DependenceInfo.cpp 35 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
//===- DependenceInfo.cpp - Calculate dependency information for a Scop. --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Calculate the data dependency relations for a Scop using ISL.
//
// The integer set library (ISL) from Sven, has a integrated dependency analysis
// to calculate data dependences. This pass takes advantage of this and
// calculate those dependences a Scop.
//
// The dependences in this pass are exact in terms that for a specific read
// statement instance only the last write statement instance is returned. In
// case of may writes a set of possible write instances is returned. This
// analysis will never produce redundant dependences.
//
//===----------------------------------------------------------------------===//
//
#include "polly/DependenceInfo.h"
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/ISLTools.h"
#include "llvm/Support/Debug.h"
#include "isl/aff.h"
#include "isl/ctx.h"
#include "isl/flow.h"
#include "isl/map.h"
#include "isl/schedule.h"
#include "isl/set.h"
#include "isl/union_map.h"
#include "isl/union_set.h"

using namespace polly;
using namespace llvm;

#define DEBUG_TYPE "polly-dependence"

static cl::opt<int> OptComputeOut(
    "polly-dependences-computeout",
    cl::desc("Bound the dependence analysis by a maximal amount of "
             "computational steps (0 means no bound)"),
    cl::Hidden, cl::init(500000), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<bool> LegalityCheckDisabled(
    "disable-polly-legality", cl::desc("Disable polly legality check"),
    cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));

static cl::opt<bool>
    UseReductions("polly-dependences-use-reductions",
                  cl::desc("Exploit reductions in dependence analysis"),
                  cl::Hidden, cl::init(true), cl::ZeroOrMore,
                  cl::cat(PollyCategory));

enum AnalysisType { VALUE_BASED_ANALYSIS, MEMORY_BASED_ANALYSIS };

static cl::opt<enum AnalysisType> OptAnalysisType(
    "polly-dependences-analysis-type",
    cl::desc("The kind of dependence analysis to use"),
    cl::values(clEnumValN(VALUE_BASED_ANALYSIS, "value-based",
                          "Exact dependences without transitive dependences"),
               clEnumValN(MEMORY_BASED_ANALYSIS, "memory-based",
                          "Overapproximation of dependences")),
    cl::Hidden, cl::init(VALUE_BASED_ANALYSIS), cl::ZeroOrMore,
    cl::cat(PollyCategory));

static cl::opt<Dependences::AnalysisLevel> OptAnalysisLevel(
    "polly-dependences-analysis-level",
    cl::desc("The level of dependence analysis"),
    cl::values(clEnumValN(Dependences::AL_Statement, "statement-wise",
                          "Statement-level analysis"),
               clEnumValN(Dependences::AL_Reference, "reference-wise",
                          "Memory reference level analysis that distinguish"
                          " accessed references in the same statement"),
               clEnumValN(Dependences::AL_Access, "access-wise",
                          "Memory reference level analysis that distinguish"
                          " access instructions in the same statement")),
    cl::Hidden, cl::init(Dependences::AL_Statement), cl::ZeroOrMore,
    cl::cat(PollyCategory));

//===----------------------------------------------------------------------===//

/// Tag the @p Relation domain with @p TagId
static __isl_give isl_map *tag(__isl_take isl_map *Relation,
                               __isl_take isl_id *TagId) {
  isl_space *Space = isl_map_get_space(Relation);
  Space = isl_space_drop_dims(Space, isl_dim_out, 0,
                              isl_map_dim(Relation, isl_dim_out));
  Space = isl_space_set_tuple_id(Space, isl_dim_out, TagId);
  isl_multi_aff *Tag = isl_multi_aff_domain_map(Space);
  Relation = isl_map_preimage_domain_multi_aff(Relation, Tag);
  return Relation;
}

/// Tag the @p Relation domain with either MA->getArrayId() or
///        MA->getId() based on @p TagLevel
static __isl_give isl_map *tag(__isl_take isl_map *Relation, MemoryAccess *MA,
                               Dependences::AnalysisLevel TagLevel) {
  if (TagLevel == Dependences::AL_Reference)
    return tag(Relation, MA->getArrayId().release());

  if (TagLevel == Dependences::AL_Access)
    return tag(Relation, MA->getId().release());

  // No need to tag at the statement level.
  return Relation;
}

/// Collect information about the SCoP @p S.
static void collectInfo(Scop &S, isl_union_map *&Read,
                        isl_union_map *&MustWrite, isl_union_map *&MayWrite,
                        isl_union_map *&ReductionTagMap,
                        isl_union_set *&TaggedStmtDomain,
                        Dependences::AnalysisLevel Level) {
  isl_space *Space = S.getParamSpace().release();
  Read = isl_union_map_empty(isl_space_copy(Space));
  MustWrite = isl_union_map_empty(isl_space_copy(Space));
  MayWrite = isl_union_map_empty(isl_space_copy(Space));
  ReductionTagMap = isl_union_map_empty(isl_space_copy(Space));
  isl_union_map *StmtSchedule = isl_union_map_empty(Space);

