PPCGCodeGeneration.cpp
129 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
//===------ PPCGCodeGeneration.cpp - Polly Accelerator Code Generation. ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Take a scop created by ScopInfo and map it to GPU code using the ppcg
// GPU mapping strategy.
//
//===----------------------------------------------------------------------===//
#include "polly/CodeGen/PPCGCodeGeneration.h"
#include "polly/CodeGen/CodeGeneration.h"
#include "polly/CodeGen/IslAst.h"
#include "polly/CodeGen/IslNodeBuilder.h"
#include "polly/CodeGen/PerfMonitor.h"
#include "polly/CodeGen/Utils.h"
#include "polly/DependenceInfo.h"
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScopDetection.h"
#include "polly/ScopInfo.h"
#include "polly/Support/SCEVValidator.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/IntrinsicsNVPTX.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Verifier.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/InitializePasses.h"
#include "llvm/Linker/Linker.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "isl/union_map.h"
extern "C" {
#include "ppcg/cuda.h"
#include "ppcg/gpu.h"
#include "ppcg/ppcg.h"
}
#include "llvm/Support/Debug.h"
using namespace polly;
using namespace llvm;
#define DEBUG_TYPE "polly-codegen-ppcg"
static cl::opt<bool> DumpSchedule("polly-acc-dump-schedule",
cl::desc("Dump the computed GPU Schedule"),
cl::Hidden, cl::init(false), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<bool>
DumpCode("polly-acc-dump-code",
cl::desc("Dump C code describing the GPU mapping"), cl::Hidden,
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<bool> DumpKernelIR("polly-acc-dump-kernel-ir",
cl::desc("Dump the kernel LLVM-IR"),
cl::Hidden, cl::init(false), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<bool> DumpKernelASM("polly-acc-dump-kernel-asm",
cl::desc("Dump the kernel assembly code"),
cl::Hidden, cl::init(false), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<bool> FastMath("polly-acc-fastmath",
cl::desc("Allow unsafe math optimizations"),
cl::Hidden, cl::init(false), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<bool> SharedMemory("polly-acc-use-shared",
cl::desc("Use shared memory"), cl::Hidden,
cl::init(false), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<bool> PrivateMemory("polly-acc-use-private",
cl::desc("Use private memory"), cl::Hidden,
cl::init(false), cl::ZeroOrMore,
cl::cat(PollyCategory));
bool polly::PollyManagedMemory;
static cl::opt<bool, true>
XManagedMemory("polly-acc-codegen-managed-memory",
cl::desc("Generate Host kernel code assuming"
" that all memory has been"
" declared as managed memory"),
cl::location(PollyManagedMemory), cl::Hidden,
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<bool>
FailOnVerifyModuleFailure("polly-acc-fail-on-verify-module-failure",
cl::desc("Fail and generate a backtrace if"
" verifyModule fails on the GPU "
" kernel module."),
cl::Hidden, cl::init(false), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<std::string> CUDALibDevice(
"polly-acc-libdevice", cl::desc("Path to CUDA libdevice"), cl::Hidden,
cl::init("/usr/local/cuda/nvvm/libdevice/libdevice.compute_20.10.ll"),
cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<std::string>
CudaVersion("polly-acc-cuda-version",
cl::desc("The CUDA version to compile for"), cl::Hidden,
cl::init("sm_30"), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int>
MinCompute("polly-acc-mincompute",
cl::desc("Minimal number of compute statements to run on GPU."),
cl::Hidden, cl::init(10 * 512 * 512));
extern bool polly::PerfMonitoring;
/// Return a unique name for a Scop, which is the scop region with the
/// function name.
std::string getUniqueScopName(const Scop *S) {
return "Scop Region: " + S->getNameStr() +
" | Function: " + std::string(S->getFunction().getName());
}
/// Used to store information PPCG wants for kills. This information is
/// used by live range reordering.
///
/// @see computeLiveRangeReordering
/// @see GPUNodeBuilder::createPPCGScop
/// @see GPUNodeBuilder::createPPCGProg
struct MustKillsInfo {
/// Collection of all kill statements that will be sequenced at the end of
/// PPCGScop->schedule.
///
/// The nodes in `KillsSchedule` will be merged using `isl_schedule_set`
/// which merges schedules in *arbitrary* order.
/// (we don't care about the order of the kills anyway).
isl::schedule KillsSchedule;
/// Map from kill statement instances to scalars that need to be
/// killed.
///
/// We currently derive kill information for:
/// 1. phi nodes. PHI nodes are not alive outside the scop and can
/// consequently all be killed.
/// 2. Scalar arrays that are not used outside the Scop. This is
/// checked by `isScalarUsesContainedInScop`.
/// [params] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] }
isl::union_map TaggedMustKills;
/// Tagged must kills stripped of the tags.
/// [params] -> { Stmt_phantom[] -> scalar_to_kill[] }
isl::union_map MustKills;
MustKillsInfo() : KillsSchedule(nullptr) {}
};
/// Check if SAI's uses are entirely contained within Scop S.
/// If a scalar is used only with a Scop, we are free to kill it, as no data
/// can flow in/out of the value any more.
/// @see computeMustKillsInfo
static bool isScalarUsesContainedInScop(const Scop &S,
const ScopArrayInfo *SAI) {
assert(SAI->isValueKind() && "this function only deals with scalars."
