llvm-rtdyld.cpp 34.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
//===-- llvm-rtdyld.cpp - MCJIT Testing Tool ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is a testing tool for use with the MC-JIT LLVM components.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/StringMap.h"
#include "llvm/DebugInfo/DIContext.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
#include "llvm/ExecutionEngine/RuntimeDyld.h"
#include "llvm/ExecutionEngine/RuntimeDyldChecker.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/Object/SymbolSize.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/InitLLVM.h"
#include "llvm/Support/MSVCErrorWorkarounds.h"
#include "llvm/Support/Memory.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/raw_ostream.h"

#include <future>
#include <list>

using namespace llvm;
using namespace llvm::object;

static cl::list<std::string>
InputFileList(cl::Positional, cl::ZeroOrMore,
              cl::desc("<input files>"));

enum ActionType {
  AC_Execute,
  AC_PrintObjectLineInfo,
  AC_PrintLineInfo,
  AC_PrintDebugLineInfo,
  AC_Verify
};

static cl::opt<ActionType>
Action(cl::desc("Action to perform:"),
       cl::init(AC_Execute),
       cl::values(clEnumValN(AC_Execute, "execute",
                             "Load, link, and execute the inputs."),
                  clEnumValN(AC_PrintLineInfo, "printline",
                             "Load, link, and print line information for each function."),
                  clEnumValN(AC_PrintDebugLineInfo, "printdebugline",
                             "Load, link, and print line information for each function using the debug object"),
                  clEnumValN(AC_PrintObjectLineInfo, "printobjline",
                             "Like -printlineinfo but does not load the object first"),
                  clEnumValN(AC_Verify, "verify",
                             "Load, link and verify the resulting memory image.")));

static cl::opt<std::string>
EntryPoint("entry",
           cl::desc("Function to call as entry point."),
           cl::init("_main"));

static cl::list<std::string>
Dylibs("dylib",
       cl::desc("Add library."),
       cl::ZeroOrMore);

static cl::list<std::string> InputArgv("args", cl::Positional,
                                       cl::desc("<program arguments>..."),
                                       cl::ZeroOrMore, cl::PositionalEatsArgs);

static cl::opt<std::string>
TripleName("triple", cl::desc("Target triple for disassembler"));

static cl::opt<std::string>
MCPU("mcpu",
     cl::desc("Target a specific cpu type (-mcpu=help for details)"),
     cl::value_desc("cpu-name"),
     cl::init(""));

static cl::list<std::string>
CheckFiles("check",
           cl::desc("File containing RuntimeDyld verifier checks."),
           cl::ZeroOrMore);

static cl::opt<uint64_t>
    PreallocMemory("preallocate",
                   cl::desc("Allocate memory upfront rather than on-demand"),
                   cl::init(0));

static cl::opt<uint64_t> TargetAddrStart(
    "target-addr-start",
    cl::desc("For -verify only: start of phony target address "
             "range."),
    cl::init(4096), // Start at "page 1" - no allocating at "null".
    cl::Hidden);

static cl::opt<uint64_t> TargetAddrEnd(
    "target-addr-end",
    cl::desc("For -verify only: end of phony target address range."),
    cl::init(~0ULL), cl::Hidden);

static cl::opt<uint64_t> TargetSectionSep(
    "target-section-sep",
    cl::desc("For -verify only: Separation between sections in "
             "phony target address space."),
    cl::init(0), cl::Hidden);

static cl::list<std::string>
SpecificSectionMappings("map-section",
                        cl::desc("For -verify only: Map a section to a "
                                 "specific address."),
                        cl::ZeroOrMore,
                        cl::Hidden);

static cl::list<std::string>
DummySymbolMappings("dummy-extern",
                    cl::desc("For -verify only: Inject a symbol into the extern "
                             "symbol table."),
                    cl::ZeroOrMore,
                    cl::Hidden);

static cl::opt<bool>
PrintAllocationRequests("print-alloc-requests",
                        cl::desc("Print allocation requests made to the memory "
                                 "manager by RuntimeDyld"),
                        cl::Hidden);

static cl::opt<bool> ShowTimes("show-times",
                               cl::desc("Show times for llvm-rtdyld phases"),
                               cl::init(false));

ExitOnError ExitOnErr;

struct RTDyldTimers {
  TimerGroup RTDyldTG{"llvm-rtdyld timers", "timers for llvm-rtdyld phases"};
  Timer LoadObjectsTimer{"load", "time to load/add object files", RTDyldTG};
  Timer LinkTimer{"link", "time to link object files", RTDyldTG};
  Timer RunTimer{"run", "time to execute jitlink'd code", RTDyldTG};
};

std::unique_ptr<RTDyldTimers> Timers;