  SmallPtrSet<const ScopArrayInfo *, 8> ReductionArrays;
  if (UseReductions)
    for (ScopStmt &Stmt : S)
      for (MemoryAccess *MA : Stmt)
        if (MA->isReductionLike())
          ReductionArrays.insert(MA->getScopArrayInfo());

  for (ScopStmt &Stmt : S) {
    for (MemoryAccess *MA : Stmt) {
      isl_set *domcp = Stmt.getDomain().release();
      isl_map *accdom = MA->getAccessRelation().release();

      accdom = isl_map_intersect_domain(accdom, domcp);

      if (ReductionArrays.count(MA->getScopArrayInfo())) {
        // Wrap the access domain and adjust the schedule accordingly.
        //
        // An access domain like
        //   Stmt[i0, i1] -> MemAcc_A[i0 + i1]
        // will be transformed into
        //   [Stmt[i0, i1] -> MemAcc_A[i0 + i1]] -> MemAcc_A[i0 + i1]
        //
        // We collect all the access domains in the ReductionTagMap.
        // This is used in Dependences::calculateDependences to create
        // a tagged Schedule tree.

        ReductionTagMap =
            isl_union_map_add_map(ReductionTagMap, isl_map_copy(accdom));
        accdom = isl_map_range_map(accdom);
      } else {
        accdom = tag(accdom, MA, Level);
        if (Level > Dependences::AL_Statement) {
          isl_map *StmtScheduleMap = Stmt.getSchedule().release();
          assert(StmtScheduleMap &&
                 "Schedules that contain extension nodes require special "
                 "handling.");
          isl_map *Schedule = tag(StmtScheduleMap, MA, Level);
          StmtSchedule = isl_union_map_add_map(StmtSchedule, Schedule);
        }
      }

      if (MA->isRead())
        Read = isl_union_map_add_map(Read, accdom);
      else if (MA->isMayWrite())
        MayWrite = isl_union_map_add_map(MayWrite, accdom);
      else
        MustWrite = isl_union_map_add_map(MustWrite, accdom);
    }

    if (!ReductionArrays.empty() && Level == Dependences::AL_Statement)
      StmtSchedule =
          isl_union_map_add_map(StmtSchedule, Stmt.getSchedule().release());
  }

  StmtSchedule = isl_union_map_intersect_params(
      StmtSchedule, S.getAssumedContext().release());
  TaggedStmtDomain = isl_union_map_domain(StmtSchedule);

  ReductionTagMap = isl_union_map_coalesce(ReductionTagMap);
  Read = isl_union_map_coalesce(Read);
  MustWrite = isl_union_map_coalesce(MustWrite);
  MayWrite = isl_union_map_coalesce(MayWrite);
}

/// Fix all dimension of @p Zero to 0 and add it to @p user
static void fixSetToZero(isl::set Zero, isl::union_set *User) {
  for (unsigned i = 0; i < Zero.dim(isl::dim::set); i++)
    Zero = Zero.fix_si(isl::dim::set, i, 0);
  *User = User->add_set(Zero);
}

/// Compute the privatization dependences for a given dependency @p Map
///
/// Privatization dependences are widened original dependences which originate
/// or end in a reduction access. To compute them we apply the transitive close
/// of the reduction dependences (which maps each iteration of a reduction
/// statement to all following ones) on the RAW/WAR/WAW dependences. The
/// dependences which start or end at a reduction statement will be extended to
/// depend on all following reduction statement iterations as well.
/// Note: "Following" here means according to the reduction dependences.
///
/// For the input:
///
///  S0:   *sum = 0;
///        for (int i = 0; i < 1024; i++)
///  S1:     *sum += i;
///  S2:   *sum = *sum * 3;
///
/// we have the following dependences before we add privatization dependences:
///
///   RAW:
///     { S0[] -> S1[0]; S1[1023] -> S2[] }
///   WAR:
///     {  }
///   WAW:
///     { S0[] -> S1[0]; S1[1024] -> S2[] }
///   RED:
///     { S1[i0] -> S1[1 + i0] : i0 >= 0 and i0 <= 1022 }
///
/// and afterwards:
///
///   RAW:
///     { S0[] -> S1[i0] : i0 >= 0 and i0 <= 1023;
///       S1[i0] -> S2[] : i0 >= 0 and i0 <= 1023}
///   WAR:
///     {  }
///   WAW:
///     { S0[] -> S1[i0] : i0 >= 0 and i0 <= 1023;
///       S1[i0] -> S2[] : i0 >= 0 and i0 <= 1023}
///   RED:
///     { S1[i0] -> S1[1 + i0] : i0 >= 0 and i0 <= 1022 }
///
/// Note: This function also computes the (reverse) transitive closure of the
///       reduction dependences.
void Dependences::addPrivatizationDependences() {
  isl_union_map *PrivRAW, *PrivWAW, *PrivWAR;