" Dealing with arrays required alias analysis");
const Region &R = S.getRegion();
for (User *U : SAI->getBasePtr()->users()) {
Instruction *I = dyn_cast<Instruction>(U);
assert(I && "invalid user of scop array info");
if (!R.contains(I))
return false;
}
return true;
}
/// Compute must-kills needed to enable live range reordering with PPCG.
///
/// @params S The Scop to compute live range reordering information
/// @returns live range reordering information that can be used to setup
/// PPCG.
static MustKillsInfo computeMustKillsInfo(const Scop &S) {
const isl::space ParamSpace = S.getParamSpace();
MustKillsInfo Info;
// 1. Collect all ScopArrayInfo that satisfy *any* of the criteria:
// 1.1 phi nodes in scop.
// 1.2 scalars that are only used within the scop
SmallVector<isl::id, 4> KillMemIds;
for (ScopArrayInfo *SAI : S.arrays()) {
if (SAI->isPHIKind() ||
(SAI->isValueKind() && isScalarUsesContainedInScop(S, SAI)))
KillMemIds.push_back(isl::manage(SAI->getBasePtrId().release()));
}
Info.TaggedMustKills = isl::union_map::empty(ParamSpace);
Info.MustKills = isl::union_map::empty(ParamSpace);
// Initialising KillsSchedule to `isl_set_empty` creates an empty node in the
// schedule:
// - filter: "[control] -> { }"
// So, we choose to not create this to keep the output a little nicer,
// at the cost of some code complexity.
Info.KillsSchedule = nullptr;
for (isl::id &ToKillId : KillMemIds) {
isl::id KillStmtId = isl::id::alloc(
S.getIslCtx(),
std::string("SKill_phantom_").append(ToKillId.get_name()), nullptr);
// NOTE: construction of tagged_must_kill:
// 2. We need to construct a map:
// [param] -> { [Stmt_phantom[] -> ref_phantom[]] -> scalar_to_kill[] }
// To construct this, we use `isl_map_domain_product` on 2 maps`:
// 2a. StmtToScalar:
// [param] -> { Stmt_phantom[] -> scalar_to_kill[] }
// 2b. PhantomRefToScalar:
// [param] -> { ref_phantom[] -> scalar_to_kill[] }
//
// Combining these with `isl_map_domain_product` gives us
// TaggedMustKill:
// [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] }
// 2a. [param] -> { Stmt[] -> scalar_to_kill[] }
isl::map StmtToScalar = isl::map::universe(ParamSpace);
StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::in, isl::id(KillStmtId));
StmtToScalar = StmtToScalar.set_tuple_id(isl::dim::out, isl::id(ToKillId));
isl::id PhantomRefId = isl::id::alloc(
S.getIslCtx(), std::string("ref_phantom") + ToKillId.get_name(),
nullptr);
// 2b. [param] -> { phantom_ref[] -> scalar_to_kill[] }
isl::map PhantomRefToScalar = isl::map::universe(ParamSpace);
PhantomRefToScalar =
PhantomRefToScalar.set_tuple_id(isl::dim::in, PhantomRefId);
PhantomRefToScalar =
PhantomRefToScalar.set_tuple_id(isl::dim::out, ToKillId);
// 2. [param] -> { [Stmt[] -> phantom_ref[]] -> scalar_to_kill[] }
isl::map TaggedMustKill = StmtToScalar.domain_product(PhantomRefToScalar);
Info.TaggedMustKills = Info.TaggedMustKills.unite(TaggedMustKill);
// 2. [param] -> { Stmt[] -> scalar_to_kill[] }
Info.MustKills = Info.TaggedMustKills.domain_factor_domain();
// 3. Create the kill schedule of the form:
// "[param] -> { Stmt_phantom[] }"
// Then add this to Info.KillsSchedule.
isl::space KillStmtSpace = ParamSpace;
KillStmtSpace = KillStmtSpace.set_tuple_id(isl::dim::set, KillStmtId);
isl::union_set KillStmtDomain = isl::set::universe(KillStmtSpace);
isl::schedule KillSchedule = isl::schedule::from_domain(KillStmtDomain);
if (Info.KillsSchedule)
Info.KillsSchedule = isl::manage(
isl_schedule_set(Info.KillsSchedule.release(), KillSchedule.copy()));
else
Info.KillsSchedule = KillSchedule;
}
return Info;
}
/// Create the ast expressions for a ScopStmt.
///
/// This function is a callback for to generate the ast expressions for each
/// of the scheduled ScopStmts.
