empty-cleanuppad.ll 13.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
; RUN: opt < %s -simplifycfg -S | FileCheck %s

; ModuleID = 'cppeh-simplify.cpp'
target datalayout = "e-m:w-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-pc-windows-msvc18.0.0"


; This case arises when two objects with empty destructors are cleaned up.
;
; void f1() { 
;   S a;
;   S b;
;   g(); 
; }
;
; In this case, both cleanup pads can be eliminated and the invoke can be
; converted to a call.
;
; CHECK: define void @f1()
; CHECK: entry:
; CHECK:   call void @g()
; CHECK:   ret void
; CHECK-NOT: cleanuppad
; CHECK: }
;
define void @f1() personality i8* bitcast (i32 (...)* @__CxxFrameHandler3 to i8*) {
entry:
  invoke void @g() to label %invoke.cont unwind label %ehcleanup

invoke.cont:                                      ; preds = %entry
  ret void

ehcleanup:                                        ; preds = %entry
  %0 = cleanuppad within none []
  cleanupret from %0 unwind label %ehcleanup.1

ehcleanup.1:                                      ; preds = %ehcleanup
  %1 = cleanuppad within none []
  cleanupret from %1 unwind to caller
}


; This case arises when an object with an empty destructor must be cleaned up
; outside of a try-block and an object with a non-empty destructor must be
; cleaned up within the try-block.
;
; void f2() { 
;   S a;
;   try {
;     S2 b;
;     g();
;   } catch (...) {}
; }
;
; In this case, the outermost cleanup pad can be eliminated and the catch block
; should unwind to the caller (that is, exception handling continues with the
; parent frame of the caller).
;
; CHECK: define void @f2()
; CHECK: entry:
; CHECK:   invoke void @g()
; CHECK: ehcleanup:
; CHECK:   cleanuppad within none
; CHECK:   call void @"\01??1S2@@QEAA@XZ"(%struct.S2* %b)
; CHECK:   cleanupret from %0 unwind label %catch.dispatch
; CHECK: catch.dispatch:
; CHECK:   catchswitch within none [label %catch] unwind to caller
; CHECK: catch:
; CHECK:   catchpad
; CHECK:   catchret
; CHECK-NOT: cleanuppad
; CHECK: }
;
define void @f2() personality i8* bitcast (i32 (...)* @__CxxFrameHandler3 to i8*) {
entry:
  %b = alloca %struct.S2, align 1
  invoke void @g() to label %invoke.cont unwind label %ehcleanup

invoke.cont:                                      ; preds = %entry
  br label %try.cont

ehcleanup:                                        ; preds = %entry
  %0 = cleanuppad within none []
  call void @"\01??1S2@@QEAA@XZ"(%struct.S2* %b)
  cleanupret from %0 unwind label %catch.dispatch

catch.dispatch:                                   ; preds = %ehcleanup
  %cs1 = catchswitch within none [label %catch] unwind label %ehcleanup.1

catch:                                            ; preds = %catch.dispatch
  %1 = catchpad within %cs1 [i8* null, i32 u0x40, i8* null]
  catchret from %1 to label %catchret.dest

catchret.dest:                                    ; preds = %catch
  br label %try.cont

try.cont:                                         ; preds = %catchret.dest, %invoke.cont
  ret void

ehcleanup.1:
  %2 = cleanuppad within none []
  cleanupret from %2 unwind to caller
}


; This case arises when an object with a non-empty destructor must be cleaned up
; outside of a try-block and an object with an empty destructor must be cleaned
; within the try-block.
;
; void f3() { 
;   S2 a;
;   try {
;     S b;
;     g();
;   } catch (...) {}
; }
;
; In this case the inner cleanup pad should be eliminated and the invoke of g()
; should unwind directly to the catchpad.
;
; CHECK-LABEL: define void @f3()
; CHECK: entry:
; CHECK:   invoke void @g()
; CHECK:           to label %try.cont unwind label %catch.dispatch
; CHECK: catch.dispatch:
; CHECK-NEXT: catchswitch within none [label %catch] unwind label %ehcleanup.1
; CHECK: catch:
; CHECK:   catchpad within %cs1 [i8* null, i32 64, i8* null]
; CHECK:   catchret
; CHECK: ehcleanup.1:
; CHECK:   cleanuppad
; CHECK:   call void @"\01??1S2@@QEAA@XZ"(%struct.S2* %a)
; CHECK:   cleanupret from %cp3 unwind to caller
; CHECK: }
;
define void @f3() personality i8* bitcast (i32 (...)* @__CxxFrameHandler3 to i8*) {
entry:
  %a = alloca %struct.S2, align 1
  invoke void @g() to label %invoke.cont unwind label %ehcleanup