  // The transitive closure might be over approximated, thus could lead to
  // dependency cycles in the privatization dependences. To make sure this
  // will not happen we remove all negative dependences after we computed
  // the transitive closure.
  TC_RED = isl_union_map_transitive_closure(isl_union_map_copy(RED), nullptr);

  // FIXME: Apply the current schedule instead of assuming the identity schedule
  //        here. The current approach is only valid as long as we compute the
  //        dependences only with the initial (identity schedule). Any other
  //        schedule could change "the direction of the backward dependences" we
  //        want to eliminate here.
  isl_union_set *UDeltas = isl_union_map_deltas(isl_union_map_copy(TC_RED));
  isl_union_set *Universe = isl_union_set_universe(isl_union_set_copy(UDeltas));
  isl::union_set Zero =
      isl::manage(isl_union_set_empty(isl_union_set_get_space(Universe)));

  for (isl::set Set : isl::manage_copy(Universe).get_set_list())
    fixSetToZero(Set, &Zero);

  isl_union_map *NonPositive =
      isl_union_set_lex_le_union_set(UDeltas, Zero.release());

  TC_RED = isl_union_map_subtract(TC_RED, NonPositive);

  TC_RED = isl_union_map_union(
      TC_RED, isl_union_map_reverse(isl_union_map_copy(TC_RED)));
  TC_RED = isl_union_map_coalesce(TC_RED);

  isl_union_map **Maps[] = {&RAW, &WAW, &WAR};
  isl_union_map **PrivMaps[] = {&PrivRAW, &PrivWAW, &PrivWAR};
  for (unsigned u = 0; u < 3; u++) {
    isl_union_map **Map = Maps[u], **PrivMap = PrivMaps[u];

    *PrivMap = isl_union_map_apply_range(isl_union_map_copy(*Map),
                                         isl_union_map_copy(TC_RED));
    *PrivMap = isl_union_map_union(
        *PrivMap, isl_union_map_apply_range(isl_union_map_copy(TC_RED),
                                            isl_union_map_copy(*Map)));

    *Map = isl_union_map_union(*Map, *PrivMap);
  }

  isl_union_set_free(Universe);
}

static __isl_give isl_union_flow *buildFlow(__isl_keep isl_union_map *Snk,
                                            __isl_keep isl_union_map *Src,
                                            __isl_keep isl_union_map *MaySrc,
                                            __isl_keep isl_union_map *Kill,
                                            __isl_keep isl_schedule *Schedule) {
  isl_union_access_info *AI;

  AI = isl_union_access_info_from_sink(isl_union_map_copy(Snk));
  if (MaySrc)
    AI = isl_union_access_info_set_may_source(AI, isl_union_map_copy(MaySrc));
  if (Src)
    AI = isl_union_access_info_set_must_source(AI, isl_union_map_copy(Src));
  if (Kill)
    AI = isl_union_access_info_set_kill(AI, isl_union_map_copy(Kill));
  AI = isl_union_access_info_set_schedule(AI, isl_schedule_copy(Schedule));
  auto Flow = isl_union_access_info_compute_flow(AI);
  LLVM_DEBUG(if (!Flow) dbgs()
                 << "last error: "
                 << isl_ctx_last_error(isl_schedule_get_ctx(Schedule))
                 << '\n';);
  return Flow;
}

void Dependences::calculateDependences(Scop &S) {
  isl_union_map *Read, *MustWrite, *MayWrite, *ReductionTagMap;
  isl_schedule *Schedule;
  isl_union_set *TaggedStmtDomain;

  LLVM_DEBUG(dbgs() << "Scop: \n" << S << "\n");

  collectInfo(S, Read, MustWrite, MayWrite, ReductionTagMap, TaggedStmtDomain,
              Level);

  bool HasReductions = !isl_union_map_is_empty(ReductionTagMap);

  LLVM_DEBUG(dbgs() << "Read: " << Read << '\n';
             dbgs() << "MustWrite: " << MustWrite << '\n';
             dbgs() << "MayWrite: " << MayWrite << '\n';
             dbgs() << "ReductionTagMap: " << ReductionTagMap << '\n';
             dbgs() << "TaggedStmtDomain: " << TaggedStmtDomain << '\n';);

  Schedule = S.getScheduleTree().release();

  if (!HasReductions) {
    isl_union_map_free(ReductionTagMap);
    // Tag the schedule tree if we want fine-grain dependence info
    if (Level > AL_Statement) {
      auto TaggedMap =
          isl_union_set_unwrap(isl_union_set_copy(TaggedStmtDomain));
      auto Tags = isl_union_map_domain_map_union_pw_multi_aff(TaggedMap);
      Schedule = isl_schedule_pullback_union_pw_multi_aff(Schedule, Tags);
    }
  } else {
    isl_union_map *IdentityMap;
    isl_union_pw_multi_aff *ReductionTags, *IdentityTags, *Tags;

