constant-expression-cxx2a.cpp 41.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
// RUN: %clang_cc1 -std=c++2a -verify %s -fcxx-exceptions -triple=x86_64-linux-gnu -Wno-mismatched-new-delete

#include "Inputs/std-compare.h"

namespace std {
  struct type_info;
  struct destroying_delete_t {
    explicit destroying_delete_t() = default;
  } inline constexpr destroying_delete{};
  struct nothrow_t {
    explicit nothrow_t() = default;
  } inline constexpr nothrow{};
  using size_t = decltype(sizeof(0));
  enum class align_val_t : size_t {};
};

[[nodiscard]] void *operator new(std::size_t, const std::nothrow_t&) noexcept;
[[nodiscard]] void *operator new(std::size_t, std::align_val_t, const std::nothrow_t&) noexcept;
[[nodiscard]] void *operator new[](std::size_t, const std::nothrow_t&) noexcept;
[[nodiscard]] void *operator new[](std::size_t, std::align_val_t, const std::nothrow_t&) noexcept;
[[nodiscard]] void *operator new[](std::size_t, std::align_val_t);
void operator delete(void*, const std::nothrow_t&) noexcept;
void operator delete(void*, std::align_val_t, const std::nothrow_t&) noexcept;
void operator delete[](void*, const std::nothrow_t&) noexcept;
void operator delete[](void*, std::align_val_t, const std::nothrow_t&) noexcept;

// Helper to print out values for debugging.
constexpr void not_defined();
template<typename T> constexpr void print(T) { not_defined(); }

namespace ThreeWayComparison {
  struct A {
    int n;
    constexpr friend int operator<=>(const A &a, const A &b) {
      return a.n < b.n ? -1 : a.n > b.n ? 1 : 0;
    }
  };
  static_assert(A{1} <=> A{2} < 0);
  static_assert(A{2} <=> A{1} > 0);
  static_assert(A{2} <=> A{2} == 0);

  static_assert(1 <=> 2 < 0);
  static_assert(2 <=> 1 > 0);
  static_assert(1 <=> 1 == 0);
  constexpr int k = (1 <=> 1, 0);
  // expected-warning@-1 {{three-way comparison result unused}}

  static_assert(std::strong_ordering::equal == 0);

  constexpr void f() {
    void(1 <=> 1);
  }

  struct MemPtr {
    void foo() {}
    void bar() {}
    int data;
    int data2;
    long data3;
  };

  struct MemPtr2 {
    void foo() {}
    void bar() {}
    int data;
    int data2;
    long data3;
  };
  using MemPtrT = void (MemPtr::*)();

  using FnPtrT = void (*)();

  void FnPtr1() {}
  void FnPtr2() {}

#define CHECK(...) ((__VA_ARGS__) ? void() : throw "error")
#define CHECK_TYPE(...) static_assert(__is_same(__VA_ARGS__));

constexpr bool test_constexpr_success = [] {
  {
    auto &EQ = std::strong_ordering::equal;
    auto &LESS = std::strong_ordering::less;
    auto &GREATER = std::strong_ordering::greater;
    using SO = std::strong_ordering;
    auto eq = (42 <=> 42);
    CHECK_TYPE(decltype(eq), SO);
    CHECK(eq.test_eq(EQ));

    auto less = (-1 <=> 0);
    CHECK_TYPE(decltype(less), SO);
    CHECK(less.test_eq(LESS));

    auto greater = (42l <=> 1u);
    CHECK_TYPE(decltype(greater), SO);
    CHECK(greater.test_eq(GREATER));
  }
  {
    using PO = std::partial_ordering;
    auto EQUIV = PO::equivalent;
    auto LESS = PO::less;
    auto GREATER = PO::greater;

    auto eq = (42.0 <=> 42.0);
    CHECK_TYPE(decltype(eq), PO);
    CHECK(eq.test_eq(EQUIV));

    auto less = (39.0 <=> 42.0);
    CHECK_TYPE(decltype(less), PO);
    CHECK(less.test_eq(LESS));

    auto greater = (-10.123 <=> -101.1);
    CHECK_TYPE(decltype(greater), PO);
    CHECK(greater.test_eq(GREATER));
  }

  return true;
}();

int dummy = 42;
int dummy2 = 101;
constexpr bool tc9 = (&dummy <=> &dummy2) != 0; // expected-error {{constant expression}} expected-note {{unspecified}}

template <class T, class R, class I>
constexpr T makeComplex(R r, I i) {
  T res{r, i};
  return res;
};
} // namespace ThreeWayComparison

constexpr bool for_range_init() {
  int k = 0;
  for (int arr[3] = {1, 2, 3}; int n : arr) k += n;
  return k == 6;
}
static_assert(for_range_init());

namespace Virtual {
  struct NonZeroOffset { int padding = 123; };

  constexpr void assert(bool b) { if (!b) throw 0; }

  // Ensure that we pick the right final overrider during construction.
  struct A {
    virtual constexpr char f() const { return 'A'; }
    char a = f();
    constexpr ~A() { assert(f() == 'A'); }
  };
  struct NoOverrideA : A {};
  struct B : NonZeroOffset, NoOverrideA {
    virtual constexpr char f() const { return 'B'; }
    char b = f();
    constexpr ~B() { assert(f() == 'B'); }
  };
  struct NoOverrideB : B {};
  struct C : NonZeroOffset, A {
    virtual constexpr char f() const { return 'C'; }
    A *pba;
    char c = ((A*)this)->f();
    char ba = pba->f();
    constexpr C(A *pba) : pba(pba) {}
    constexpr ~C() { assert(f() == 'C'); }
  };
  struct D : NonZeroOffset, NoOverrideB, C { // expected-warning {{inaccessible}}
    virtual constexpr char f() const { return 'D'; }
    char d = f();
    constexpr D() : C((B*)this) {}
    constexpr ~D() { assert(f() == 'D'); }
  };
  constexpr int n = (D(), 0);
  constexpr D d;
  static_assert(((B&)d).a == 'A');
  static_assert(((C&)d).a == 'A');
  static_assert(d.b == 'B');
  static_assert(d.c == 'C');
  // During the construction of C, the dynamic type of B's A is B.
  static_assert(d.ba == 'B');
  static_assert(d.d == 'D');
  static_assert(d.f() == 'D');
  constexpr const A &a = (B&)d;
  constexpr const B &b = d;
  static_assert(a.f() == 'D');
  static_assert(b.f() == 'D');