static __isl_give isl_id_to_ast_expr *pollyBuildAstExprForStmt(
void *StmtT, __isl_take isl_ast_build *Build_C,
isl_multi_pw_aff *(*FunctionIndex)(__isl_take isl_multi_pw_aff *MPA,
isl_id *Id, void *User),
void *UserIndex,
isl_ast_expr *(*FunctionExpr)(isl_ast_expr *Expr, isl_id *Id, void *User),
void *UserExpr) {
ScopStmt *Stmt = (ScopStmt *)StmtT;
if (!Stmt || !Build_C)
return NULL;
isl::ast_build Build = isl::manage_copy(Build_C);
isl::ctx Ctx = Build.get_ctx();
isl::id_to_ast_expr RefToExpr = isl::id_to_ast_expr::alloc(Ctx, 0);
Stmt->setAstBuild(Build);
for (MemoryAccess *Acc : *Stmt) {
isl::map AddrFunc = Acc->getAddressFunction();
AddrFunc = AddrFunc.intersect_domain(Stmt->getDomain());
isl::id RefId = Acc->getId();
isl::pw_multi_aff PMA = isl::pw_multi_aff::from_map(AddrFunc);
isl::multi_pw_aff MPA = isl::multi_pw_aff(PMA);
MPA = MPA.coalesce();
MPA = isl::manage(FunctionIndex(MPA.release(), RefId.get(), UserIndex));
isl::ast_expr Access = Build.access_from(MPA);
Access = isl::manage(FunctionExpr(Access.release(), RefId.get(), UserExpr));
RefToExpr = RefToExpr.set(RefId, Access);
}
return RefToExpr.release();
}
/// Given a LLVM Type, compute its size in bytes,
static int computeSizeInBytes(const Type *T) {
int bytes = T->getPrimitiveSizeInBits() / 8;
if (bytes == 0)
bytes = T->getScalarSizeInBits() / 8;
return bytes;
}
/// Generate code for a GPU specific isl AST.
///
/// The GPUNodeBuilder augments the general existing IslNodeBuilder, which
/// generates code for general-purpose AST nodes, with special functionality
/// for generating GPU specific user nodes.
///
/// @see GPUNodeBuilder::createUser
class GPUNodeBuilder : public IslNodeBuilder {
public:
GPUNodeBuilder(PollyIRBuilder &Builder, ScopAnnotator &Annotator,
const DataLayout &DL, LoopInfo &LI, ScalarEvolution &SE,
DominatorTree &DT, Scop &S, BasicBlock *StartBlock,
gpu_prog *Prog, GPURuntime Runtime, GPUArch Arch)
: IslNodeBuilder(Builder, Annotator, DL, LI, SE, DT, S, StartBlock),
Prog(Prog), Runtime(Runtime), Arch(Arch) {
getExprBuilder().setIDToSAI(&IDToSAI);
}
/// Create after-run-time-check initialization code.
void initializeAfterRTH();
/// Finalize the generated scop.
virtual void finalize();
/// Track if the full build process was successful.
///
/// This value is set to false, if throughout the build process an error
/// occurred which prevents us from generating valid GPU code.
bool BuildSuccessful = true;
/// The maximal number of loops surrounding a sequential kernel.
unsigned DeepestSequential = 0;
/// The maximal number of loops surrounding a parallel kernel.
unsigned DeepestParallel = 0;
/// Return the name to set for the ptx_kernel.
std::string getKernelFuncName(int Kernel_id);
private:
/// A vector of array base pointers for which a new ScopArrayInfo was created.
///
/// This vector is used to delete the ScopArrayInfo when it is not needed any
/// more.
std::vector<Value *> LocalArrays;
/// A map from ScopArrays to their corresponding device allocations.
std::map<ScopArrayInfo *, Value *> DeviceAllocations;
/// The current GPU context.
Value *GPUContext;
/// The set of isl_ids allocated in the kernel
std::vector<isl_id *> KernelIds;
/// A module containing GPU code.
///
/// This pointer is only set in case we are currently generating GPU code.
std::unique_ptr<Module> GPUModule;
/// The GPU program we generate code for.
gpu_prog *Prog;
/// The GPU Runtime implementation to use (OpenCL or CUDA).
GPURuntime Runtime;
/// The GPU Architecture to target.
GPUArch Arch;
/// Class to free isl_ids.
class IslIdDeleter {
public:
void operator()(__isl_take isl_id *Id) { isl_id_free(Id); };
};
/// A set containing all isl_ids allocated in a GPU kernel.
///
/// By releasing this set all isl_ids will be freed.
std::set<std::unique_ptr<isl_id, IslIdDeleter>> KernelIDs;
IslExprBuilder::IDToScopArrayInfoTy IDToSAI;
/// Create code for user-defined AST nodes.
///
/// These AST nodes can be of type:
///
/// - ScopStmt: A computational statement (TODO)
/// - Kernel: A GPU kernel call (TODO)
/// - Data-Transfer: A GPU <-> CPU data-transfer
/// - In-kernel synchronization
/// - In-kernel memory copy statement
///
/// @param UserStmt The ast node to generate code for.
virtual void createUser(__isl_take isl_ast_node *UserStmt);
virtual void createFor(__isl_take isl_ast_node *Node);
enum DataDirection { HOST_TO_DEVICE, DEVICE_TO_HOST };
/// Create code for a data transfer statement
///
/// @param TransferStmt The data transfer statement.
/// @param Direction The direction in which to transfer data.
void createDataTransfer(__isl_take isl_ast_node *TransferStmt,
enum DataDirection Direction);
/// Find llvm::Values referenced in GPU kernel.
///
/// @param Kernel The kernel to scan for llvm::Values
///
/// @returns A tuple, whose:
/// - First element contains the set of values referenced by the
/// kernel
/// - Second element contains the set of functions referenced by the
/// kernel. All functions in the set satisfy
/// `isValidFunctionInKernel`.
/// - Third element contains loops that have induction variables
/// which are used in the kernel, *and* these loops are *neither*
/// in the scop, nor do they immediately surroung the Scop.