    // Extract Reduction tags from the combined access domains in the given
    // SCoP. The result is a map that maps each tagged element in the domain to
    // the memory location it accesses. ReductionTags = {[Stmt[i] ->
    // Array[f(i)]] -> Stmt[i] }
    ReductionTags =
        isl_union_map_domain_map_union_pw_multi_aff(ReductionTagMap);

    // Compute an identity map from each statement in domain to itself.
    // IdentityTags = { [Stmt[i] -> Stmt[i] }
    IdentityMap = isl_union_set_identity(isl_union_set_copy(TaggedStmtDomain));
    IdentityTags = isl_union_pw_multi_aff_from_union_map(IdentityMap);

    Tags = isl_union_pw_multi_aff_union_add(ReductionTags, IdentityTags);

    // By pulling back Tags from Schedule, we have a schedule tree that can
    // be used to compute normal dependences, as well as 'tagged' reduction
    // dependences.
    Schedule = isl_schedule_pullback_union_pw_multi_aff(Schedule, Tags);
  }

  LLVM_DEBUG(dbgs() << "Read: " << Read << "\n";
             dbgs() << "MustWrite: " << MustWrite << "\n";
             dbgs() << "MayWrite: " << MayWrite << "\n";
             dbgs() << "Schedule: " << Schedule << "\n");

  isl_union_map *StrictWAW = nullptr;
  {
    IslMaxOperationsGuard MaxOpGuard(IslCtx.get(), OptComputeOut);

    RAW = WAW = WAR = RED = nullptr;
    isl_union_map *Write = isl_union_map_union(isl_union_map_copy(MustWrite),
                                               isl_union_map_copy(MayWrite));

    // We are interested in detecting reductions that do not have intermediate
    // computations that are captured by other statements.
    //
    // Example:
    // void f(int *A, int *B) {
    //     for(int i = 0; i <= 100; i++) {
    //
    //            *-WAR (S0[i] -> S0[i + 1] 0 <= i <= 100)------------*
    //            |                                                   |
    //            *-WAW (S0[i] -> S0[i + 1] 0 <= i <= 100)------------*
    //            |                                                   |
    //            v                                                   |
    //     S0:    *A += i; >------------------*-----------------------*
    //                                        |
    //         if (i >= 98) {          WAR (S0[i] -> S1[i]) 98 <= i <= 100
    //                                        |
    //     S1:        *B = *A; <--------------*
    //         }
    //     }
    // }
    //
    // S0[0 <= i <= 100] has a reduction. However, the values in
    // S0[98 <= i <= 100] is captured in S1[98 <= i <= 100].
    // Since we allow free reordering on our reduction dependences, we need to
    // remove all instances of a reduction statement that have data dependences
    // originating from them.
    // In the case of the example, we need to remove S0[98 <= i <= 100] from
    // our reduction dependences.
    //
    // When we build up the WAW dependences that are used to detect reductions,
    // we consider only **Writes that have no intermediate Reads**.
    //
    // `isl_union_flow_get_must_dependence` gives us dependences of the form:
    // (sink <- must_source).
    //
    // It *will not give* dependences of the form:
    // 1. (sink <- ... <- may_source <- ... <- must_source)
    // 2. (sink <- ... <- must_source <- ... <- must_source)
    //
    // For a detailed reference on ISL's flow analysis, see:
    // "Presburger Formulas and Polyhedral Compilation" - Approximate Dataflow
    //  Analysis.
    //
    // Since we set "Write" as a must-source, "Read" as a may-source, and ask
    // for must dependences, we get all Writes to Writes that **do not flow
    // through a Read**.
    //
    // ScopInfo::checkForReductions makes sure that if something captures
    // the reduction variable in the same basic block, then it is rejected
    // before it is even handed here. This makes sure that there is exactly
    // one read and one write to a reduction variable in a Statement.
    // Example:
    //     void f(int *sum, int A[N], int B[N]) {
    //       for (int i = 0; i < N; i++) {
    //         *sum += A[i]; < the store and the load is not tagged as a
    //         B[i] = *sum;  < reduction-like access due to the overlap.
    //       }
    //     }

    isl_union_flow *Flow = buildFlow(Write, Write, Read, nullptr, Schedule);
    StrictWAW = isl_union_flow_get_must_dependence(Flow);
    isl_union_flow_free(Flow);

    if (OptAnalysisType == VALUE_BASED_ANALYSIS) {
      Flow = buildFlow(Read, MustWrite, MayWrite, nullptr, Schedule);
      RAW = isl_union_flow_get_may_dependence(Flow);
      isl_union_flow_free(Flow);

      Flow = buildFlow(Write, MustWrite, MayWrite, nullptr, Schedule);
      WAW = isl_union_flow_get_may_dependence(Flow);
      isl_union_flow_free(Flow);