  // FIXME: It is unclear whether this should be permitted.
  D d_not_constexpr;
  static_assert(d_not_constexpr.f() == 'D'); // expected-error {{constant expression}} expected-note {{virtual function called on object 'd_not_constexpr' whose dynamic type is not constant}}

  // Check that we apply a proper adjustment for a covariant return type.
  struct Covariant1 {
    D d;
    virtual const A *f() const;
  };
  template<typename T>
  struct Covariant2 : Covariant1 {
    virtual const T *f() const;
  };
  template<typename T>
  struct Covariant3 : Covariant2<T> {
    constexpr virtual const D *f() const { return &this->d; }
  };

  constexpr Covariant3<B> cb;
  constexpr Covariant3<C> cc;

  constexpr const Covariant1 *cb1 = &cb;
  constexpr const Covariant2<B> *cb2 = &cb;
  static_assert(cb1->f()->a == 'A');
  static_assert(cb1->f() == (B*)&cb.d);
  static_assert(cb1->f()->f() == 'D');
  static_assert(cb2->f()->b == 'B');
  static_assert(cb2->f() == &cb.d);
  static_assert(cb2->f()->f() == 'D');

  constexpr const Covariant1 *cc1 = &cc;
  constexpr const Covariant2<C> *cc2 = &cc;
  static_assert(cc1->f()->a == 'A');
  static_assert(cc1->f() == (C*)&cc.d);
  static_assert(cc1->f()->f() == 'D');
  static_assert(cc2->f()->c == 'C');
  static_assert(cc2->f() == &cc.d);
  static_assert(cc2->f()->f() == 'D');

  static_assert(cb.f()->d == 'D');
  static_assert(cc.f()->d == 'D');

  struct Abstract {
    constexpr virtual void f() = 0; // expected-note {{declared here}}
    constexpr Abstract() { do_it(); } // expected-note {{in call to}}
    constexpr void do_it() { f(); } // expected-note {{pure virtual function 'Virtual::Abstract::f' called}}
  };
  struct PureVirtualCall : Abstract { void f(); }; // expected-note {{in call to 'Abstract}}
  constexpr PureVirtualCall pure_virtual_call; // expected-error {{constant expression}} expected-note {{in call to 'PureVirtualCall}}
}

namespace DynamicCast {
  struct A2 { virtual void a2(); };
  struct A : A2 { virtual void a(); };
  struct B : A {};
  struct C2 { virtual void c2(); };
  struct C : A, C2 { A *c = dynamic_cast<A*>(static_cast<C2*>(this)); };
  struct D { virtual void d(); };
  struct E { virtual void e(); };
  struct F : B, C, D, private E { void *f = dynamic_cast<void*>(static_cast<D*>(this)); };
  struct Padding { virtual void padding(); };
  struct G : Padding, F {};

  constexpr G g;

  // During construction of C, A is unambiguous subobject of dynamic type C.
  static_assert(g.c == (C*)&g);
  // ... but in the complete object, the same is not true, so the runtime fails.
  static_assert(dynamic_cast<const A*>(static_cast<const C2*>(&g)) == nullptr);

  // dynamic_cast<void*> produces a pointer to the object of the dynamic type.
  static_assert(g.f == (void*)(F*)&g);
  static_assert(dynamic_cast<const void*>(static_cast<const D*>(&g)) == &g);

  // expected-note@+1 {{reference dynamic_cast failed: 'DynamicCast::A' is an ambiguous base class of dynamic type 'DynamicCast::G' of operand}}
  constexpr int d_a = (dynamic_cast<const A&>(static_cast<const D&>(g)), 0); // expected-error {{}}

  // Can navigate from A2 to its A...
  static_assert(&dynamic_cast<A&>((A2&)(B&)g) == &(A&)(B&)g);
  // ... and from B to its A ...
  static_assert(&dynamic_cast<A&>((B&)g) == &(A&)(B&)g);
  // ... but not from D.
  // expected-note@+1 {{reference dynamic_cast failed: 'DynamicCast::A' is an ambiguous base class of dynamic type 'DynamicCast::G' of operand}}
  static_assert(&dynamic_cast<A&>((D&)g) == &(A&)(B&)g); // expected-error {{}}

  // Can cast from A2 to sibling class D.
  static_assert(&dynamic_cast<D&>((A2&)(B&)g) == &(D&)g);

  // Cannot cast from private base E to derived class F.
  // expected-note@+1 {{reference dynamic_cast failed: static type 'DynamicCast::E' of operand is a non-public base class of dynamic type 'DynamicCast::G'}}
  constexpr int e_f = (dynamic_cast<F&>((E&)g), 0); // expected-error {{}}