invoke.cont:                                      ; preds = %entry
  br label %try.cont

ehcleanup:                                        ; preds = %entry
  %0 = cleanuppad within none []
  cleanupret from %0 unwind label %catch.dispatch

catch.dispatch:                                   ; preds = %ehcleanup
  %cs1 = catchswitch within none [label %catch] unwind label %ehcleanup.1

catch:                                            ; preds = %catch.dispatch
  %cp2 = catchpad within %cs1 [i8* null, i32 u0x40, i8* null]
  catchret from %cp2 to label %catchret.dest

catchret.dest:                                    ; preds = %catch
  br label %try.cont

try.cont:                                         ; preds = %catchret.dest, %invoke.cont
  ret void

ehcleanup.1:
  %cp3 = cleanuppad within none []
  call void @"\01??1S2@@QEAA@XZ"(%struct.S2* %a)
  cleanupret from %cp3 unwind to caller
}


; This case arises when an object with an empty destructor may require cleanup
; from either inside or outside of a try-block.
;
; void f4() { 
;   S a;
;   g();
;   try {
;     g();
;   } catch (...) {}
; }
;
; In this case, the cleanuppad should be eliminated, the invoke outside of the
; catch block should be converted to a call (that is, that is, exception
; handling continues with the parent frame of the caller).)
;
; CHECK-LABEL: define void @f4()
; CHECK: entry:
; CHECK:   call void @g
; Note: The cleanuppad simplification will insert an unconditional branch here
;       but it will be eliminated, placing the following invoke in the entry BB. 
; CHECK:   invoke void @g()
; CHECK:           to label %try.cont unwind label %catch.dispatch
; CHECK: catch.dispatch:
; CHECK:   catchswitch within none [label %catch] unwind to caller
; CHECK: catch:
; CHECK:   catchpad
; CHECK:   catchret
; CHECK-NOT: cleanuppad
; CHECK: }
;
define void @f4() personality i8* bitcast (i32 (...)* @__CxxFrameHandler3 to i8*) {
entry:
  invoke void @g()
          to label %invoke.cont unwind label %ehcleanup

invoke.cont:                                      ; preds = %entry
  invoke void @g()
          to label %try.cont unwind label %catch.dispatch

catch.dispatch:                                   ; preds = %invoke.cont
  %cs1 = catchswitch within none [label %catch] unwind label %ehcleanup

catch:                                            ; preds = %catch.dispatch
  %0 = catchpad within %cs1 [i8* null, i32 u0x40, i8* null]
  catchret from %0 to label %try.cont

try.cont:                                         ; preds = %catch, %invoke.cont
  ret void

ehcleanup:
  %cp2 = cleanuppad within none []
  cleanupret from %cp2 unwind to caller
}

; This case tests simplification of an otherwise empty cleanup pad that contains
; a PHI node.
;
; int f6() {
;   int state = 1;
;   try {
;     S a;
;     g();
;     state = 2;
;     g();
;   } catch (...) {
;     return state;
;   }
;   return 0;
; }
;
; In this case, the cleanup pad should be eliminated and the PHI node in the
; cleanup pad should be sunk into the catch dispatch block.
;
; CHECK-LABEL: define i32 @f6()
; CHECK: entry:
; CHECK:   invoke void @g()
; CHECK: invoke.cont:
; CHECK:   invoke void @g()
; CHECK-NOT: ehcleanup:
; CHECK-NOT:   cleanuppad
; CHECK: catch.dispatch:
; CHECK:   %state.0 = phi i32 [ 2, %invoke.cont ], [ 1, %entry ]
; CHECK: }
define i32 @f6() personality i8* bitcast (i32 (...)* @__CxxFrameHandler3 to i8*) {
entry:
  invoke void @g()
          to label %invoke.cont unwind label %ehcleanup

