DeserializationTest.cpp
9.17 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
//===- DeserializationTest.cpp - SPIR-V Deserialization Tests -------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The purpose of this file is to provide negative deserialization tests.
// For positive deserialization tests, please use serialization and
// deserialization for roundtripping.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SPIRV/SPIRVBinaryUtils.h"
#include "mlir/Dialect/SPIRV/SPIRVOps.h"
#include "mlir/Dialect/SPIRV/Serialization.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/MLIRContext.h"
#include "gmock/gmock.h"
#include <memory>
using namespace mlir;
using ::testing::StrEq;
//===----------------------------------------------------------------------===//
// Test Fixture
//===----------------------------------------------------------------------===//
/// A deserialization test fixture providing minimal SPIR-V building and
/// diagnostic checking utilities.
class DeserializationTest : public ::testing::Test {
protected:
DeserializationTest() {
// Register a diagnostic handler to capture the diagnostic so that we can
// check it later.
context.getDiagEngine().registerHandler([&](Diagnostic &diag) {
diagnostic.reset(new Diagnostic(std::move(diag)));
});
}
/// Performs deserialization and returns the constructed spv.module op.
Optional<spirv::ModuleOp> deserialize() {
return spirv::deserialize(binary, &context);
}
/// Checks there is a diagnostic generated with the given `errorMessage`.
void expectDiagnostic(StringRef errorMessage) {
ASSERT_NE(nullptr, diagnostic.get());
// TODO(antiagainst): check error location too.
EXPECT_THAT(diagnostic->str(), StrEq(errorMessage));
}
//===--------------------------------------------------------------------===//
// SPIR-V builder methods
//===--------------------------------------------------------------------===//
/// Adds the SPIR-V module header to `binary`.
void addHeader() { spirv::appendModuleHeader(binary, /*idBound=*/0); }
/// Adds the SPIR-V instruction into `binary`.
void addInstruction(spirv::Opcode op, ArrayRef<uint32_t> operands) {
uint32_t wordCount = 1 + operands.size();
binary.push_back(spirv::getPrefixedOpcode(wordCount, op));
binary.append(operands.begin(), operands.end());
}
uint32_t addVoidType() {
auto id = nextID++;
addInstruction(spirv::Opcode::OpTypeVoid, {id});
return id;
}
uint32_t addIntType(uint32_t bitwidth) {
auto id = nextID++;
addInstruction(spirv::Opcode::OpTypeInt, {id, bitwidth, /*signedness=*/1});
return id;
}
uint32_t addStructType(ArrayRef<uint32_t> memberTypes) {
auto id = nextID++;
SmallVector<uint32_t, 2> words;
words.push_back(id);
words.append(memberTypes.begin(), memberTypes.end());
addInstruction(spirv::Opcode::OpTypeStruct, words);
return id;
}
uint32_t addFunctionType(uint32_t retType, ArrayRef<uint32_t> paramTypes) {
auto id = nextID++;
SmallVector<uint32_t, 4> operands;
operands.push_back(id);
operands.push_back(retType);
operands.append(paramTypes.begin(), paramTypes.end());
addInstruction(spirv::Opcode::OpTypeFunction, operands);
return id;
}
uint32_t addFunction(uint32_t retType, uint32_t fnType) {
auto id = nextID++;
addInstruction(spirv::Opcode::OpFunction,
{retType, id,
static_cast<uint32_t>(spirv::FunctionControl::None),
fnType});
return id;
}
void addFunctionEnd() { addInstruction(spirv::Opcode::OpFunctionEnd, {}); }
void addReturn() { addInstruction(spirv::Opcode::OpReturn, {}); }
protected:
SmallVector<uint32_t, 5> binary;
uint32_t nextID = 1;
MLIRContext context;
std::unique_ptr<Diagnostic> diagnostic;
};
//===----------------------------------------------------------------------===//
// Basics
//===----------------------------------------------------------------------===//
TEST_F(DeserializationTest, EmptyModuleFailure) {
ASSERT_EQ(llvm::None, deserialize());
expectDiagnostic("SPIR-V binary module must have a 5-word header");
}
TEST_F(DeserializationTest, WrongMagicNumberFailure) {
addHeader();
binary.front() = 0xdeadbeef; // Change to a wrong magic number
ASSERT_EQ(llvm::None, deserialize());
expectDiagnostic("incorrect magic number");
}
TEST_F(DeserializationTest, OnlyHeaderSuccess) {
addHeader();
EXPECT_NE(llvm::None, deserialize());
}
TEST_F(DeserializationTest, ZeroWordCountFailure) {
addHeader();
binary.push_back(0); // OpNop with zero word count