  // Cannot cast from B to private sibling E.
  // expected-note@+1 {{reference dynamic_cast failed: 'DynamicCast::E' is a non-public base class of dynamic type 'DynamicCast::G' of operand}}
  constexpr int b_e = (dynamic_cast<E&>((B&)g), 0); // expected-error {{}}

  struct Unrelated { virtual void unrelated(); };
  // expected-note@+1 {{reference dynamic_cast failed: dynamic type 'DynamicCast::G' of operand does not have a base class of type 'DynamicCast::Unrelated'}}
  constexpr int b_unrelated = (dynamic_cast<Unrelated&>((B&)g), 0); // expected-error {{}}
  // expected-note@+1 {{reference dynamic_cast failed: dynamic type 'DynamicCast::G' of operand does not have a base class of type 'DynamicCast::Unrelated'}}
  constexpr int e_unrelated = (dynamic_cast<Unrelated&>((E&)g), 0); // expected-error {{}}
}

namespace TypeId {
  struct A {
    const std::type_info &ti = typeid(*this);
  };
  struct A2 : A {};
  static_assert(&A().ti == &typeid(A));
  static_assert(&typeid((A2())) == &typeid(A2));
  extern A2 extern_a2;
  static_assert(&typeid(extern_a2) == &typeid(A2));

  constexpr A2 a2;
  constexpr const A &a1 = a2;
  static_assert(&typeid(a1) == &typeid(A));

  struct B {
    virtual void f();
    const std::type_info &ti1 = typeid(*this);
  };
  struct B2 : B {
    const std::type_info &ti2 = typeid(*this);
  };
  static_assert(&B2().ti1 == &typeid(B));
  static_assert(&B2().ti2 == &typeid(B2));
  extern B2 extern_b2;
  // expected-note@+1 {{typeid applied to object 'extern_b2' whose dynamic type is not constant}}
  static_assert(&typeid(extern_b2) == &typeid(B2)); // expected-error {{constant expression}}

  constexpr B2 b2;
  constexpr const B &b1 = b2;
  static_assert(&typeid(b1) == &typeid(B2));

  constexpr bool side_effects() {
    // Not polymorphic nor a glvalue.
    bool OK = true;
    (void)typeid(OK = false, A2()); // expected-warning {{has no effect}}
    if (!OK) return false;

    // Not polymorphic.
    A2 a2;
    (void)typeid(OK = false, a2); // expected-warning {{has no effect}}
    if (!OK) return false;

    // Not a glvalue.
    (void)typeid(OK = false, B2()); // expected-warning {{has no effect}}
    if (!OK) return false;

    // Polymorphic glvalue: operand evaluated.
    OK = false;
    B2 b2;
    (void)typeid(OK = true, b2); // expected-warning {{will be evaluated}}
    return OK;
  }
  static_assert(side_effects());
}

namespace Union {
  struct Base {
    int y; // expected-note 2{{here}}
  };
  struct A : Base {
    int x;
    int arr[3];
    union { int p, q; };
  };
  union B {
    A a;
    int b;
  };
  constexpr int read_wrong_member() { // expected-error {{never produces a constant}}
    B b = {.b = 1};
    return b.a.x; // expected-note {{read of member 'a' of union with active member 'b'}}
  }
  constexpr int change_member() {
    B b = {.b = 1};
    b.a.x = 1;
    return b.a.x;
  }
  static_assert(change_member() == 1);
  constexpr int change_member_then_read_wrong_member() { // expected-error {{never produces a constant}}
    B b = {.b = 1};
    b.a.x = 1;
    return b.b; // expected-note {{read of member 'b' of union with active member 'a'}}
  }
  constexpr int read_wrong_member_indirect() { // expected-error {{never produces a constant}}
    B b = {.b = 1};
    int *p = &b.a.y;
    return *p; // expected-note {{read of member 'a' of union with active member 'b'}}
  }
  constexpr int read_uninitialized() {
    B b = {.b = 1};
    int *p = &b.a.y;
    b.a.x = 1;
    return *p; // expected-note {{read of uninitialized object}}
  }
  static_assert(read_uninitialized() == 0); // expected-error {{constant}} expected-note {{in call}}
  constexpr void write_wrong_member_indirect() { // expected-error {{never produces a constant}}
    B b = {.b = 1};
    int *p = &b.a.y;
    *p = 1; // expected-note {{assignment to member 'a' of union with active member 'b'}}
  }
  constexpr int write_uninitialized() {
    B b = {.b = 1};
    int *p = &b.a.y;
    b.a.x = 1;
    *p = 1;
    return *p;
  }
  static_assert(write_uninitialized() == 1);
  constexpr int change_member_indirectly() {
    B b = {.b = 1};
    b.a.arr[1] = 1;
    int &r = b.a.y;
    r = 123;

    b.b = 2;
    b.a.y = 3;
    b.a.arr[2] = 4;
    return b.a.arr[2];
  }
  static_assert(change_member_indirectly() == 4);
  constexpr B return_uninit() {
    B b = {.b = 1};
    b.a.x = 2;
    return b;
  }
  constexpr B uninit = return_uninit(); // expected-error {{constant expression}} expected-note {{subobject of type 'int' is not initialized}}
  static_assert(return_uninit().a.x == 2);
  constexpr A return_uninit_struct() {
    B b = {.b = 1};
    b.a.x = 2;
    return b.a; // expected-note {{in call to 'A(b.a)'}} expected-note {{subobject of type 'int' is not initialized}}
  }
  // Note that this is rejected even though return_uninit() is accepted, and
  // return_uninit() copies the same stuff wrapped in a union.
  //
  // Copying a B involves copying the object representation of the union, but
  // copying an A invokes a copy constructor that copies the object
  // elementwise, and reading from b.a.y is undefined.
  static_assert(return_uninit_struct().x == 2); // expected-error {{constant expression}} expected-note {{in call}}
  constexpr B return_init_all() {
    B b = {.b = 1};
    b.a.x = 2;
    b.a.y = 3;
    b.a.arr[0] = 4;
    b.a.arr[1] = 5;
    b.a.arr[2] = 6;
    return b;
  }
  static_assert(return_init_all().a.x == 2);
  static_assert(return_init_all().a.y == 3);
  static_assert(return_init_all().a.arr[0] == 4);
  static_assert(return_init_all().a.arr[1] == 5);
  static_assert(return_init_all().a.arr[2] == 6);
  static_assert(return_init_all().a.p == 7); // expected-error {{}} expected-note {{read of member 'p' of union with no active member}}
  static_assert(return_init_all().a.q == 8); // expected-error {{}} expected-note {{read of member 'q' of union with no active member}}
  constexpr B init_all = return_init_all();