invoke.cont:                                      ; preds = %entry
  invoke void @g()
          to label %return unwind label %ehcleanup

ehcleanup:                                        ; preds = %invoke.cont, %entry
  %state.0 = phi i32 [ 2, %invoke.cont ], [ 1, %entry ]
  %0 = cleanuppad within none []
  cleanupret from %0 unwind label %catch.dispatch

catch.dispatch:                                   ; preds = %ehcleanup
  %cs1 = catchswitch within none [label %catch] unwind to caller

catch:                                            ; preds = %catch.dispatch
  %1 = catchpad within %cs1 [i8* null, i32 u0x40, i8* null]
  catchret from %1 to label %return

return:                                           ; preds = %invoke.cont, %catch
  %retval.0 = phi i32 [ %state.0, %catch ], [ 0, %invoke.cont ]
  ret i32 %retval.0
}

; This case tests another variation of simplification of an otherwise empty
; cleanup pad that contains a PHI node.
;
; int f7() {
;   int state = 1;
;   try {
;     g();
;     state = 2;
;     S a;
;     g();
;     state = 3;
;     g();
;   } catch (...) {
;     return state;
;   }
;   return 0;
; }
;
; In this case, the cleanup pad should be eliminated and the PHI node in the
; cleanup pad should be merged with the PHI node in the catch dispatch block.
;
; CHECK-LABEL: define i32 @f7()
; CHECK: entry:
; CHECK:   invoke void @g()
; CHECK: invoke.cont:
; CHECK:   invoke void @g()
; CHECK: invoke.cont.1:
; CHECK:   invoke void @g()
; CHECK-NOT: ehcleanup:
; CHECK-NOT:   cleanuppad
; CHECK: catch.dispatch:
; CHECK:   %state.1 = phi i32 [ 1, %entry ], [ 3, %invoke.cont.1 ], [ 2, %invoke.cont ]
; CHECK: }
define i32 @f7() personality i8* bitcast (i32 (...)* @__CxxFrameHandler3 to i8*) {
entry:
  invoke void @g()
          to label %invoke.cont unwind label %catch.dispatch

invoke.cont:                                      ; preds = %entry
  invoke void @g()
          to label %invoke.cont.1 unwind label %ehcleanup

invoke.cont.1:                                    ; preds = %invoke.cont
  invoke void @g()
          to label %return unwind label %ehcleanup

ehcleanup:                                        ; preds = %invoke.cont.1, %invoke.cont
  %state.0 = phi i32 [ 3, %invoke.cont.1 ], [ 2, %invoke.cont ]
  %0 = cleanuppad within none []
  cleanupret from %0 unwind label %catch.dispatch

catch.dispatch:                                   ; preds = %ehcleanup, %entry
  %state.1 = phi i32 [ %state.0, %ehcleanup ], [ 1, %entry ]
  %cs1 = catchswitch within none [label %catch] unwind to caller

catch:                                            ; preds = %catch.dispatch
  %1 = catchpad within %cs1 [i8* null, i32 u0x40, i8* null]
  catchret from %1 to label %return

return:                                           ; preds = %invoke.cont.1, %catch
  %retval.0 = phi i32 [ %state.1, %catch ], [ 0, %invoke.cont.1 ]
  ret i32 %retval.0
}