/// See [Code generation of induction variables of loops outside
/// Scops]
std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>,
isl::space>
getReferencesInKernel(ppcg_kernel *Kernel);
/// Compute the sizes of the execution grid for a given kernel.
///
/// @param Kernel The kernel to compute grid sizes for.
///
/// @returns A tuple with grid sizes for X and Y dimension
std::tuple<Value *, Value *> getGridSizes(ppcg_kernel *Kernel);
/// Get the managed array pointer for sending host pointers to the device.
/// \note
/// This is to be used only with managed memory
Value *getManagedDeviceArray(gpu_array_info *Array, ScopArrayInfo *ArrayInfo);
/// Compute the sizes of the thread blocks for a given kernel.
///
/// @param Kernel The kernel to compute thread block sizes for.
///
/// @returns A tuple with thread block sizes for X, Y, and Z dimensions.
std::tuple<Value *, Value *, Value *> getBlockSizes(ppcg_kernel *Kernel);
/// Store a specific kernel launch parameter in the array of kernel launch
/// parameters.
///
/// @param Parameters The list of parameters in which to store.
/// @param Param The kernel launch parameter to store.
/// @param Index The index in the parameter list, at which to store the
/// parameter.
void insertStoreParameter(Instruction *Parameters, Instruction *Param,
int Index);
/// Create kernel launch parameters.
///
/// @param Kernel The kernel to create parameters for.
/// @param F The kernel function that has been created.
/// @param SubtreeValues The set of llvm::Values referenced by this kernel.
///
/// @returns A stack allocated array with pointers to the parameter
/// values that are passed to the kernel.
Value *createLaunchParameters(ppcg_kernel *Kernel, Function *F,
SetVector<Value *> SubtreeValues);
/// Create declarations for kernel variable.
///
/// This includes shared memory declarations.
///
/// @param Kernel The kernel definition to create variables for.
/// @param FN The function into which to generate the variables.
void createKernelVariables(ppcg_kernel *Kernel, Function *FN);
/// Add CUDA annotations to module.
///
/// Add a set of CUDA annotations that declares the maximal block dimensions
/// that will be used to execute the CUDA kernel. This allows the NVIDIA
/// PTX compiler to bound the number of allocated registers to ensure the
/// resulting kernel is known to run with up to as many block dimensions
/// as specified here.
///
/// @param M The module to add the annotations to.
/// @param BlockDimX The size of block dimension X.
/// @param BlockDimY The size of block dimension Y.
/// @param BlockDimZ The size of block dimension Z.
void addCUDAAnnotations(Module *M, Value *BlockDimX, Value *BlockDimY,
Value *BlockDimZ);
/// Create GPU kernel.
///
/// Code generate the kernel described by @p KernelStmt.
///
/// @param KernelStmt The ast node to generate kernel code for.
void createKernel(__isl_take isl_ast_node *KernelStmt);
/// Generate code that computes the size of an array.
///
/// @param Array The array for which to compute a size.
Value *getArraySize(gpu_array_info *Array);
/// Generate code to compute the minimal offset at which an array is accessed.
///
/// The offset of an array is the minimal array location accessed in a scop.
///
/// Example:
///
/// for (long i = 0; i < 100; i++)
/// A[i + 42] += ...
///
/// getArrayOffset(A) results in 42.
///
/// @param Array The array for which to compute the offset.
/// @returns An llvm::Value that contains the offset of the array.
Value *getArrayOffset(gpu_array_info *Array);
/// Prepare the kernel arguments for kernel code generation
///
/// @param Kernel The kernel to generate code for.
/// @param FN The function created for the kernel.
void prepareKernelArguments(ppcg_kernel *Kernel, Function *FN);
/// Create kernel function.
///
/// Create a kernel function located in a newly created module that can serve
/// as target for device code generation. Set the Builder to point to the
/// start block of this newly created function.
///
/// @param Kernel The kernel to generate code for.
/// @param SubtreeValues The set of llvm::Values referenced by this kernel.
/// @param SubtreeFunctions The set of llvm::Functions referenced by this
/// kernel.
void createKernelFunction(ppcg_kernel *Kernel,
SetVector<Value *> &SubtreeValues,
SetVector<Function *> &SubtreeFunctions);
/// Create the declaration of a kernel function.
///
/// The kernel function takes as arguments:
///
/// - One i8 pointer for each external array reference used in the kernel.
/// - Host iterators
/// - Parameters
/// - Other LLVM Value references (TODO)
///
/// @param Kernel The kernel to generate the function declaration for.
/// @param SubtreeValues The set of llvm::Values referenced by this kernel.
///
/// @returns The newly declared function.
Function *createKernelFunctionDecl(ppcg_kernel *Kernel,
SetVector<Value *> &SubtreeValues);
/// Insert intrinsic functions to obtain thread and block ids.
///
/// @param The kernel to generate the intrinsic functions for.
void insertKernelIntrinsics(ppcg_kernel *Kernel);
/// Insert function calls to retrieve the SPIR group/local ids.
///
/// @param Kernel The kernel to generate the function calls for.
/// @param SizeTypeIs64Bit Whether size_t of the openCl device is 64bit.
void insertKernelCallsSPIR(ppcg_kernel *Kernel, bool SizeTypeIs64bit);
/// Setup the creation of functions referenced by the GPU kernel.