      // ISL now supports "kills" in approximate dataflow analysis, we can
      // specify the MustWrite as kills, Read as source and Write as sink.
      Flow = buildFlow(Write, nullptr, Read, MustWrite, Schedule);
      WAR = isl_union_flow_get_may_dependence(Flow);
      isl_union_flow_free(Flow);
    } else {
      Flow = buildFlow(Read, nullptr, Write, nullptr, Schedule);
      RAW = isl_union_flow_get_may_dependence(Flow);
      isl_union_flow_free(Flow);

      Flow = buildFlow(Write, nullptr, Read, nullptr, Schedule);
      WAR = isl_union_flow_get_may_dependence(Flow);
      isl_union_flow_free(Flow);

      Flow = buildFlow(Write, nullptr, Write, nullptr, Schedule);
      WAW = isl_union_flow_get_may_dependence(Flow);
      isl_union_flow_free(Flow);
    }

    isl_union_map_free(Write);
    isl_union_map_free(MustWrite);
    isl_union_map_free(MayWrite);
    isl_union_map_free(Read);
    isl_schedule_free(Schedule);

    RAW = isl_union_map_coalesce(RAW);
    WAW = isl_union_map_coalesce(WAW);
    WAR = isl_union_map_coalesce(WAR);

    // End of max_operations scope.
  }

  if (isl_ctx_last_error(IslCtx.get()) == isl_error_quota) {
    isl_union_map_free(RAW);
    isl_union_map_free(WAW);
    isl_union_map_free(WAR);
    isl_union_map_free(StrictWAW);
    RAW = WAW = WAR = StrictWAW = nullptr;
    isl_ctx_reset_error(IslCtx.get());
  }

  // Drop out early, as the remaining computations are only needed for
  // reduction dependences or dependences that are finer than statement
  // level dependences.
  if (!HasReductions && Level == AL_Statement) {
    RED = isl_union_map_empty(isl_union_map_get_space(RAW));
    TC_RED = isl_union_map_empty(isl_union_set_get_space(TaggedStmtDomain));
    isl_union_set_free(TaggedStmtDomain);
    isl_union_map_free(StrictWAW);
    return;
  }

  isl_union_map *STMT_RAW, *STMT_WAW, *STMT_WAR;
  STMT_RAW = isl_union_map_intersect_domain(
      isl_union_map_copy(RAW), isl_union_set_copy(TaggedStmtDomain));
  STMT_WAW = isl_union_map_intersect_domain(
      isl_union_map_copy(WAW), isl_union_set_copy(TaggedStmtDomain));
  STMT_WAR =
      isl_union_map_intersect_domain(isl_union_map_copy(WAR), TaggedStmtDomain);
  LLVM_DEBUG({
    dbgs() << "Wrapped Dependences:\n";
    dump();
    dbgs() << "\n";
  });

  // To handle reduction dependences we proceed as follows:
  // 1) Aggregate all possible reduction dependences, namely all self
  //    dependences on reduction like statements.
  // 2) Intersect them with the actual RAW & WAW dependences to the get the
  //    actual reduction dependences. This will ensure the load/store memory
  //    addresses were __identical__ in the two iterations of the statement.
  // 3) Relax the original RAW, WAW and WAR dependences by subtracting the
  //    actual reduction dependences. Binary reductions (sum += A[i]) cause
  //    the same, RAW, WAW and WAR dependences.
  // 4) Add the privatization dependences which are widened versions of
  //    already present dependences. They model the effect of manual
  //    privatization at the outermost possible place (namely after the last
  //    write and before the first access to a reduction location).

  // Step 1)
  RED = isl_union_map_empty(isl_union_map_get_space(RAW));
  for (ScopStmt &Stmt : S) {
    for (MemoryAccess *MA : Stmt) {
      if (!MA->isReductionLike())
        continue;
      isl_set *AccDomW = isl_map_wrap(MA->getAccessRelation().release());
      isl_map *Identity =
          isl_map_from_domain_and_range(isl_set_copy(AccDomW), AccDomW);
      RED = isl_union_map_add_map(RED, Identity);
    }
  }

  // Step 2)
  RED = isl_union_map_intersect(RED, isl_union_map_copy(RAW));
  RED = isl_union_map_intersect(RED, StrictWAW);

  if (!isl_union_map_is_empty(RED)) {

    // Step 3)
    RAW = isl_union_map_subtract(RAW, isl_union_map_copy(RED));
    WAW = isl_union_map_subtract(WAW, isl_union_map_copy(RED));
    WAR = isl_union_map_subtract(WAR, isl_union_map_copy(RED));

    // Step 4)
    addPrivatizationDependences();
  } else
    TC_RED = isl_union_map_empty(isl_union_map_get_space(RED));

  LLVM_DEBUG({
    dbgs() << "Final Wrapped Dependences:\n";
    dump();
    dbgs() << "\n";
  });

  // RED_SIN is used to collect all reduction dependences again after we
  // split them according to the causing memory accesses. The current assumption
  // is that our method of splitting will not have any leftovers. In the end
  // we validate this assumption until we have more confidence in this method.
  isl_union_map *RED_SIN = isl_union_map_empty(isl_union_map_get_space(RAW));