/* *** */

using SectionIDMap = StringMap<unsigned>;
using FileToSectionIDMap = StringMap<SectionIDMap>;

void dumpFileToSectionIDMap(const FileToSectionIDMap &FileToSecIDMap) {
  for (const auto &KV : FileToSecIDMap) {
    llvm::dbgs() << "In " << KV.first() << "\n";
    for (auto &KV2 : KV.second)
      llvm::dbgs() << "  \"" << KV2.first() << "\" -> " << KV2.second << "\n";
  }
}

Expected<unsigned> getSectionId(const FileToSectionIDMap &FileToSecIDMap,
                                StringRef FileName, StringRef SectionName) {
  auto I = FileToSecIDMap.find(FileName);
  if (I == FileToSecIDMap.end())
    return make_error<StringError>("No file named " + FileName,
                                   inconvertibleErrorCode());
  auto &SectionIDs = I->second;
  auto J = SectionIDs.find(SectionName);
  if (J == SectionIDs.end())
    return make_error<StringError>("No section named \"" + SectionName +
                                   "\" in file " + FileName,
                                   inconvertibleErrorCode());
  return J->second;
}

// A trivial memory manager that doesn't do anything fancy, just uses the
// support library allocation routines directly.
class TrivialMemoryManager : public RTDyldMemoryManager {
public:
  struct SectionInfo {
    SectionInfo(StringRef Name, sys::MemoryBlock MB, unsigned SectionID)
      : Name(Name), MB(std::move(MB)), SectionID(SectionID) {}
    std::string Name;
    sys::MemoryBlock MB;
    unsigned SectionID = ~0U;
  };

  SmallVector<SectionInfo, 16> FunctionMemory;
  SmallVector<SectionInfo, 16> DataMemory;

  uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
                               unsigned SectionID,
                               StringRef SectionName) override;
  uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
                               unsigned SectionID, StringRef SectionName,
                               bool IsReadOnly) override;

  /// If non null, records subsequent Name -> SectionID mappings.
  void setSectionIDsMap(SectionIDMap *SecIDMap) {
    this->SecIDMap = SecIDMap;
  }

  void *getPointerToNamedFunction(const std::string &Name,
                                  bool AbortOnFailure = true) override {
    return nullptr;
  }

  bool finalizeMemory(std::string *ErrMsg) override { return false; }

  void addDummySymbol(const std::string &Name, uint64_t Addr) {
    DummyExterns[Name] = Addr;
  }

  JITSymbol findSymbol(const std::string &Name) override {
    auto I = DummyExterns.find(Name);

    if (I != DummyExterns.end())
      return JITSymbol(I->second, JITSymbolFlags::Exported);

    if (auto Sym = RTDyldMemoryManager::findSymbol(Name))
      return Sym;
    else if (auto Err = Sym.takeError())
      ExitOnErr(std::move(Err));
    else
      ExitOnErr(make_error<StringError>("Could not find definition for \"" +
                                            Name + "\"",
                                        inconvertibleErrorCode()));
    llvm_unreachable("Should have returned or exited by now");
  }

  void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr,
                        size_t Size) override {}
  void deregisterEHFrames() override {}

  void preallocateSlab(uint64_t Size) {
    std::error_code EC;
    sys::MemoryBlock MB =
      sys::Memory::allocateMappedMemory(Size, nullptr,
                                        sys::Memory::MF_READ |
                                        sys::Memory::MF_WRITE,
                                        EC);
    if (!MB.base())
      report_fatal_error("Can't allocate enough memory: " + EC.message());

    PreallocSlab = MB;
    UsePreallocation = true;
    SlabSize = Size;
  }

  uint8_t *allocateFromSlab(uintptr_t Size, unsigned Alignment, bool isCode,
                            StringRef SectionName, unsigned SectionID) {
    Size = alignTo(Size, Alignment);
    if (CurrentSlabOffset + Size > SlabSize)
      report_fatal_error("Can't allocate enough memory. Tune --preallocate");

    uintptr_t OldSlabOffset = CurrentSlabOffset;
    sys::MemoryBlock MB((void *)OldSlabOffset, Size);
    if (isCode)
      FunctionMemory.push_back(SectionInfo(SectionName, MB, SectionID));
    else
      DataMemory.push_back(SectionInfo(SectionName, MB, SectionID));
    CurrentSlabOffset += Size;
    return (uint8_t*)OldSlabOffset;
  }

private:
  std::map<std::string, uint64_t> DummyExterns;
  sys::MemoryBlock PreallocSlab;
  bool UsePreallocation = false;
  uintptr_t SlabSize = 0;
  uintptr_t CurrentSlabOffset = 0;
  SectionIDMap *SecIDMap = nullptr;
};