///
/// 1. Create new function declarations in GPUModule which are the same as
/// SubtreeFunctions.
///
/// 2. Populate IslNodeBuilder::ValueMap with mappings from
/// old functions (that come from the original module) to new functions
/// (that are created within GPUModule). That way, we generate references
/// to the correct function (in GPUModule) in BlockGenerator.
///
/// @see IslNodeBuilder::ValueMap
/// @see BlockGenerator::GlobalMap
/// @see BlockGenerator::getNewValue
/// @see GPUNodeBuilder::getReferencesInKernel.
///
/// @param SubtreeFunctions The set of llvm::Functions referenced by
/// this kernel.
void setupKernelSubtreeFunctions(SetVector<Function *> SubtreeFunctions);
/// Create a global-to-shared or shared-to-global copy statement.
///
/// @param CopyStmt The copy statement to generate code for
void createKernelCopy(ppcg_kernel_stmt *CopyStmt);
/// Create code for a ScopStmt called in @p Expr.
///
/// @param Expr The expression containing the call.
/// @param KernelStmt The kernel statement referenced in the call.
void createScopStmt(isl_ast_expr *Expr, ppcg_kernel_stmt *KernelStmt);
/// Create an in-kernel synchronization call.
void createKernelSync();
/// Create a PTX assembly string for the current GPU kernel.
///
/// @returns A string containing the corresponding PTX assembly code.
std::string createKernelASM();
/// Remove references from the dominator tree to the kernel function @p F.
///
/// @param F The function to remove references to.
void clearDominators(Function *F);
/// Remove references from scalar evolution to the kernel function @p F.
///
/// @param F The function to remove references to.
void clearScalarEvolution(Function *F);
/// Remove references from loop info to the kernel function @p F.
///
/// @param F The function to remove references to.
void clearLoops(Function *F);
/// Check if the scop requires to be linked with CUDA's libdevice.
bool requiresCUDALibDevice();
/// Link with the NVIDIA libdevice library (if needed and available).
void addCUDALibDevice();
/// Finalize the generation of the kernel function.
///
/// Free the LLVM-IR module corresponding to the kernel and -- if requested --
/// dump its IR to stderr.
///
/// @returns The Assembly string of the kernel.
std::string finalizeKernelFunction();
/// Finalize the generation of the kernel arguments.
///
/// This function ensures that not-read-only scalars used in a kernel are
/// stored back to the global memory location they are backed with before
/// the kernel terminates.
///
/// @params Kernel The kernel to finalize kernel arguments for.
void finalizeKernelArguments(ppcg_kernel *Kernel);
/// Create code that allocates memory to store arrays on device.
void allocateDeviceArrays();
/// Create code to prepare the managed device pointers.
void prepareManagedDeviceArrays();
/// Free all allocated device arrays.
void freeDeviceArrays();
/// Create a call to initialize the GPU context.
///
/// @returns A pointer to the newly initialized context.
Value *createCallInitContext();
/// Create a call to get the device pointer for a kernel allocation.
///
/// @param Allocation The Polly GPU allocation
///
/// @returns The device parameter corresponding to this allocation.
Value *createCallGetDevicePtr(Value *Allocation);
/// Create a call to free the GPU context.
///
/// @param Context A pointer to an initialized GPU context.
void createCallFreeContext(Value *Context);
/// Create a call to allocate memory on the device.
///
/// @param Size The size of memory to allocate
///
/// @returns A pointer that identifies this allocation.
Value *createCallAllocateMemoryForDevice(Value *Size);
/// Create a call to free a device array.
///
/// @param Array The device array to free.
void createCallFreeDeviceMemory(Value *Array);
/// Create a call to copy data from host to device.
///
/// @param HostPtr A pointer to the host data that should be copied.
/// @param DevicePtr A device pointer specifying the location to copy to.
void createCallCopyFromHostToDevice(Value *HostPtr, Value *DevicePtr,
Value *Size);
/// Create a call to copy data from device to host.
///
/// @param DevicePtr A pointer to the device data that should be copied.
/// @param HostPtr A host pointer specifying the location to copy to.
void createCallCopyFromDeviceToHost(Value *DevicePtr, Value *HostPtr,
Value *Size);
/// Create a call to synchronize Host & Device.
/// \note
/// This is to be used only with managed memory.
void createCallSynchronizeDevice();
/// Create a call to get a kernel from an assembly string.
///
/// @param Buffer The string describing the kernel.
/// @param Entry The name of the kernel function to call.
///
/// @returns A pointer to a kernel object
Value *createCallGetKernel(Value *Buffer, Value *Entry);
/// Create a call to free a GPU kernel.
///
/// @param GPUKernel THe kernel to free.
void createCallFreeKernel(Value *GPUKernel);
/// Create a call to launch a GPU kernel.
///
/// @param GPUKernel The kernel to launch.
/// @param GridDimX The size of the first grid dimension.
/// @param GridDimY The size of the second grid dimension.
/// @param GridBlockX The size of the first block dimension.
/// @param GridBlockY The size of the second block dimension.
/// @param GridBlockZ The size of the third block dimension.