  // For each reduction like memory access, check if there are reduction
  // dependences with the access relation of the memory access as a domain
  // (wrapped space!). If so these dependences are caused by this memory access.
  // We then move this portion of reduction dependences back to the statement ->
  // statement space and add a mapping from the memory access to these
  // dependences.
  for (ScopStmt &Stmt : S) {
    for (MemoryAccess *MA : Stmt) {
      if (!MA->isReductionLike())
        continue;

      isl_set *AccDomW = isl_map_wrap(MA->getAccessRelation().release());
      isl_union_map *AccRedDepU = isl_union_map_intersect_domain(
          isl_union_map_copy(TC_RED), isl_union_set_from_set(AccDomW));
      if (isl_union_map_is_empty(AccRedDepU)) {
        isl_union_map_free(AccRedDepU);
        continue;
      }

      isl_map *AccRedDep = isl_map_from_union_map(AccRedDepU);
      RED_SIN = isl_union_map_add_map(RED_SIN, isl_map_copy(AccRedDep));
      AccRedDep = isl_map_zip(AccRedDep);
      AccRedDep = isl_set_unwrap(isl_map_domain(AccRedDep));
      setReductionDependences(MA, AccRedDep);
    }
  }

  assert(isl_union_map_is_equal(RED_SIN, TC_RED) &&
         "Intersecting the reduction dependence domain with the wrapped access "
         "relation is not enough, we need to loosen the access relation also");
  isl_union_map_free(RED_SIN);

  RAW = isl_union_map_zip(RAW);
  WAW = isl_union_map_zip(WAW);
  WAR = isl_union_map_zip(WAR);
  RED = isl_union_map_zip(RED);
  TC_RED = isl_union_map_zip(TC_RED);

  LLVM_DEBUG({
    dbgs() << "Zipped Dependences:\n";
    dump();
    dbgs() << "\n";
  });

  RAW = isl_union_set_unwrap(isl_union_map_domain(RAW));
  WAW = isl_union_set_unwrap(isl_union_map_domain(WAW));
  WAR = isl_union_set_unwrap(isl_union_map_domain(WAR));
  RED = isl_union_set_unwrap(isl_union_map_domain(RED));
  TC_RED = isl_union_set_unwrap(isl_union_map_domain(TC_RED));

  LLVM_DEBUG({
    dbgs() << "Unwrapped Dependences:\n";
    dump();
    dbgs() << "\n";
  });

  RAW = isl_union_map_union(RAW, STMT_RAW);
  WAW = isl_union_map_union(WAW, STMT_WAW);
  WAR = isl_union_map_union(WAR, STMT_WAR);

  RAW = isl_union_map_coalesce(RAW);
  WAW = isl_union_map_coalesce(WAW);
  WAR = isl_union_map_coalesce(WAR);
  RED = isl_union_map_coalesce(RED);
  TC_RED = isl_union_map_coalesce(TC_RED);

  LLVM_DEBUG(dump());
}

bool Dependences::isValidSchedule(
    Scop &S, const StatementToIslMapTy &NewSchedule) const {
  if (LegalityCheckDisabled)
    return true;

  isl::union_map Dependences = getDependences(TYPE_RAW | TYPE_WAW | TYPE_WAR);
  isl::space Space = S.getParamSpace();
  isl::union_map Schedule = isl::union_map::empty(Space);

  isl::space ScheduleSpace;

  for (ScopStmt &Stmt : S) {
    isl::map StmtScat;

    auto Lookup = NewSchedule.find(&Stmt);
    if (Lookup == NewSchedule.end())
      StmtScat = Stmt.getSchedule();
    else
      StmtScat = Lookup->second;
    assert(!StmtScat.is_null() &&
           "Schedules that contain extension nodes require special handling.");

    if (!ScheduleSpace)
      ScheduleSpace = StmtScat.get_space().range();

    Schedule = Schedule.add_map(StmtScat);
  }

  Dependences = Dependences.apply_domain(Schedule);
  Dependences = Dependences.apply_range(Schedule);

  isl::set Zero = isl::set::universe(ScheduleSpace);
  for (unsigned i = 0; i < Zero.dim(isl::dim::set); i++)
    Zero = Zero.fix_si(isl::dim::set, i, 0);

  isl::union_set UDeltas = Dependences.deltas();
  isl::set Deltas = singleton(UDeltas, ScheduleSpace);

  isl::map NonPositive = Deltas.lex_le_set(Zero);
  return NonPositive.is_empty();
}