uint8_t *TrivialMemoryManager::allocateCodeSection(uintptr_t Size,
                                                   unsigned Alignment,
                                                   unsigned SectionID,
                                                   StringRef SectionName) {
  if (PrintAllocationRequests)
    outs() << "allocateCodeSection(Size = " << Size << ", Alignment = "
           << Alignment << ", SectionName = " << SectionName << ")\n";

  if (SecIDMap)
    (*SecIDMap)[SectionName] = SectionID;

  if (UsePreallocation)
    return allocateFromSlab(Size, Alignment, true /* isCode */,
                            SectionName, SectionID);

  std::error_code EC;
  sys::MemoryBlock MB =
    sys::Memory::allocateMappedMemory(Size, nullptr,
                                      sys::Memory::MF_READ |
                                      sys::Memory::MF_WRITE,
                                      EC);
  if (!MB.base())
    report_fatal_error("MemoryManager allocation failed: " + EC.message());
  FunctionMemory.push_back(SectionInfo(SectionName, MB, SectionID));
  return (uint8_t*)MB.base();
}

uint8_t *TrivialMemoryManager::allocateDataSection(uintptr_t Size,
                                                   unsigned Alignment,
                                                   unsigned SectionID,
                                                   StringRef SectionName,
                                                   bool IsReadOnly) {
  if (PrintAllocationRequests)
    outs() << "allocateDataSection(Size = " << Size << ", Alignment = "
           << Alignment << ", SectionName = " << SectionName << ")\n";

  if (SecIDMap)
    (*SecIDMap)[SectionName] = SectionID;

  if (UsePreallocation)
    return allocateFromSlab(Size, Alignment, false /* isCode */, SectionName,
                            SectionID);

  std::error_code EC;
  sys::MemoryBlock MB =
    sys::Memory::allocateMappedMemory(Size, nullptr,
                                      sys::Memory::MF_READ |
                                      sys::Memory::MF_WRITE,
                                      EC);
  if (!MB.base())
    report_fatal_error("MemoryManager allocation failed: " + EC.message());
  DataMemory.push_back(SectionInfo(SectionName, MB, SectionID));
  return (uint8_t*)MB.base();
}

static const char *ProgramName;

static void ErrorAndExit(const Twine &Msg) {
  errs() << ProgramName << ": error: " << Msg << "\n";
  exit(1);
}

static void loadDylibs() {
  for (const std::string &Dylib : Dylibs) {
    if (!sys::fs::is_regular_file(Dylib))
      report_fatal_error("Dylib not found: '" + Dylib + "'.");
    std::string ErrMsg;
    if (sys::DynamicLibrary::LoadLibraryPermanently(Dylib.c_str(), &ErrMsg))
      report_fatal_error("Error loading '" + Dylib + "': " + ErrMsg);
  }
}

/* *** */

static int printLineInfoForInput(bool LoadObjects, bool UseDebugObj) {
  assert(LoadObjects || !UseDebugObj);

  // Load any dylibs requested on the command line.
  loadDylibs();

  // If we don't have any input files, read from stdin.
  if (!InputFileList.size())
    InputFileList.push_back("-");
  for (auto &File : InputFileList) {
    // Instantiate a dynamic linker.
    TrivialMemoryManager MemMgr;
    RuntimeDyld Dyld(MemMgr, MemMgr);

    // Load the input memory buffer.

    ErrorOr<std::unique_ptr<MemoryBuffer>> InputBuffer =
        MemoryBuffer::getFileOrSTDIN(File);
    if (std::error_code EC = InputBuffer.getError())
      ErrorAndExit("unable to read input: '" + EC.message() + "'");

    Expected<std::unique_ptr<ObjectFile>> MaybeObj(
      ObjectFile::createObjectFile((*InputBuffer)->getMemBufferRef()));

    if (!MaybeObj) {
      std::string Buf;
      raw_string_ostream OS(Buf);
      logAllUnhandledErrors(MaybeObj.takeError(), OS);
      OS.flush();
      ErrorAndExit("unable to create object file: '" + Buf + "'");
    }

    ObjectFile &Obj = **MaybeObj;

    OwningBinary<ObjectFile> DebugObj;
    std::unique_ptr<RuntimeDyld::LoadedObjectInfo> LoadedObjInfo = nullptr;
    ObjectFile *SymbolObj = &Obj;
    if (LoadObjects) {
      // Load the object file
      LoadedObjInfo =
        Dyld.loadObject(Obj);

      if (Dyld.hasError())
        ErrorAndExit(Dyld.getErrorString());