/// @param Parameters A pointer to an array that contains itself pointers to
/// the parameter values passed for each kernel argument.
void createCallLaunchKernel(Value *GPUKernel, Value *GridDimX,
Value *GridDimY, Value *BlockDimX,
Value *BlockDimY, Value *BlockDimZ,
Value *Parameters);
};
std::string GPUNodeBuilder::getKernelFuncName(int Kernel_id) {
return "FUNC_" + S.getFunction().getName().str() + "_SCOP_" +
std::to_string(S.getID()) + "_KERNEL_" + std::to_string(Kernel_id);
}
void GPUNodeBuilder::initializeAfterRTH() {
BasicBlock *NewBB = SplitBlock(Builder.GetInsertBlock(),
&*Builder.GetInsertPoint(), &DT, &LI);
NewBB->setName("polly.acc.initialize");
Builder.SetInsertPoint(&NewBB->front());
GPUContext = createCallInitContext();
if (!PollyManagedMemory)
allocateDeviceArrays();
else
prepareManagedDeviceArrays();
}
void GPUNodeBuilder::finalize() {
if (!PollyManagedMemory)
freeDeviceArrays();
createCallFreeContext(GPUContext);
IslNodeBuilder::finalize();
}
void GPUNodeBuilder::allocateDeviceArrays() {
assert(!PollyManagedMemory &&
"Managed memory will directly send host pointers "
"to the kernel. There is no need for device arrays");
isl_ast_build *Build = isl_ast_build_from_context(S.getContext().release());
for (int i = 0; i < Prog->n_array; ++i) {
gpu_array_info *Array = &Prog->array[i];
auto *ScopArray = (ScopArrayInfo *)Array->user;
std::string DevArrayName("p_dev_array_");
DevArrayName.append(Array->name);
Value *ArraySize = getArraySize(Array);
Value *Offset = getArrayOffset(Array);
if (Offset)
ArraySize = Builder.CreateSub(
ArraySize,
Builder.CreateMul(Offset,
Builder.getInt64(ScopArray->getElemSizeInBytes())));
const SCEV *SizeSCEV = SE.getSCEV(ArraySize);
// It makes no sense to have an array of size 0. The CUDA API will
// throw an error anyway if we invoke `cuMallocManaged` with size `0`. We
// choose to be defensive and catch this at the compile phase. It is
// most likely that we are doing something wrong with size computation.
if (SizeSCEV->isZero()) {
errs() << getUniqueScopName(&S)
<< " has computed array size 0: " << *ArraySize
<< " | for array: " << *(ScopArray->getBasePtr())
<< ". This is illegal, exiting.\n";
report_fatal_error("array size was computed to be 0");
}
Value *DevArray = createCallAllocateMemoryForDevice(ArraySize);
DevArray->setName(DevArrayName);
DeviceAllocations[ScopArray] = DevArray;
}
isl_ast_build_free(Build);
}
void GPUNodeBuilder::prepareManagedDeviceArrays() {
assert(PollyManagedMemory &&
"Device array most only be prepared in managed-memory mode");
for (int i = 0; i < Prog->n_array; ++i) {
gpu_array_info *Array = &Prog->array[i];
ScopArrayInfo *ScopArray = (ScopArrayInfo *)Array->user;
Value *HostPtr;
if (gpu_array_is_scalar(Array))
HostPtr = BlockGen.getOrCreateAlloca(ScopArray);
else
HostPtr = ScopArray->getBasePtr();
HostPtr = getLatestValue(HostPtr);
Value *Offset = getArrayOffset(Array);
if (Offset) {
HostPtr = Builder.CreatePointerCast(
HostPtr, ScopArray->getElementType()->getPointerTo());
HostPtr = Builder.CreateGEP(HostPtr, Offset);
}
HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy());
DeviceAllocations[ScopArray] = HostPtr;
}
}
void GPUNodeBuilder::addCUDAAnnotations(Module *M, Value *BlockDimX,
Value *BlockDimY, Value *BlockDimZ) {
auto AnnotationNode = M->getOrInsertNamedMetadata("nvvm.annotations");
for (auto &F : *M) {
if (F.getCallingConv() != CallingConv::PTX_Kernel)
continue;
Value *V[] = {BlockDimX, BlockDimY, BlockDimZ};
Metadata *Elements[] = {
ValueAsMetadata::get(&F), MDString::get(M->getContext(), "maxntidx"),
ValueAsMetadata::get(V[0]), MDString::get(M->getContext(), "maxntidy"),
ValueAsMetadata::get(V[1]), MDString::get(M->getContext(), "maxntidz"),
ValueAsMetadata::get(V[2]),
};
MDNode *Node = MDNode::get(M->getContext(), Elements);
AnnotationNode->addOperand(Node);
}
}
void GPUNodeBuilder::freeDeviceArrays() {
assert(!PollyManagedMemory && "Managed memory does not use device arrays");
for (auto &Array : DeviceAllocations)
createCallFreeDeviceMemory(Array.second);
}
Value *GPUNodeBuilder::createCallGetKernel(Value *Buffer, Value *Entry) {
const char *Name = "polly_getKernel";
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Function *F = M->getFunction(Name);
// If F is not available, declare it.