// Check if the current scheduling dimension is parallel.
//
// We check for parallelism by verifying that the loop does not carry any
// dependences.
//
// Parallelism test: if the distance is zero in all outer dimensions, then it
// has to be zero in the current dimension as well.
//
// Implementation: first, translate dependences into time space, then force
// outer dimensions to be equal. If the distance is zero in the current
// dimension, then the loop is parallel. The distance is zero in the current
// dimension if it is a subset of a map with equal values for the current
// dimension.
bool Dependences::isParallel(isl_union_map *Schedule, isl_union_map *Deps,
                             isl_pw_aff **MinDistancePtr) const {
  isl_set *Deltas, *Distance;
  isl_map *ScheduleDeps;
  unsigned Dimension;
  bool IsParallel;

  Deps = isl_union_map_apply_range(Deps, isl_union_map_copy(Schedule));
  Deps = isl_union_map_apply_domain(Deps, isl_union_map_copy(Schedule));

  if (isl_union_map_is_empty(Deps)) {
    isl_union_map_free(Deps);
    return true;
  }

  ScheduleDeps = isl_map_from_union_map(Deps);
  Dimension = isl_map_dim(ScheduleDeps, isl_dim_out) - 1;

  for (unsigned i = 0; i < Dimension; i++)
    ScheduleDeps = isl_map_equate(ScheduleDeps, isl_dim_out, i, isl_dim_in, i);

  Deltas = isl_map_deltas(ScheduleDeps);
  Distance = isl_set_universe(isl_set_get_space(Deltas));

  // [0, ..., 0, +] - All zeros and last dimension larger than zero
  for (unsigned i = 0; i < Dimension; i++)
    Distance = isl_set_fix_si(Distance, isl_dim_set, i, 0);

  Distance = isl_set_lower_bound_si(Distance, isl_dim_set, Dimension, 1);
  Distance = isl_set_intersect(Distance, Deltas);

  IsParallel = isl_set_is_empty(Distance);
  if (IsParallel || !MinDistancePtr) {
    isl_set_free(Distance);
    return IsParallel;
  }

  Distance = isl_set_project_out(Distance, isl_dim_set, 0, Dimension);
  Distance = isl_set_coalesce(Distance);

  // This last step will compute a expression for the minimal value in the
  // distance polyhedron Distance with regards to the first (outer most)
  // dimension.
  *MinDistancePtr = isl_pw_aff_coalesce(isl_set_dim_min(Distance, 0));

  return false;
}

static void printDependencyMap(raw_ostream &OS, __isl_keep isl_union_map *DM) {
  if (DM)
    OS << DM << "\n";
  else
    OS << "n/a\n";
}

void Dependences::print(raw_ostream &OS) const {
  OS << "\tRAW dependences:\n\t\t";
  printDependencyMap(OS, RAW);
  OS << "\tWAR dependences:\n\t\t";
  printDependencyMap(OS, WAR);
  OS << "\tWAW dependences:\n\t\t";
  printDependencyMap(OS, WAW);
  OS << "\tReduction dependences:\n\t\t";
  printDependencyMap(OS, RED);
  OS << "\tTransitive closure of reduction dependences:\n\t\t";
  printDependencyMap(OS, TC_RED);
}

void Dependences::dump() const { print(dbgs()); }

void Dependences::releaseMemory() {
  isl_union_map_free(RAW);
  isl_union_map_free(WAR);
  isl_union_map_free(WAW);
  isl_union_map_free(RED);
  isl_union_map_free(TC_RED);

  RED = RAW = WAR = WAW = TC_RED = nullptr;

  for (auto &ReductionDeps : ReductionDependences)
    isl_map_free(ReductionDeps.second);
  ReductionDependences.clear();
}

isl::union_map Dependences::getDependences(int Kinds) const {
  assert(hasValidDependences() && "No valid dependences available");
  isl::space Space = isl::manage_copy(RAW).get_space();
  isl::union_map Deps = Deps.empty(Space);

  if (Kinds & TYPE_RAW)
    Deps = Deps.unite(isl::manage_copy(RAW));

  if (Kinds & TYPE_WAR)
    Deps = Deps.unite(isl::manage_copy(WAR));

  if (Kinds & TYPE_WAW)
    Deps = Deps.unite(isl::manage_copy(WAW));

  if (Kinds & TYPE_RED)
    Deps = Deps.unite(isl::manage_copy(RED));

  if (Kinds & TYPE_TC_RED)
    Deps = Deps.unite(isl::manage_copy(TC_RED));

  Deps = Deps.coalesce();
  Deps = Deps.detect_equalities();
  return Deps;
}

bool Dependences::hasValidDependences() const {
  return (RAW != nullptr) && (WAR != nullptr) && (WAW != nullptr);
}

__isl_give isl_map *
Dependences::getReductionDependences(MemoryAccess *MA) const {
  return isl_map_copy(ReductionDependences.lookup(MA));
}

void Dependences::setReductionDependences(MemoryAccess *MA, isl_map *D) {
  assert(ReductionDependences.count(MA) == 0 &&
         "Reduction dependences set twice!");
  ReductionDependences[MA] = D;
}

const Dependences &
DependenceAnalysis::Result::getDependences(Dependences::AnalysisLevel Level) {
  if (Dependences *d = D[Level].get())
    return *d;

  return recomputeDependences(Level);
}

const Dependences &DependenceAnalysis::Result::recomputeDependences(
    Dependences::AnalysisLevel Level) {
  D[Level].reset(new Dependences(S.getSharedIslCtx(), Level));
  D[Level]->calculateDependences(S);
  return *D[Level];
}