      // Resolve all the relocations we can.
      Dyld.resolveRelocations();

      if (UseDebugObj) {
        DebugObj = LoadedObjInfo->getObjectForDebug(Obj);
        SymbolObj = DebugObj.getBinary();
        LoadedObjInfo.reset();
      }
    }

    std::unique_ptr<DIContext> Context =
        DWARFContext::create(*SymbolObj, LoadedObjInfo.get());

    std::vector<std::pair<SymbolRef, uint64_t>> SymAddr =
        object::computeSymbolSizes(*SymbolObj);

    // Use symbol info to iterate functions in the object.
    for (const auto &P : SymAddr) {
      object::SymbolRef Sym = P.first;
      Expected<SymbolRef::Type> TypeOrErr = Sym.getType();
      if (!TypeOrErr) {
        // TODO: Actually report errors helpfully.
        consumeError(TypeOrErr.takeError());
        continue;
      }
      SymbolRef::Type Type = *TypeOrErr;
      if (Type == object::SymbolRef::ST_Function) {
        Expected<StringRef> Name = Sym.getName();
        if (!Name) {
          // TODO: Actually report errors helpfully.
          consumeError(Name.takeError());
          continue;
        }
        Expected<uint64_t> AddrOrErr = Sym.getAddress();
        if (!AddrOrErr) {
          // TODO: Actually report errors helpfully.
          consumeError(AddrOrErr.takeError());
          continue;
        }
        uint64_t Addr = *AddrOrErr;

        object::SectionedAddress Address;

        uint64_t Size = P.second;
        // If we're not using the debug object, compute the address of the
        // symbol in memory (rather than that in the unrelocated object file)
        // and use that to query the DWARFContext.
        if (!UseDebugObj && LoadObjects) {
          auto SecOrErr = Sym.getSection();
          if (!SecOrErr) {
            // TODO: Actually report errors helpfully.
            consumeError(SecOrErr.takeError());
            continue;
          }
          object::section_iterator Sec = *SecOrErr;
          Address.SectionIndex = Sec->getIndex();
          uint64_t SectionLoadAddress =
            LoadedObjInfo->getSectionLoadAddress(*Sec);
          if (SectionLoadAddress != 0)
            Addr += SectionLoadAddress - Sec->getAddress();
        } else if (auto SecOrErr = Sym.getSection())
          Address.SectionIndex = SecOrErr.get()->getIndex();

        outs() << "Function: " << *Name << ", Size = " << Size
               << ", Addr = " << Addr << "\n";

        Address.Address = Addr;
        DILineInfoTable Lines =
            Context->getLineInfoForAddressRange(Address, Size);
        for (auto &D : Lines) {
          outs() << "  Line info @ " << D.first - Addr << ": "
                 << D.second.FileName << ", line:" << D.second.Line << "\n";
        }
      }
    }
  }

  return 0;
}

static void doPreallocation(TrivialMemoryManager &MemMgr) {
  // Allocate a slab of memory upfront, if required. This is used if
  // we want to test small code models.
  if (static_cast<intptr_t>(PreallocMemory) < 0)
    report_fatal_error("Pre-allocated bytes of memory must be a positive integer.");

  // FIXME: Limit the amount of memory that can be preallocated?
  if (PreallocMemory != 0)
    MemMgr.preallocateSlab(PreallocMemory);
}

static int executeInput() {
  // Load any dylibs requested on the command line.
  loadDylibs();

  // Instantiate a dynamic linker.
  TrivialMemoryManager MemMgr;
  doPreallocation(MemMgr);
  RuntimeDyld Dyld(MemMgr, MemMgr);

  // If we don't have any input files, read from stdin.
  if (!InputFileList.size())
    InputFileList.push_back("-");
  {
    TimeRegion TR(Timers ? &Timers->LoadObjectsTimer : nullptr);
    for (auto &File : InputFileList) {
      // Load the input memory buffer.
      ErrorOr<std::unique_ptr<MemoryBuffer>> InputBuffer =
          MemoryBuffer::getFileOrSTDIN(File);
      if (std::error_code EC = InputBuffer.getError())
        ErrorAndExit("unable to read input: '" + EC.message() + "'");
      Expected<std::unique_ptr<ObjectFile>> MaybeObj(
          ObjectFile::createObjectFile((*InputBuffer)->getMemBufferRef()));

      if (!MaybeObj) {
        std::string Buf;
        raw_string_ostream OS(Buf);
        logAllUnhandledErrors(MaybeObj.takeError(), OS);
        OS.flush();
        ErrorAndExit("unable to create object file: '" + Buf + "'");
      }

