {0-7,16-31} of the debug control register (DR7)
  error = ReadRegisterRaw(m_reg_info.first_dr + 7, reg_value);
  if (error.Fail())
    return error;
  bit_mask = 0xFF | (0xFFFF << 16);
  uint64_t control_bits = reg_value.GetAsUInt64() & ~bit_mask;
  return WriteRegisterRaw(m_reg_info.first_dr + 7, RegisterValue(control_bits));
}

uint32_t NativeRegisterContextLinux_x86_64::SetHardwareWatchpoint(
    lldb::addr_t addr, size_t size, uint32_t watch_flags) {
  Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_WATCHPOINTS));
  const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints();
  for (uint32_t wp_index = 0; wp_index < num_hw_watchpoints; ++wp_index) {
    bool is_vacant;
    Status error = IsWatchpointVacant(wp_index, is_vacant);
    if (is_vacant) {
      error = SetHardwareWatchpointWithIndex(addr, size, watch_flags, wp_index);
      if (error.Success())
        return wp_index;
    }
    if (error.Fail() && log) {
      LLDB_LOGF(log, "NativeRegisterContextLinux_x86_64::%s Error: %s",
                __FUNCTION__, error.AsCString());
    }
  }
  return LLDB_INVALID_INDEX32;
}

lldb::addr_t
NativeRegisterContextLinux_x86_64::GetWatchpointAddress(uint32_t wp_index) {
  if (wp_index >= NumSupportedHardwareWatchpoints())
    return LLDB_INVALID_ADDRESS;
  RegisterValue reg_value;
  if (ReadRegisterRaw(m_reg_info.first_dr + wp_index, reg_value).Fail())
    return LLDB_INVALID_ADDRESS;
  return reg_value.GetAsUInt64();
}

uint32_t NativeRegisterContextLinux_x86_64::NumSupportedHardwareWatchpoints() {
  // Available debug address registers: dr0, dr1, dr2, dr3
  return 4;
}

uint32_t
NativeRegisterContextLinux_x86_64::GetPtraceOffset(uint32_t reg_index) {
  // If register is MPX, remove extra factor from gdb offset
  return GetRegisterInfoAtIndex(reg_index)->byte_offset -
         (IsMPX(reg_index) ? 128 : 0);
}

#endif // defined(__i386__) || defined(__x86_64__)