DependenceAnalysis::Result
DependenceAnalysis::run(Scop &S, ScopAnalysisManager &SAM,
                        ScopStandardAnalysisResults &SAR) {
  return {S, {}};
}

AnalysisKey DependenceAnalysis::Key;

PreservedAnalyses
DependenceInfoPrinterPass::run(Scop &S, ScopAnalysisManager &SAM,
                               ScopStandardAnalysisResults &SAR,
                               SPMUpdater &U) {
  auto &DI = SAM.getResult<DependenceAnalysis>(S, SAR);

  if (auto d = DI.D[OptAnalysisLevel].get()) {
    d->print(OS);
    return PreservedAnalyses::all();
  }

  // Otherwise create the dependences on-the-fly and print them
  Dependences D(S.getSharedIslCtx(), OptAnalysisLevel);
  D.calculateDependences(S);
  D.print(OS);

  return PreservedAnalyses::all();
}

const Dependences &
DependenceInfo::getDependences(Dependences::AnalysisLevel Level) {
  if (Dependences *d = D[Level].get())
    return *d;

  return recomputeDependences(Level);
}

const Dependences &
DependenceInfo::recomputeDependences(Dependences::AnalysisLevel Level) {
  D[Level].reset(new Dependences(S->getSharedIslCtx(), Level));
  D[Level]->calculateDependences(*S);
  return *D[Level];
}

bool DependenceInfo::runOnScop(Scop &ScopVar) {
  S = &ScopVar;
  return false;
}

/// Print the dependences for the given SCoP to @p OS.

void polly::DependenceInfo::printScop(raw_ostream &OS, Scop &S) const {
  if (auto d = D[OptAnalysisLevel].get()) {
    d->print(OS);
    return;
  }

  // Otherwise create the dependences on-the-fly and print it
  Dependences D(S.getSharedIslCtx(), OptAnalysisLevel);
  D.calculateDependences(S);
  D.print(OS);
}

void DependenceInfo::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequiredTransitive<ScopInfoRegionPass>();
  AU.setPreservesAll();
}

char DependenceInfo::ID = 0;

Pass *polly::createDependenceInfoPass() { return new DependenceInfo(); }

INITIALIZE_PASS_BEGIN(DependenceInfo, "polly-dependences",
                      "Polly - Calculate dependences", false, false);
INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass);
INITIALIZE_PASS_END(DependenceInfo, "polly-dependences",
                    "Polly - Calculate dependences", false, false)

//===----------------------------------------------------------------------===//
const Dependences &
DependenceInfoWrapperPass::getDependences(Scop *S,
                                          Dependences::AnalysisLevel Level) {
  auto It = ScopToDepsMap.find(S);
  if (It != ScopToDepsMap.end())
    if (It->second) {
      if (It->second->getDependenceLevel() == Level)
        return *It->second.get();
    }
  return recomputeDependences(S, Level);
}

const Dependences &DependenceInfoWrapperPass::recomputeDependences(
    Scop *S, Dependences::AnalysisLevel Level) {
  std::unique_ptr<Dependences> D(new Dependences(S->getSharedIslCtx(), Level));
  D->calculateDependences(*S);
  auto Inserted = ScopToDepsMap.insert(std::make_pair(S, std::move(D)));
  return *Inserted.first->second;
}

bool DependenceInfoWrapperPass::runOnFunction(Function &F) {
  auto &SI = *getAnalysis<ScopInfoWrapperPass>().getSI();
  for (auto &It : SI) {
    assert(It.second && "Invalid SCoP object!");
    recomputeDependences(It.second.get(), Dependences::AL_Access);
  }
  return false;
}

void DependenceInfoWrapperPass::print(raw_ostream &OS, const Module *M) const {
  for (auto &It : ScopToDepsMap) {
    assert((It.first && It.second) && "Invalid Scop or Dependence object!\n");
    It.second->print(OS);
  }
}

void DependenceInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequiredTransitive<ScopInfoWrapperPass>();
  AU.setPreservesAll();
}

char DependenceInfoWrapperPass::ID = 0;

Pass *polly::createDependenceInfoWrapperPassPass() {
  return new DependenceInfoWrapperPass();
}

INITIALIZE_PASS_BEGIN(
    DependenceInfoWrapperPass, "polly-function-dependences",
    "Polly - Calculate dependences for all the SCoPs of a function", false,
    false)
INITIALIZE_PASS_DEPENDENCY(ScopInfoWrapperPass);
INITIALIZE_PASS_END(
    DependenceInfoWrapperPass, "polly-function-dependences",
    "Polly - Calculate dependences for all the SCoPs of a function", false,
    false)