if (!F) {
GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
std::vector<Type *> Args;
Args.push_back(Builder.getInt8PtrTy());
Args.push_back(Builder.getInt8PtrTy());
FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
F = Function::Create(Ty, Linkage, Name, M);
}
return Builder.CreateCall(F, {Buffer, Entry});
}
Value *GPUNodeBuilder::createCallGetDevicePtr(Value *Allocation) {
const char *Name = "polly_getDevicePtr";
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Function *F = M->getFunction(Name);
// If F is not available, declare it.
if (!F) {
GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
std::vector<Type *> Args;
Args.push_back(Builder.getInt8PtrTy());
FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
F = Function::Create(Ty, Linkage, Name, M);
}
return Builder.CreateCall(F, {Allocation});
}
void GPUNodeBuilder::createCallLaunchKernel(Value *GPUKernel, Value *GridDimX,
Value *GridDimY, Value *BlockDimX,
Value *BlockDimY, Value *BlockDimZ,
Value *Parameters) {
const char *Name = "polly_launchKernel";
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Function *F = M->getFunction(Name);
// If F is not available, declare it.
if (!F) {
GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
std::vector<Type *> Args;
Args.push_back(Builder.getInt8PtrTy());
Args.push_back(Builder.getInt32Ty());
Args.push_back(Builder.getInt32Ty());
Args.push_back(Builder.getInt32Ty());
Args.push_back(Builder.getInt32Ty());
Args.push_back(Builder.getInt32Ty());
Args.push_back(Builder.getInt8PtrTy());
FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
F = Function::Create(Ty, Linkage, Name, M);
}
Builder.CreateCall(F, {GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY,
BlockDimZ, Parameters});
}
void GPUNodeBuilder::createCallFreeKernel(Value *GPUKernel) {
const char *Name = "polly_freeKernel";
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Function *F = M->getFunction(Name);
// If F is not available, declare it.
if (!F) {
GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
std::vector<Type *> Args;
Args.push_back(Builder.getInt8PtrTy());
FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
F = Function::Create(Ty, Linkage, Name, M);
}
Builder.CreateCall(F, {GPUKernel});
}
void GPUNodeBuilder::createCallFreeDeviceMemory(Value *Array) {
assert(!PollyManagedMemory &&
"Managed memory does not allocate or free memory "
"for device");
const char *Name = "polly_freeDeviceMemory";
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Function *F = M->getFunction(Name);
// If F is not available, declare it.
if (!F) {
GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
std::vector<Type *> Args;
Args.push_back(Builder.getInt8PtrTy());
FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
F = Function::Create(Ty, Linkage, Name, M);
}
Builder.CreateCall(F, {Array});
}
Value *GPUNodeBuilder::createCallAllocateMemoryForDevice(Value *Size) {
assert(!PollyManagedMemory &&
"Managed memory does not allocate or free memory "
"for device");
const char *Name = "polly_allocateMemoryForDevice";
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Function *F = M->getFunction(Name);
// If F is not available, declare it.
if (!F) {
GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
std::vector<Type *> Args;
Args.push_back(Builder.getInt64Ty());
FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
F = Function::Create(Ty, Linkage, Name, M);
}
return Builder.CreateCall(F, {Size});
}
void GPUNodeBuilder::createCallCopyFromHostToDevice(Value *HostData,
Value *DeviceData,
Value *Size) {
assert(!PollyManagedMemory &&
"Managed memory does not transfer memory between "
"device and host");
const char *Name = "polly_copyFromHostToDevice";
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Function *F = M->getFunction(Name);
// If F is not available, declare it.
if (!F) {
GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
std::vector<Type *> Args;
Args.push_back(Builder.getInt8PtrTy());
Args.push_back(Builder.getInt8PtrTy());
Args.push_back(Builder.getInt64Ty());
FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
F = Function::Create(Ty, Linkage, Name, M);
}
Builder.CreateCall(F, {HostData, DeviceData, Size});
}
void GPUNodeBuilder::createCallCopyFromDeviceToHost(Value *DeviceData,
Value *HostData,
Value *Size) {
assert(!PollyManagedMemory &&
"Managed memory does not transfer memory between "
"device and host");
const char *Name = "polly_copyFromDeviceToHost";
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Function *F = M->getFunction(Name);
// If F is not available, declare it.
if (!F) {
GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
std::vector<Type *> Args;
Args.push_back(Builder.getInt8PtrTy());
Args.push_back(Builder.getInt8PtrTy());
Args.push_back(Builder.getInt64Ty());
FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
F = Function::Create(Ty, Linkage, Name, M);
}
Builder.CreateCall(F, {DeviceData, HostData, Size});
}
void GPUNodeBuilder::createCallSynchronizeDevice() {
assert(PollyManagedMemory && "explicit synchronization is only necessary for "
"managed memory");
const char *Name = "polly_synchronizeDevice";
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Function *F = M->getFunction(Name);
// If F is not available, declare it.
if (!F) {
GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), false);
F = Function::Create(Ty, Linkage, Name, M);
}
Builder.CreateCall(F);
}
Value *GPUNodeBuilder::createCallInitContext() {
const char *Name;
switch (Runtime) {
case GPURuntime::CUDA:
Name = "polly_initContextCUDA";
break;
case GPURuntime::OpenCL:
Name = "polly_initContextCL";
break;
}
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Function *F = M->getFunction(Name);
// If F is not available, declare it.
if (!F) {
GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
std::vector<Type *> Args;
FunctionType *Ty = FunctionType::get(Builder.getInt8PtrTy(), Args, false);
F = Function::Create(Ty, Linkage, Name, M);
}
return Builder.CreateCall(F, {});
}
void GPUNodeBuilder::createCallFreeContext(Value *Context) {
const char *Name = "polly_freeContext";
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Function *F = M->getFunction(Name);
// If F is not available, declare it.
if (!F) {
GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
std::vector<Type *> Args;
Args.push_back(Builder.getInt8PtrTy());
FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
F = Function::Create(Ty, Linkage, Name, M);
}
Builder.CreateCall(F, {Context});
}
/// Check if one string is a prefix of another.