  constexpr bool test_no_member_change =  []{
    union U { char dummy = {}; };
    U u1;
    U u2;
    u1 = u2;
    return true;
  }();

  struct S1 {
    int n;
  };
  struct S2 : S1 {};
  struct S3 : S2 {};
  void f() {
    S3 s;
    s.n = 0;
  }

  union ref_member_1 {
    int a;
    int b;
  };
  struct ref_member_2 {
    ref_member_1 &&r;
  };
  union ref_member_3 {
    ref_member_2 a, b;
  };
  constexpr int ref_member_test_1() {
    ref_member_3 r = {.a = {.r = {.a = 1}}};
    r.a.r.b = 2;
    return r.a.r.b;
  }
  static_assert(ref_member_test_1() == 2);
  constexpr int ref_member_test_2() { // expected-error {{never produces a constant}}
    ref_member_3 r = {.a = {.r = {.a = 1}}};
    // FIXME: This note isn't great. The 'read' here is reading the referent of the reference.
    r.b.r.b = 2; // expected-note {{read of member 'b' of union with active member 'a'}}
    return r.b.r.b;
  }

  namespace PR43762 {
    struct A { int x = 1; constexpr int f() { return 1; } };
    struct B : A { int y = 1; constexpr int g() { return 2; } };
    struct C {
      int x;
      constexpr virtual int f() = 0;
    };
    struct D : C {
      int y;
      constexpr virtual int f() override { return 3; }
    };

    union U {
      int n;
      B b;
      D d;
    };

    constexpr int test(int which) {
      U u{.n = 5};
      switch (which) {
      case 0:
        u.b.x = 10; // expected-note {{active member 'n'}}
        return u.b.f();
      case 1:
        u.b.y = 10; // expected-note {{active member 'n'}}
        return u.b.g();
      case 2:
        u.d.x = 10; // expected-note {{active member 'n'}}
        return u.d.f();
      case 3:
        u.d.y = 10; // expected-note {{active member 'n'}}
        return u.d.f();
      }
    }

    static_assert(test(0)); // expected-error {{}} expected-note {{in call}}
    static_assert(test(1)); // expected-error {{}} expected-note {{in call}}
    static_assert(test(2)); // expected-error {{}} expected-note {{in call}}
    static_assert(test(3)); // expected-error {{}} expected-note {{in call}}
  }
}

namespace TwosComplementShifts {
  using uint32 = __UINT32_TYPE__;
  using int32 = __INT32_TYPE__;
  static_assert(uint32(int32(0x1234) << 16) == 0x12340000);
  static_assert(uint32(int32(0x1234) << 19) == 0x91a00000);
  static_assert(uint32(int32(0x1234) << 20) == 0x23400000); // expected-warning {{requires 34 bits}}
  static_assert(uint32(int32(0x1234) << 24) == 0x34000000); // expected-warning {{requires 38 bits}}
  static_assert(uint32(int32(-1) << 31) == 0x80000000);

  static_assert(-1 >> 1 == -1);
  static_assert(-1 >> 31 == -1);
  static_assert(-2 >> 1 == -1);
  static_assert(-3 >> 1 == -2);
  static_assert(-4 >> 1 == -2);
}

namespace Uninit {
  constexpr int f(bool init) {
    int a;
    if (init)
      a = 1;
    return a; // expected-note {{read of uninitialized object}}
  }
  static_assert(f(true) == 1);
  static_assert(f(false) == 1); // expected-error {{constant expression}} expected-note {{in call}}

  struct X {
    int n; // expected-note {{declared here}}
    constexpr X(bool init) {
      if (init) n = 123;
    }
  };
  constinit X x1(true);
  constinit X x2(false); // expected-error {{constant initializer}} expected-note {{constinit}} expected-note {{subobject of type 'int' is not initialized}}

  struct Y {
    struct Z { int n; }; // expected-note {{here}}
    Z z1;
    Z z2;
    Z z3;
    // OK: the lifetime of z1 (and its members) start before the initializer of
    // z2 runs.
    constexpr Y() : z2{ (z1.n = 1, z1.n + 1) } { z3.n = 3; }
    // Not OK: z3 is not in its lifetime when the initializer of z2 runs.
    constexpr Y(int) : z2{
      (z3.n = 1, // expected-note {{assignment to object outside its lifetime}}
       z3.n + 1) // expected-warning {{uninitialized}}
    } { z1.n = 3; }
    constexpr Y(int, int) : z2{} {}
  };
  // FIXME: This is working around clang not implementing DR2026. With that
  // fixed, we should be able to test this without the injected copy.
  constexpr Y copy(Y y) { return y; } // expected-note {{in call to 'Y(y)'}} expected-note {{subobject of type 'int' is not initialized}}
  constexpr Y y1 = copy(Y());
  static_assert(y1.z1.n == 1 && y1.z2.n == 2 && y1.z3.n == 3);

  constexpr Y y2 = copy(Y(0)); // expected-error {{constant expression}} expected-note {{in call}}

  static_assert(Y(0,0).z2.n == 0);
  static_assert(Y(0,0).z1.n == 0); // expected-error {{constant expression}} expected-note {{read of uninitialized object}}
  static_assert(Y(0,0).z3.n == 0); // expected-error {{constant expression}} expected-note {{read of uninitialized object}}

  static_assert(copy(Y(0,0)).z2.n == 0); // expected-error {{constant expression}} expected-note {{in call}}

  constexpr unsigned char not_even_unsigned_char() {
    unsigned char c;
    return c; // expected-note {{read of uninitialized object}}
  }
  constexpr unsigned char x = not_even_unsigned_char(); // expected-error {{constant expression}} expected-note {{in call}}

  constexpr int switch_var(int n) {
    switch (n) {
    case 1:
      int a;
      a = n;
      return a;