      ObjectFile &Obj = **MaybeObj;

      // Load the object file
      Dyld.loadObject(Obj);
      if (Dyld.hasError()) {
        ErrorAndExit(Dyld.getErrorString());
      }
    }
  }

  {
    TimeRegion TR(Timers ? &Timers->LinkTimer : nullptr);
    // Resove all the relocations we can.
    // FIXME: Error out if there are unresolved relocations.
    Dyld.resolveRelocations();
  }

  // Get the address of the entry point (_main by default).
  void *MainAddress = Dyld.getSymbolLocalAddress(EntryPoint);
  if (!MainAddress)
    ErrorAndExit("no definition for '" + EntryPoint + "'");

  // Invalidate the instruction cache for each loaded function.
  for (auto &FM : MemMgr.FunctionMemory) {

    auto &FM_MB = FM.MB;

    // Make sure the memory is executable.
    // setExecutable will call InvalidateInstructionCache.
    if (auto EC = sys::Memory::protectMappedMemory(FM_MB,
                                                   sys::Memory::MF_READ |
                                                   sys::Memory::MF_EXEC))
      ErrorAndExit("unable to mark function executable: '" + EC.message() +
                   "'");
  }

  // Dispatch to _main().
  errs() << "loaded '" << EntryPoint << "' at: " << (void*)MainAddress << "\n";

  int (*Main)(int, const char**) =
    (int(*)(int,const char**)) uintptr_t(MainAddress);
  std::vector<const char *> Argv;
  // Use the name of the first input object module as argv[0] for the target.
  Argv.push_back(InputFileList[0].data());
  for (auto &Arg : InputArgv)
    Argv.push_back(Arg.data());
  Argv.push_back(nullptr);
  int Result = 0;
  {
    TimeRegion TR(Timers ? &Timers->RunTimer : nullptr);
    Result = Main(Argv.size() - 1, Argv.data());
  }

  return Result;
}

static int checkAllExpressions(RuntimeDyldChecker &Checker) {
  for (const auto& CheckerFileName : CheckFiles) {
    ErrorOr<std::unique_ptr<MemoryBuffer>> CheckerFileBuf =
        MemoryBuffer::getFileOrSTDIN(CheckerFileName);
    if (std::error_code EC = CheckerFileBuf.getError())
      ErrorAndExit("unable to read input '" + CheckerFileName + "': " +
                   EC.message());

    if (!Checker.checkAllRulesInBuffer("# rtdyld-check:",
                                       CheckerFileBuf.get().get()))
      ErrorAndExit("some checks in '" + CheckerFileName + "' failed");
  }
  return 0;
}

void applySpecificSectionMappings(RuntimeDyld &Dyld,
                                  const FileToSectionIDMap &FileToSecIDMap) {

  for (StringRef Mapping : SpecificSectionMappings) {
    size_t EqualsIdx = Mapping.find_first_of("=");
    std::string SectionIDStr = Mapping.substr(0, EqualsIdx);
    size_t ComaIdx = Mapping.find_first_of(",");

    if (ComaIdx == StringRef::npos)
      report_fatal_error("Invalid section specification '" + Mapping +
                         "'. Should be '<file name>,<section name>=<addr>'");

    std::string FileName = SectionIDStr.substr(0, ComaIdx);
    std::string SectionName = SectionIDStr.substr(ComaIdx + 1);
    unsigned SectionID =
      ExitOnErr(getSectionId(FileToSecIDMap, FileName, SectionName));

    auto* OldAddr = Dyld.getSectionContent(SectionID).data();
    std::string NewAddrStr = Mapping.substr(EqualsIdx + 1);
    uint64_t NewAddr;

    if (StringRef(NewAddrStr).getAsInteger(0, NewAddr))
      report_fatal_error("Invalid section address in mapping '" + Mapping +
                         "'.");

    Dyld.mapSectionAddress(OldAddr, NewAddr);
  }
}

// Scatter sections in all directions!
// Remaps section addresses for -verify mode. The following command line options
// can be used to customize the layout of the memory within the phony target's
// address space:
// -target-addr-start <s> -- Specify where the phony target address range starts.
// -target-addr-end   <e> -- Specify where the phony target address range ends.
// -target-section-sep <d> -- Specify how big a gap should be left between the
//                            end of one section and the start of the next.
//                            Defaults to zero. Set to something big
//                            (e.g. 1 << 32) to stress-test stubs, GOTs, etc.
//
static void remapSectionsAndSymbols(const llvm::Triple &TargetTriple,
                                    RuntimeDyld &Dyld,
                                    TrivialMemoryManager &MemMgr) {