; This case tests a scenario where an empty cleanup pad is not dominated by all
; of the predecessors of its successor, but the successor references a PHI node
; in the empty cleanup pad.
;
; Conceptually, the case being modeled is something like this:
;
; int f8() {
;   int x = 1;
;   try {
;     S a;
;     g();
;     x = 2;
; retry:
;     g();
;     return
;   } catch (...) {
;     use_x(x);
;   }
;   goto retry;
; }
;
; While that C++ syntax isn't legal, the IR below is.
;
; In this case, the PHI node that is sunk from ehcleanup to catch.dispatch
; should have an incoming value entry for path from 'foo' that references the
; PHI node itself.
;
; CHECK-LABEL: define void @f8()
; CHECK: entry:
; CHECK:   invoke void @g()
; CHECK: invoke.cont:
; CHECK:   invoke void @g()
; CHECK-NOT: ehcleanup:
; CHECK-NOT:   cleanuppad
; CHECK: catch.dispatch:
; CHECK:   %x = phi i32 [ 2, %invoke.cont ], [ 1, %entry ], [ %x, %catch.cont ] 
; CHECK: }
define void @f8() personality i8* bitcast (i32 (...)* @__CxxFrameHandler3 to i8*) {
entry:
  invoke void @g()
          to label %invoke.cont unwind label %ehcleanup

invoke.cont:                                      ; preds = %entry
  invoke void @g()
          to label %return unwind label %ehcleanup

ehcleanup:                                        ; preds = %invoke.cont, %entry
  %x = phi i32 [ 2, %invoke.cont ], [ 1, %entry ]
  %0 = cleanuppad within none []
  cleanupret from %0 unwind label %catch.dispatch

catch.dispatch:                                   ; preds = %ehcleanup, %catch.cont
  %cs1 = catchswitch within none [label %catch] unwind to caller

catch:                                            ; preds = %catch.dispatch
  %1 = catchpad within %cs1 [i8* null, i32 u0x40, i8* null]
  call void @use_x(i32 %x)
  catchret from %1 to label %catch.cont

catch.cont:                                       ; preds = %catch
  invoke void @g()
          to label %return unwind label %catch.dispatch

return:                                           ; preds = %invoke.cont, %catch.cont
  ret void
}
; CHECK-LABEL: define i32 @f9()
; CHECK: entry:
; CHECK:   invoke void @"\01??1S2@@QEAA@XZ"(
; CHECK-NOT:   cleanuppad
; CHECK: catch.dispatch:
; CHECK: }
define i32 @f9() personality i32 (...)* @__CxxFrameHandler3 {
entry:
  %s = alloca i8, align 1
  call void @llvm.lifetime.start.p0i8(i64 1, i8* nonnull %s)
  %bc = bitcast i8* %s to %struct.S2*
  invoke void @"\01??1S2@@QEAA@XZ"(%struct.S2* %bc)
          to label %try.cont unwind label %ehcleanup

ehcleanup:
  %cleanup.pad = cleanuppad within none []
  call void @llvm.lifetime.end.p0i8(i64 1, i8* nonnull %s)
  cleanupret from %cleanup.pad unwind label %catch.dispatch

catch.dispatch:
  %catch.switch = catchswitch within none [label %catch] unwind to caller

catch:
  %catch.pad = catchpad within %catch.switch [i8* null, i32 0, i8* null]
  catchret from %catch.pad to label %try.cont

try.cont:
  ret i32 0
}

; CHECK-LABEL: define void @f10(
define void @f10(i32 %V) personality i32 (...)* @__CxxFrameHandler3 {
entry:
  invoke void @g()
          to label %unreachable unwind label %cleanup
; CHECK:       call void @g()
; CHECK-NEXT:  unreachable

unreachable:
  unreachable

cleanup:
  %cp = cleanuppad within none []
  switch i32 %V, label %cleanupret1 [
    i32 0, label %cleanupret2
  ]

cleanupret1:
  cleanupret from %cp unwind to caller

cleanupret2:
  cleanupret from %cp unwind to caller
}

%struct.S = type { i8 }
%struct.S2 = type { i8 }
declare void @"\01??1S2@@QEAA@XZ"(%struct.S2*)
declare void @g()
declare void @use_x(i32 %x)

declare i32 @__CxxFrameHandler3(...)

declare void @llvm.lifetime.start.p0i8(i64, i8* nocapture)
declare void @llvm.lifetime.end.p0i8(i64, i8* nocapture)