    case 2:
      a = n;
      return a;
    }
  }
  constexpr int s1 = switch_var(1);
  constexpr int s2 = switch_var(2);
  static_assert(s1 == 1 && s2 == 2);

  constexpr bool switch_into_init_stmt() {
    switch (1) {
      if (int n; false) {
        for (int m; false;) {
        case 1:
          n = m = 1;
          return n == 1 && m == 1;
        }
      }
    }
  }
  static_assert(switch_into_init_stmt());
}

namespace dtor {
  void lifetime_extension() {
    struct X { constexpr ~X() {} };
    X &&a = X();
  }

  template<typename T> constexpr T &&ref(T &&t) { return (T&&)t; }

  struct Buf {
    char buf[64];
    int n = 0;
    constexpr void operator+=(char c) { buf[n++] = c; }
    constexpr bool operator==(const char *str) const {
      return str[n] == 0 && __builtin_memcmp(str, buf, n) == 0;
    }
    constexpr bool operator!=(const char *str) const { return !operator==(str); }
  };

  struct A {
    constexpr A(Buf &buf, char c) : buf(buf), c(c) { buf += c; }
    constexpr ~A() { buf += c; }
    constexpr operator bool() const { return true; }
    Buf &buf;
    char c;
  };

  constexpr bool dtor_calls_dtor() {
    union U {
      constexpr U(Buf &buf) : u(buf, 'u') { buf += 'U'; }
      constexpr ~U() { u.buf += 'U'; }
      A u, v;
    };

    struct B : A {
      A c, &&d, e;
      union {
        A f;
      };
      U u;
      constexpr B(Buf &buf)
          : A(buf, 'a'), c(buf, 'c'), d(ref(A(buf, 'd'))), e(A(buf, 'e')), f(buf, 'f'), u(buf) {
        buf += 'b';
      }
      constexpr ~B() {
        buf += 'b';
      }
    };

    Buf buf;
    {
      B b(buf);
      if (buf != "acddefuUb")
        return false;
    }
    if (buf != "acddefuUbbUeca")
      return false;
    return true;
  }
  static_assert(dtor_calls_dtor());

  constexpr void abnormal_termination(Buf &buf) {
    struct Indestructible {
      constexpr ~Indestructible(); // not defined
    };

    A a(buf, 'a');
    A(buf, 'b');
    int n = 0;
    for (A &&c = A(buf, 'c'); A d = A(buf, 'd'); A(buf, 'e')) {
      switch (A f(buf, 'f'); A g = A(buf, 'g')) { // expected-warning {{boolean}}
      case false: {
        A x(buf, 'x');
      }

      case true: {
        A h(buf, 'h');
        switch (n++) {
        case 0:
          break;
        case 1:
          continue;
        case 2:
          return;
        }
        break;
      }

      default:
        Indestructible indest;
      }

      A j = (A(buf, 'i'), A(buf, 'j'));
    }
  }

  constexpr bool check_abnormal_termination() {
    Buf buf = {};
    abnormal_termination(buf);
    return buf ==
      "abbc"
        "dfgh" /*break*/ "hgfijijeed"
        "dfgh" /*continue*/ "hgfeed"
        "dfgh" /*return*/ "hgfd"
      "ca";
  }
  static_assert(check_abnormal_termination());

  constexpr bool run_dtors_on_array_filler() {
    struct S {
      int times_destroyed = 0;
      constexpr ~S() { if (++times_destroyed != 1) throw "oops"; }
    };
    S s[3];
    return true;
  }
  static_assert(run_dtors_on_array_filler());

  // Ensure that we can handle temporary cleanups for array temporaries.
  struct ArrElem { constexpr ~ArrElem() {} };
  using Arr = ArrElem[3];
  static_assert((Arr{}, true));
}

namespace dynamic_alloc {
  constexpr int *p = // expected-error {{constant}} expected-note {{pointer to heap-allocated object is not a constant expression}}
    new int; // expected-note {{heap allocation performed here}}

  constexpr int f(int n) {
    int *p = new int[n];
    for (int i = 0; i != n; ++i) {
      p[i] = i;
    }
    int k = 0;
    for (int i = 0; i != n; ++i) {
      k += p[i];
    }
    delete[] p;
    return k;
  }
  static_assert(f(123) == 123 * 122 / 2);

  constexpr bool nvdtor() { // expected-error {{never produces a constant expression}}
    struct S {
      constexpr ~S() {}
    };
    struct T : S {};
    delete (S*)new T; // expected-note {{delete of object with dynamic type 'T' through pointer to base class type 'S' with non-virtual destructor}}
    return true;
  }

  constexpr int vdtor_1() {
    int a;
    struct S {
      constexpr S(int *p) : p(p) {}
      constexpr virtual ~S() { *p = 1; }
      int *p;
    };
    struct T : S {
      // implicit destructor defined eagerly because it is constexpr and virtual
      using S::S;
    };
    delete (S*)new T(&a);
    return a;
  }
  static_assert(vdtor_1() == 1);

  constexpr int vdtor_2() {
    int a = 0;
    struct S { constexpr virtual ~S() {} };
    struct T : S {
      constexpr T(int *p) : p(p) {}
      constexpr ~T() { ++*p; }
      int *p;
    };
    S *p = new T{&a};
    delete p;
    return a;
  }
  static_assert(vdtor_2() == 1);