  // Set up a work list (section addr/size pairs).
  typedef std::list<const TrivialMemoryManager::SectionInfo*> WorklistT;
  WorklistT Worklist;

  for (const auto& CodeSection : MemMgr.FunctionMemory)
    Worklist.push_back(&CodeSection);
  for (const auto& DataSection : MemMgr.DataMemory)
    Worklist.push_back(&DataSection);

  // Keep an "already allocated" mapping of section target addresses to sizes.
  // Sections whose address mappings aren't specified on the command line will
  // allocated around the explicitly mapped sections while maintaining the
  // minimum separation.
  std::map<uint64_t, uint64_t> AlreadyAllocated;

  // Move the previously applied mappings (whether explicitly specified on the
  // command line, or implicitly set by RuntimeDyld) into the already-allocated
  // map.
  for (WorklistT::iterator I = Worklist.begin(), E = Worklist.end();
       I != E;) {
    WorklistT::iterator Tmp = I;
    ++I;

    auto LoadAddr = Dyld.getSectionLoadAddress((*Tmp)->SectionID);

    if (LoadAddr != static_cast<uint64_t>(
          reinterpret_cast<uintptr_t>((*Tmp)->MB.base()))) {
      // A section will have a LoadAddr of 0 if it wasn't loaded for whatever
      // reason (e.g. zero byte COFF sections). Don't include those sections in
      // the allocation map.
      if (LoadAddr != 0)
        AlreadyAllocated[LoadAddr] = (*Tmp)->MB.allocatedSize();
      Worklist.erase(Tmp);
    }
  }

  // If the -target-addr-end option wasn't explicitly passed, then set it to a
  // sensible default based on the target triple.
  if (TargetAddrEnd.getNumOccurrences() == 0) {
    if (TargetTriple.isArch16Bit())
      TargetAddrEnd = (1ULL << 16) - 1;
    else if (TargetTriple.isArch32Bit())
      TargetAddrEnd = (1ULL << 32) - 1;
    // TargetAddrEnd already has a sensible default for 64-bit systems, so
    // there's nothing to do in the 64-bit case.
  }

  // Process any elements remaining in the worklist.
  while (!Worklist.empty()) {
    auto *CurEntry = Worklist.front();
    Worklist.pop_front();

    uint64_t NextSectionAddr = TargetAddrStart;

    for (const auto &Alloc : AlreadyAllocated)
      if (NextSectionAddr + CurEntry->MB.allocatedSize() + TargetSectionSep <=
          Alloc.first)
        break;
      else
        NextSectionAddr = Alloc.first + Alloc.second + TargetSectionSep;

    Dyld.mapSectionAddress(CurEntry->MB.base(), NextSectionAddr);
    AlreadyAllocated[NextSectionAddr] = CurEntry->MB.allocatedSize();
  }

  // Add dummy symbols to the memory manager.
  for (const auto &Mapping : DummySymbolMappings) {
    size_t EqualsIdx = Mapping.find_first_of('=');

    if (EqualsIdx == StringRef::npos)
      report_fatal_error("Invalid dummy symbol specification '" + Mapping +
                         "'. Should be '<symbol name>=<addr>'");

    std::string Symbol = Mapping.substr(0, EqualsIdx);
    std::string AddrStr = Mapping.substr(EqualsIdx + 1);

    uint64_t Addr;
    if (StringRef(AddrStr).getAsInteger(0, Addr))
      report_fatal_error("Invalid symbol mapping '" + Mapping + "'.");

    MemMgr.addDummySymbol(Symbol, Addr);
  }
}

// Load and link the objects specified on the command line, but do not execute
// anything. Instead, attach a RuntimeDyldChecker instance and call it to
// verify the correctness of the linked memory.
static int linkAndVerify() {

  // Check for missing triple.
  if (TripleName == "")
    ErrorAndExit("-triple required when running in -verify mode.");

  // Look up the target and build the disassembler.
  Triple TheTriple(Triple::normalize(TripleName));
  std::string ErrorStr;
  const Target *TheTarget =
    TargetRegistry::lookupTarget("", TheTriple, ErrorStr);
  if (!TheTarget)
    ErrorAndExit("Error accessing target '" + TripleName + "': " + ErrorStr);

  TripleName = TheTriple.getTriple();

  std::unique_ptr<MCSubtargetInfo> STI(
    TheTarget->createMCSubtargetInfo(TripleName, MCPU, ""));
  if (!STI)
    ErrorAndExit("Unable to create subtarget info!");

  std::unique_ptr<MCRegisterInfo> MRI(TheTarget->createMCRegInfo(TripleName));
  if (!MRI)
    ErrorAndExit("Unable to create target register info!");