ASSERT_EQ(llvm::None, deserialize());
expectDiagnostic("word count cannot be zero");
}
TEST_F(DeserializationTest, InsufficientWordFailure) {
addHeader();
binary.push_back((2u << 16) |
static_cast<uint32_t>(spirv::Opcode::OpTypeVoid));
// Missing word for type <id>
ASSERT_EQ(llvm::None, deserialize());
expectDiagnostic("insufficient words for the last instruction");
}
//===----------------------------------------------------------------------===//
// Types
//===----------------------------------------------------------------------===//
TEST_F(DeserializationTest, IntTypeMissingSignednessFailure) {
addHeader();
addInstruction(spirv::Opcode::OpTypeInt, {nextID++, 32});
ASSERT_EQ(llvm::None, deserialize());
expectDiagnostic("OpTypeInt must have bitwidth and signedness parameters");
}
//===----------------------------------------------------------------------===//
// StructType
//===----------------------------------------------------------------------===//
TEST_F(DeserializationTest, OpMemberNameSuccess) {
addHeader();
SmallVector<uint32_t, 5> typeDecl;
std::swap(typeDecl, binary);
auto int32Type = addIntType(32);
auto structType = addStructType({int32Type, int32Type});
std::swap(typeDecl, binary);
SmallVector<uint32_t, 5> operands1 = {structType, 0};
spirv::encodeStringLiteralInto(operands1, "i1");
addInstruction(spirv::Opcode::OpMemberName, operands1);
SmallVector<uint32_t, 5> operands2 = {structType, 1};
spirv::encodeStringLiteralInto(operands2, "i2");
addInstruction(spirv::Opcode::OpMemberName, operands2);
binary.append(typeDecl.begin(), typeDecl.end());
EXPECT_NE(llvm::None, deserialize());
}
TEST_F(DeserializationTest, OpMemberNameMissingOperands) {
addHeader();
SmallVector<uint32_t, 5> typeDecl;
std::swap(typeDecl, binary);
auto int32Type = addIntType(32);
auto int64Type = addIntType(64);
auto structType = addStructType({int32Type, int64Type});
std::swap(typeDecl, binary);
SmallVector<uint32_t, 5> operands1 = {structType};
addInstruction(spirv::Opcode::OpMemberName, operands1);
binary.append(typeDecl.begin(), typeDecl.end());
ASSERT_EQ(llvm::None, deserialize());
expectDiagnostic("OpMemberName must have at least 3 operands");
}
TEST_F(DeserializationTest, OpMemberNameExcessOperands) {
addHeader();
SmallVector<uint32_t, 5> typeDecl;
std::swap(typeDecl, binary);
auto int32Type = addIntType(32);
auto structType = addStructType({int32Type});
std::swap(typeDecl, binary);
SmallVector<uint32_t, 5> operands = {structType, 0};
spirv::encodeStringLiteralInto(operands, "int32");
operands.push_back(42);
addInstruction(spirv::Opcode::OpMemberName, operands);
binary.append(typeDecl.begin(), typeDecl.end());
ASSERT_EQ(llvm::None, deserialize());
expectDiagnostic("unexpected trailing words in OpMemberName instruction");
}
//===----------------------------------------------------------------------===//
// Functions
//===----------------------------------------------------------------------===//
TEST_F(DeserializationTest, FunctionMissingEndFailure) {
addHeader();
auto voidType = addVoidType();
auto fnType = addFunctionType(voidType, {});
addFunction(voidType, fnType);
// Missing OpFunctionEnd
ASSERT_EQ(llvm::None, deserialize());
expectDiagnostic("expected OpFunctionEnd instruction");
}
TEST_F(DeserializationTest, FunctionMissingParameterFailure) {
addHeader();
auto voidType = addVoidType();
auto i32Type = addIntType(32);
auto fnType = addFunctionType(voidType, {i32Type});
addFunction(voidType, fnType);
// Missing OpFunctionParameter
ASSERT_EQ(llvm::None, deserialize());
expectDiagnostic("expected OpFunctionParameter instruction");
}
TEST_F(DeserializationTest, FunctionMissingLabelForFirstBlockFailure) {
addHeader();
auto voidType = addVoidType();
auto fnType = addFunctionType(voidType, {});
addFunction(voidType, fnType);
// Missing OpLabel
addReturn();
addFunctionEnd();
ASSERT_EQ(llvm::None, deserialize());
expectDiagnostic("a basic block must start with OpLabel");
}
TEST_F(DeserializationTest, FunctionMalformedLabelFailure) {
addHeader();
auto voidType = addVoidType();
auto fnType = addFunctionType(voidType, {});
addFunction(voidType, fnType);
addInstruction(spirv::Opcode::OpLabel, {}); // Malformed OpLabel
addReturn();
addFunctionEnd();
ASSERT_EQ(llvm::None, deserialize());
expectDiagnostic("OpLabel should only have result <id>");
}