  constexpr int vdtor_3(int mode) {
    int a = 0;
    struct S { constexpr virtual ~S() {} };
    struct T : S {
      constexpr T(int *p) : p(p) {}
      constexpr ~T() { ++*p; }
      int *p;
    };
    S *p = new T[3]{&a, &a, &a}; // expected-note 2{{heap allocation}}
    switch (mode) {
    case 0:
      delete p; // expected-note {{non-array delete used to delete pointer to array object of type 'T [3]'}}
      break;
    case 1:
      // FIXME: This diagnosic isn't great; we should mention the cast to S*
      // somewhere in here.
      delete[] p; // expected-note {{delete of pointer to subobject '&{*new T [3]#0}[0]'}}
      break;
    case 2:
      delete (T*)p; // expected-note {{non-array delete used to delete pointer to array object of type 'T [3]'}}
      break;
    case 3:
      delete[] (T*)p;
      break;
    }
    return a;
  }
  static_assert(vdtor_3(0) == 3); // expected-error {{}} expected-note {{in call}}
  static_assert(vdtor_3(1) == 3); // expected-error {{}} expected-note {{in call}}
  static_assert(vdtor_3(2) == 3); // expected-error {{}} expected-note {{in call}}
  static_assert(vdtor_3(3) == 3);

  constexpr void delete_mismatch() { // expected-error {{never produces a constant expression}}
    delete[] // expected-note {{array delete used to delete pointer to non-array object of type 'int'}}
      new int; // expected-note {{allocation}}
  }

  template<typename T>
  constexpr T dynarray(int elems, int i) {
    T *p;
    if constexpr (sizeof(T) == 1)
      p = new T[elems]{"fox"}; // expected-note {{evaluated array bound 3 is too small to hold 4 explicitly initialized elements}}
    else
      p = new T[elems]{1, 2, 3}; // expected-note {{evaluated array bound 2 is too small to hold 3 explicitly initialized elements}}
    T n = p[i]; // expected-note 4{{past-the-end}}
    delete [] p;
    return n;
  }
  static_assert(dynarray<int>(4, 0) == 1);
  static_assert(dynarray<int>(4, 1) == 2);
  static_assert(dynarray<int>(4, 2) == 3);
  static_assert(dynarray<int>(4, 3) == 0);
  static_assert(dynarray<int>(4, 4) == 0); // expected-error {{constant expression}} expected-note {{in call}}
  static_assert(dynarray<int>(3, 2) == 3);
  static_assert(dynarray<int>(3, 3) == 0); // expected-error {{constant expression}} expected-note {{in call}}
  static_assert(dynarray<int>(2, 1) == 0); // expected-error {{constant expression}} expected-note {{in call}}
  static_assert(dynarray<char>(5, 0) == 'f');
  static_assert(dynarray<char>(5, 1) == 'o');
  static_assert(dynarray<char>(5, 2) == 'x');
  static_assert(dynarray<char>(5, 3) == 0); // (from string)
  static_assert(dynarray<char>(5, 4) == 0); // (from filler)
  static_assert(dynarray<char>(5, 5) == 0); // expected-error {{constant expression}} expected-note {{in call}}
  static_assert(dynarray<char>(4, 0) == 'f');
  static_assert(dynarray<char>(4, 1) == 'o');
  static_assert(dynarray<char>(4, 2) == 'x');
  static_assert(dynarray<char>(4, 3) == 0);
  static_assert(dynarray<char>(4, 4) == 0); // expected-error {{constant expression}} expected-note {{in call}}
  static_assert(dynarray<char>(3, 2) == 'x'); // expected-error {{constant expression}} expected-note {{in call}}

  constexpr bool run_dtors_on_array_filler() {
    struct S {
      int times_destroyed = 0;
      constexpr ~S() { if (++times_destroyed != 1) throw "oops"; }
    };
    delete[] new S[3];
    return true;
  }
  static_assert(run_dtors_on_array_filler());

  constexpr bool erroneous_array_bound(long long n) {
    delete[] new int[n]; // expected-note {{array bound -1 is negative}} expected-note {{array bound 4611686018427387904 is too large}}
    return true;
  }
  static_assert(erroneous_array_bound(3));
  static_assert(erroneous_array_bound(0));
  static_assert(erroneous_array_bound(-1)); // expected-error {{constant expression}} expected-note {{in call}}
  static_assert(erroneous_array_bound(1LL << 62)); // expected-error {{constant expression}} expected-note {{in call}}

  constexpr bool erroneous_array_bound_nothrow(long long n) {
    int *p = new (std::nothrow) int[n];
    bool result = p != 0;
    delete[] p;
    return result;
  }
  static_assert(erroneous_array_bound_nothrow(3));
  static_assert(erroneous_array_bound_nothrow(0));
  static_assert(!erroneous_array_bound_nothrow(-1));
  static_assert(!erroneous_array_bound_nothrow(1LL << 62));

  constexpr bool evaluate_nothrow_arg() {
    bool ok = false;
    delete new ((ok = true, std::nothrow)) int;
    return ok;
  }
  static_assert(evaluate_nothrow_arg());

  constexpr void double_delete() { // expected-error {{never produces a constant expression}}
    int *p = new int;
    delete p;
    delete p; // expected-note {{delete of pointer that has already been deleted}}
  }
  constexpr bool super_secret_double_delete() {
    struct A {
      constexpr ~A() { delete this; } // expected-note {{destruction of object that is already being destroyed}} expected-note {{in call}}
    };
    delete new A; // expected-note {{in call}}
    return true;
  }
  static_assert(super_secret_double_delete()); // expected-error {{constant expression}} expected-note {{in call}}

  constexpr void use_after_free() { // expected-error {{never produces a constant expression}}
    int *p = new int;
    delete p;
    *p = 1; // expected-note {{assignment to heap allocated object that has been deleted}}
  }
  constexpr void use_after_free_2() { // expected-error {{never produces a constant expression}}
    struct X { constexpr void f() {} };
    X *p = new X;
    delete p;
    p->f(); // expected-note {{member call on heap allocated object that has been deleted}}
  }

  template<typename T> struct X {
    std::size_t n;
    char *p;
    void dependent();
  };
  template<typename T> void X<T>::dependent() {
    char *p;
    // Ensure that we don't try to evaluate these for overflow and crash. These
    // are all value-dependent expressions.
    p = new char[n];
    p = new ((std::align_val_t)n) char[n];
    p = new char(n);
  }
}