  MCTargetOptions MCOptions;
  std::unique_ptr<MCAsmInfo> MAI(
      TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
  if (!MAI)
    ErrorAndExit("Unable to create target asm info!");

  MCContext Ctx(MAI.get(), MRI.get(), nullptr);

  std::unique_ptr<MCDisassembler> Disassembler(
    TheTarget->createMCDisassembler(*STI, Ctx));
  if (!Disassembler)
    ErrorAndExit("Unable to create disassembler!");

  std::unique_ptr<MCInstrInfo> MII(TheTarget->createMCInstrInfo());

  std::unique_ptr<MCInstPrinter> InstPrinter(
      TheTarget->createMCInstPrinter(Triple(TripleName), 0, *MAI, *MII, *MRI));

  // Load any dylibs requested on the command line.
  loadDylibs();

  // Instantiate a dynamic linker.
  TrivialMemoryManager MemMgr;
  doPreallocation(MemMgr);

  struct StubID {
    unsigned SectionID;
    uint32_t Offset;
  };
  using StubInfos = StringMap<StubID>;
  using StubContainers = StringMap<StubInfos>;

  StubContainers StubMap;
  RuntimeDyld Dyld(MemMgr, MemMgr);
  Dyld.setProcessAllSections(true);

  Dyld.setNotifyStubEmitted([&StubMap](StringRef FilePath,
                                       StringRef SectionName,
                                       StringRef SymbolName, unsigned SectionID,
                                       uint32_t StubOffset) {
    std::string ContainerName =
        (sys::path::filename(FilePath) + "/" + SectionName).str();
    StubMap[ContainerName][SymbolName] = {SectionID, StubOffset};
  });

  auto GetSymbolInfo =
      [&Dyld, &MemMgr](
          StringRef Symbol) -> Expected<RuntimeDyldChecker::MemoryRegionInfo> {
    RuntimeDyldChecker::MemoryRegionInfo SymInfo;

    // First get the target address.
    if (auto InternalSymbol = Dyld.getSymbol(Symbol))
      SymInfo.setTargetAddress(InternalSymbol.getAddress());
    else {
      // Symbol not found in RuntimeDyld. Fall back to external lookup.
#ifdef _MSC_VER
      using ExpectedLookupResult =
          MSVCPExpected<JITSymbolResolver::LookupResult>;
#else
      using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>;
#endif

      auto ResultP = std::make_shared<std::promise<ExpectedLookupResult>>();
      auto ResultF = ResultP->get_future();

      MemMgr.lookup(JITSymbolResolver::LookupSet({Symbol}),
                    [=](Expected<JITSymbolResolver::LookupResult> Result) {
                      ResultP->set_value(std::move(Result));
                    });

      auto Result = ResultF.get();
      if (!Result)
        return Result.takeError();

      auto I = Result->find(Symbol);
      assert(I != Result->end() &&
             "Expected symbol address if no error occurred");
      SymInfo.setTargetAddress(I->second.getAddress());
    }

    // Now find the symbol content if possible (otherwise leave content as a
    // default-constructed StringRef).
    if (auto *SymAddr = Dyld.getSymbolLocalAddress(Symbol)) {
      unsigned SectionID = Dyld.getSymbolSectionID(Symbol);
      if (SectionID != ~0U) {
        char *CSymAddr = static_cast<char *>(SymAddr);
        StringRef SecContent = Dyld.getSectionContent(SectionID);
        uint64_t SymSize = SecContent.size() - (CSymAddr - SecContent.data());
        SymInfo.setContent(StringRef(CSymAddr, SymSize));
      }
    }
    return SymInfo;
  };

  auto IsSymbolValid = [&Dyld, GetSymbolInfo](StringRef Symbol) {
    if (Dyld.getSymbol(Symbol))
      return true;
    auto SymInfo = GetSymbolInfo(Symbol);
    if (!SymInfo) {
      logAllUnhandledErrors(SymInfo.takeError(), errs(), "RTDyldChecker: ");
      return false;
    }
    return SymInfo->getTargetAddress() != 0;
  };