struct placement_new_arg {};
void *operator new(std::size_t, placement_new_arg);
void operator delete(void*, placement_new_arg);

namespace placement_new_delete {
  struct ClassSpecificNew {
    void *operator new(std::size_t);
  };
  struct ClassSpecificDelete {
    void operator delete(void*);
  };
  struct DestroyingDelete {
    void operator delete(DestroyingDelete*, std::destroying_delete_t);
  };
  struct alignas(64) Overaligned {};

  constexpr bool ok() {
    delete new Overaligned;
    delete ::new ClassSpecificNew;
    ::delete new ClassSpecificDelete;
    ::delete new DestroyingDelete;
    return true;
  }
  static_assert(ok());

  constexpr bool bad(int which) {
    switch (which) {
    case 0:
      delete new (placement_new_arg{}) int; // expected-note {{call to placement 'operator new'}}
      break;

    case 1:
      delete new ClassSpecificNew; // expected-note {{call to class-specific 'operator new'}}
      break;

    case 2:
      delete new ClassSpecificDelete; // expected-note {{call to class-specific 'operator delete'}}
      break;

    case 3:
      delete new DestroyingDelete; // expected-note {{call to class-specific 'operator delete'}}
      break;

    case 4:
      // FIXME: This technically follows the standard's rules, but it seems
      // unreasonable to expect implementations to support this.
      delete new (std::align_val_t{64}) Overaligned; // expected-note {{placement new expression is not yet supported}}
      break;
    }

    return true;
  }
  static_assert(bad(0)); // expected-error {{constant expression}} expected-note {{in call}}
  static_assert(bad(1)); // expected-error {{constant expression}} expected-note {{in call}}
  static_assert(bad(2)); // expected-error {{constant expression}} expected-note {{in call}}
  static_assert(bad(3)); // expected-error {{constant expression}} expected-note {{in call}}
  static_assert(bad(4)); // expected-error {{constant expression}} expected-note {{in call}}
}

namespace delete_random_things {
  static_assert((delete new int, true));
  static_assert((delete (int*)0, true));
  int n; // expected-note {{declared here}}
  static_assert((delete &n, true)); // expected-error {{}} expected-note {{delete of pointer '&n' that does not point to a heap-allocated object}}
  struct A { int n; };
  static_assert((delete &(new A)->n, true)); // expected-error {{}} expected-note {{delete of pointer to subobject '&{*new delete_random_things::A#0}.n'}}
  static_assert((delete (new int + 1), true)); // expected-error {{}} expected-note {{delete of pointer '&{*new int#0} + 1' that does not point to complete object}}
  static_assert((delete[] (new int[3] + 1), true)); // expected-error {{}} expected-note {{delete of pointer to subobject '&{*new int [3]#0}[1]'}}
  static_assert((delete &(int&)(int&&)0, true)); // expected-error {{}} expected-note {{delete of pointer '&0' that does not point to a heap-allocated object}} expected-note {{temporary created here}}
}

namespace value_dependent_delete {
  template<typename T> void f(T *p) {
    int arr[(delete p, 0)];
  }
}

namespace memory_leaks {
  static_assert(*new bool(true)); // expected-error {{}} expected-note {{allocation performed here was not deallocated}}

  constexpr bool *f() { return new bool(true); } // expected-note {{allocation performed here was not deallocated}}
  static_assert(*f()); // expected-error {{}}

  struct UP {
    bool *p;
    constexpr ~UP() { delete p; }
    constexpr bool &operator*() { return *p; }
  };
  constexpr UP g() { return {new bool(true)}; }
  static_assert(*g()); // ok

  constexpr bool h(UP p) { return *p; }
  static_assert(h({new bool(true)})); // ok
}

namespace dtor_call {
  struct A { int n; };
  constexpr void f() { // expected-error {{never produces a constant expression}}
    A a; // expected-note {{destroying object 'a' whose lifetime has already ended}}
    a.~A();
  }
  union U { A a; };
  constexpr void g() {
    U u;
    u.a.n = 3;
    u.a.~A();
    // There's now effectively no active union member, but we model it as if
    // 'a' is still the active union member (but its lifetime has ended).
    u.a.n = 4; // Start lifetime of 'a' again.
    u.a.~A();
  }
  static_assert((g(), true));

  constexpr bool pseudo() {
    using T = bool;
    bool b = false;
    // This does evaluate the store to 'b'...
    (b = true).~T();
    // ... but does not end the lifetime of the object.
    return b;
  }
  static_assert(pseudo());

  constexpr void use_after_destroy() {
    A a;
    a.~A();
    A b = a; // expected-note {{in call}} expected-note {{read of object outside its lifetime}}
  }
  static_assert((use_after_destroy(), true)); // expected-error {{}} expected-note {{in call}}

  constexpr void double_destroy() {
    A a;
    a.~A();
    a.~A(); // expected-note {{destruction of object outside its lifetime}}
  }
  static_assert((double_destroy(), true)); // expected-error {{}} expected-note {{in call}}

  struct X { char *p; constexpr ~X() { *p++ = 'X'; } };
  struct Y : X { int y; virtual constexpr ~Y() { *p++ = 'Y'; } };
  struct Z : Y { int z; constexpr ~Z() override { *p++ = 'Z'; } };
  union VU {
    constexpr VU() : z() {}
    constexpr ~VU() {}
    Z z;
  };

  constexpr bool virt_dtor(int mode, const char *expected) {
    char buff[4] = {};
    VU vu;
    vu.z.p = buff;
    switch (mode) {
    case 0:
      vu.z.~Z();
      break;
    case 1:
      ((Y&)vu.z).~Y();
      break;
    case 2:
      ((X&)vu.z).~X();
      break;
    case 3:
      ((Y&)vu.z).Y::~Y();
      vu.z.z = 1; // ok, still have a Z (with no Y base class!)
      break;
    case 4:
      ((X&)vu.z).X::~X();
      vu.z.y = 1; // ok, still have a Z and a Y (with no X base class!)
      break;
    }
    return __builtin_strcmp(expected, buff) == 0;
  }
  static_assert(virt_dtor(0, "ZYX"));
  static_assert(virt_dtor(1, "ZYX"));
  static_assert(virt_dtor(2, "X"));
  static_assert(virt_dtor(3, "YX"));
  static_assert(virt_dtor(4, "X"));

  constexpr bool virt_delete(bool global) {
    struct A {
      virtual constexpr ~A() {}
    };
    struct B : A {
      void operator delete(void *);
      constexpr ~B() {}
    };

    A *p = new B;
    if (global)
      ::delete p;
    else
      delete p; // expected-note {{call to class-specific 'operator delete'}}
    return true;
  }
  static_assert(virt_delete(true));
  static_assert(virt_delete(false)); // expected-error {{}} expected-note {{in call}}

  constexpr void use_after_virt_destroy() {
    char buff[4] = {};
    VU vu;
    vu.z.p = buff;
    ((Y&)vu.z).~Y();
    ((Z&)vu.z).z = 1; // expected-note {{assignment to object outside its lifetime}}
  }
  static_assert((use_after_virt_destroy(), true)); // expected-error {{}} expected-note {{in call}}

  constexpr void destroy_after_lifetime() {
    A *p;
    {
      A a;
      p = &a;
    }
    p->~A(); // expected-note {{destruction of object outside its lifetime}}
  }
  static_assert((destroy_after_lifetime(), true)); // expected-error {{}} expected-note {{in call}}

  constexpr void destroy_after_lifetime2() {
    A *p = []{ A a; return &a; }(); // expected-warning {{}} expected-note {{declared here}}
    p->~A(); // expected-note {{destruction of variable whose lifetime has ended}}
  }
  static_assert((destroy_after_lifetime2(), true)); // expected-error {{}} expected-note {{in call}}

  constexpr void destroy_after_lifetime3() {
    A *p = []{ return &(A&)(A&&)A(); }(); // expected-warning {{}} expected-note {{temporary created here}}
    p->~A(); // expected-note {{destruction of temporary whose lifetime has ended}}
  }
  static_assert((destroy_after_lifetime3(), true)); // expected-error {{}} expected-note {{in call}}

  constexpr void destroy_after_lifetime4() { // expected-error {{never produces a constant expression}}
    A *p = new A;
    delete p;
    p->~A(); // expected-note {{destruction of heap allocated object that has been deleted}}
  }

  struct Extern { constexpr ~Extern() {} } extern e;
  constexpr void destroy_extern() { // expected-error {{never produces a constant expression}}
    e.~Extern(); // expected-note {{cannot modify an object that is visible outside}}
  }

  constexpr A &&a_ref = A(); // expected-note {{temporary created here}}
  constexpr void destroy_extern_2() { // expected-error {{never produces a constant expression}}
    a_ref.~A(); // expected-note {{destruction of temporary is not allowed in a constant expression outside the expression that created the temporary}}
  }

  struct S {
    constexpr S() { n = 1; }
    constexpr ~S() { n = 0; }
    int n;
  };
  constexpr void destroy_volatile() {
    volatile S s;
  }
  static_assert((destroy_volatile(), true)); // ok, not volatile during construction and destruction

  constexpr void destroy_null() { // expected-error {{never produces a constant expression}}
    ((A*)nullptr)->~A(); // expected-note {{destruction of dereferenced null pointer}}
  }

  constexpr void destroy_past_end() { // expected-error {{never produces a constant expression}}
    A a;
    (&a+1)->~A(); // expected-note {{destruction of dereferenced one-past-the-end pointer}}
  }

  constexpr void destroy_past_end_array() { // expected-error {{never produces a constant expression}}
    A a[2];
    a[2].~A(); // expected-note {{destruction of dereferenced one-past-the-end pointer}}
  }

  union As {
    A a, b;
  };

  constexpr void destroy_no_active() { // expected-error {{never produces a constant expression}}
    As as;
    as.b.~A(); // expected-note {{destruction of member 'b' of union with no active member}}
  }

  constexpr void destroy_inactive() { // expected-error {{never produces a constant expression}}
    As as;
    as.a.n = 1;
    as.b.~A(); // expected-note {{destruction of member 'b' of union with active member 'a'}}
  }

  constexpr void destroy_no_active_2() { // expected-error {{never produces a constant expression}}
    As as;
    as.a.n = 1;
    as.a.~A();
    // FIXME: This diagnostic is wrong; the union has no active member now.
    as.b.~A(); // expected-note {{destruction of member 'b' of union with active member 'a'}}
  }

  constexpr void destroy_pointer() {
    using T = int*;
    T p;
    // We used to think this was an -> member access because its left-hand side
    // is a pointer. Ensure we don't crash.
    p.~T();
  }
  static_assert((destroy_pointer(), true));
}

namespace temp_dtor {
  void f();
  struct A {
    bool b;
    constexpr ~A() { if (b) f(); }
  };

  // We can't accept either of these unless we start actually registering the
  // destructors of the A temporaries to run on shutdown. It's unclear what the
  // intended standard behavior is so we reject this for now.
  constexpr A &&a = A{false}; // expected-error {{constant}} expected-note {{non-trivial destruction of lifetime-extended temporary}}
  void f() { a.b = true; }

  constexpr A &&b = A{true}; // expected-error {{constant}} expected-note {{non-trivial destruction of lifetime-extended temporary}}

  // FIXME: We could in prinicple accept this.
  constexpr const A &c = A{false}; // expected-error {{constant}} expected-note {{non-trivial destruction of lifetime-extended temporary}}
}

namespace value_dependent_init {
  struct A {
    constexpr ~A() {}
  };
  template<typename T> void f() {
    A a = T();
  }
}