  FileToSectionIDMap FileToSecIDMap;

  auto GetSectionInfo = [&Dyld, &FileToSecIDMap](StringRef FileName,
                                                 StringRef SectionName)
      -> Expected<RuntimeDyldChecker::MemoryRegionInfo> {
    auto SectionID = getSectionId(FileToSecIDMap, FileName, SectionName);
    if (!SectionID)
      return SectionID.takeError();
    RuntimeDyldChecker::MemoryRegionInfo SecInfo;
    SecInfo.setTargetAddress(Dyld.getSectionLoadAddress(*SectionID));
    SecInfo.setContent(Dyld.getSectionContent(*SectionID));
    return SecInfo;
  };

  auto GetStubInfo = [&Dyld, &StubMap](StringRef StubContainer,
                                       StringRef SymbolName)
      -> Expected<RuntimeDyldChecker::MemoryRegionInfo> {
    if (!StubMap.count(StubContainer))
      return make_error<StringError>("Stub container not found: " +
                                         StubContainer,
                                     inconvertibleErrorCode());
    if (!StubMap[StubContainer].count(SymbolName))
      return make_error<StringError>("Symbol name " + SymbolName +
                                         " in stub container " + StubContainer,
                                     inconvertibleErrorCode());
    auto &SI = StubMap[StubContainer][SymbolName];
    RuntimeDyldChecker::MemoryRegionInfo StubMemInfo;
    StubMemInfo.setTargetAddress(Dyld.getSectionLoadAddress(SI.SectionID) +
                                 SI.Offset);
    StubMemInfo.setContent(
        Dyld.getSectionContent(SI.SectionID).substr(SI.Offset));
    return StubMemInfo;
  };

  // We will initialize this below once we have the first object file and can
  // know the endianness.
  std::unique_ptr<RuntimeDyldChecker> Checker;

  // If we don't have any input files, read from stdin.
  if (!InputFileList.size())
    InputFileList.push_back("-");
  for (auto &InputFile : InputFileList) {
    // Load the input memory buffer.
    ErrorOr<std::unique_ptr<MemoryBuffer>> InputBuffer =
        MemoryBuffer::getFileOrSTDIN(InputFile);

    if (std::error_code EC = InputBuffer.getError())
      ErrorAndExit("unable to read input: '" + EC.message() + "'");

    Expected<std::unique_ptr<ObjectFile>> MaybeObj(
      ObjectFile::createObjectFile((*InputBuffer)->getMemBufferRef()));

    if (!MaybeObj) {
      std::string Buf;
      raw_string_ostream OS(Buf);
      logAllUnhandledErrors(MaybeObj.takeError(), OS);
      OS.flush();
      ErrorAndExit("unable to create object file: '" + Buf + "'");
    }

    ObjectFile &Obj = **MaybeObj;

    if (!Checker)
      Checker = std::make_unique<RuntimeDyldChecker>(
          IsSymbolValid, GetSymbolInfo, GetSectionInfo, GetStubInfo,
          GetStubInfo, Obj.isLittleEndian() ? support::little : support::big,
          Disassembler.get(), InstPrinter.get(), dbgs());

    auto FileName = sys::path::filename(InputFile);
    MemMgr.setSectionIDsMap(&FileToSecIDMap[FileName]);

    // Load the object file
    Dyld.loadObject(Obj);
    if (Dyld.hasError()) {
      ErrorAndExit(Dyld.getErrorString());
    }
  }

  // Re-map the section addresses into the phony target address space and add
  // dummy symbols.
  applySpecificSectionMappings(Dyld, FileToSecIDMap);
  remapSectionsAndSymbols(TheTriple, Dyld, MemMgr);

  // Resolve all the relocations we can.
  Dyld.resolveRelocations();

  // Register EH frames.
  Dyld.registerEHFrames();

  int ErrorCode = checkAllExpressions(*Checker);
  if (Dyld.hasError())
    ErrorAndExit("RTDyld reported an error applying relocations:\n  " +
                 Dyld.getErrorString());

  return ErrorCode;
}

int main(int argc, char **argv) {
  InitLLVM X(argc, argv);
  ProgramName = argv[0];

  llvm::InitializeAllTargetInfos();
  llvm::InitializeAllTargetMCs();
  llvm::InitializeAllDisassemblers();

  cl::ParseCommandLineOptions(argc, argv, "llvm MC-JIT tool\n");

  ExitOnErr.setBanner(std::string(argv[0]) + ": ");

  Timers = ShowTimes ? std::make_unique<RTDyldTimers>() : nullptr;

  int Result;
  switch (Action) {
  case AC_Execute:
    Result = executeInput();
    break;
  case AC_PrintDebugLineInfo:
    Result =
        printLineInfoForInput(/* LoadObjects */ true, /* UseDebugObj */ true);
    break;
  case AC_PrintLineInfo:
    Result =
        printLineInfoForInput(/* LoadObjects */ true, /* UseDebugObj */ false);
    break;
  case AC_PrintObjectLineInfo:
    Result =
        printLineInfoForInput(/* LoadObjects */ false, /* UseDebugObj */ false);
    break;
  case AC_Verify:
    Result = linkAndVerify();
    break;
  }
  return Result;
}