///
/// @param String The string in which to look for the prefix.
/// @param Prefix The prefix to look for.
static bool isPrefix(std::string String, std::string Prefix) {
return String.find(Prefix) == 0;
}
Value *GPUNodeBuilder::getArraySize(gpu_array_info *Array) {
isl::ast_build Build = isl::ast_build::from_context(S.getContext());
Value *ArraySize = ConstantInt::get(Builder.getInt64Ty(), Array->size);
if (!gpu_array_is_scalar(Array)) {
isl::multi_pw_aff ArrayBound = isl::manage_copy(Array->bound);
isl::pw_aff OffsetDimZero = ArrayBound.get_pw_aff(0);
isl::ast_expr Res = Build.expr_from(OffsetDimZero);
for (unsigned int i = 1; i < Array->n_index; i++) {
isl::pw_aff Bound_I = ArrayBound.get_pw_aff(i);
isl::ast_expr Expr = Build.expr_from(Bound_I);
Res = Res.mul(Expr);
}
Value *NumElements = ExprBuilder.create(Res.release());
if (NumElements->getType() != ArraySize->getType())
NumElements = Builder.CreateSExt(NumElements, ArraySize->getType());
ArraySize = Builder.CreateMul(ArraySize, NumElements);
}
return ArraySize;
}
Value *GPUNodeBuilder::getArrayOffset(gpu_array_info *Array) {
if (gpu_array_is_scalar(Array))
return nullptr;
isl::ast_build Build = isl::ast_build::from_context(S.getContext());
isl::set Min = isl::manage_copy(Array->extent).lexmin();
isl::set ZeroSet = isl::set::universe(Min.get_space());
for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++)
ZeroSet = ZeroSet.fix_si(isl::dim::set, i, 0);
if (Min.is_subset(ZeroSet)) {
return nullptr;
}
isl::ast_expr Result = isl::ast_expr::from_val(isl::val(Min.get_ctx(), 0));
for (long i = 0, n = Min.dim(isl::dim::set); i < n; i++) {
if (i > 0) {
isl::pw_aff Bound_I =
isl::manage(isl_multi_pw_aff_get_pw_aff(Array->bound, i - 1));
isl::ast_expr BExpr = Build.expr_from(Bound_I);
Result = Result.mul(BExpr);
}
isl::pw_aff DimMin = Min.dim_min(i);
isl::ast_expr MExpr = Build.expr_from(DimMin);
Result = Result.add(MExpr);
}
return ExprBuilder.create(Result.release());
}
Value *GPUNodeBuilder::getManagedDeviceArray(gpu_array_info *Array,
ScopArrayInfo *ArrayInfo) {
assert(PollyManagedMemory && "Only used when you wish to get a host "
"pointer for sending data to the kernel, "
"with managed memory");
std::map<ScopArrayInfo *, Value *>::iterator it;
it = DeviceAllocations.find(ArrayInfo);
assert(it != DeviceAllocations.end() &&
"Device array expected to be available");
return it->second;
}
void GPUNodeBuilder::createDataTransfer(__isl_take isl_ast_node *TransferStmt,
enum DataDirection Direction) {
assert(!PollyManagedMemory && "Managed memory needs no data transfers");
isl_ast_expr *Expr = isl_ast_node_user_get_expr(TransferStmt);
isl_ast_expr *Arg = isl_ast_expr_get_op_arg(Expr, 0);
isl_id *Id = isl_ast_expr_get_id(Arg);
auto Array = (gpu_array_info *)isl_id_get_user(Id);
auto ScopArray = (ScopArrayInfo *)(Array->user);
Value *Size = getArraySize(Array);
Value *Offset = getArrayOffset(Array);
Value *DevPtr = DeviceAllocations[ScopArray];
Value *HostPtr;
if (gpu_array_is_scalar(Array))
HostPtr = BlockGen.getOrCreateAlloca(ScopArray);
else
HostPtr = ScopArray->getBasePtr();
HostPtr = getLatestValue(HostPtr);
if (Offset) {
HostPtr = Builder.CreatePointerCast(
HostPtr, ScopArray->getElementType()->getPointerTo());
HostPtr = Builder.CreateGEP(HostPtr, Offset);
}
HostPtr = Builder.CreatePointerCast(HostPtr, Builder.getInt8PtrTy());
if (Offset) {
Size = Builder.CreateSub(
Size, Builder.CreateMul(
Offset, Builder.getInt64(ScopArray->getElemSizeInBytes())));
}
if (Direction == HOST_TO_DEVICE)
createCallCopyFromHostToDevice(HostPtr, DevPtr, Size);
else
createCallCopyFromDeviceToHost(DevPtr, HostPtr, Size);
isl_id_free(Id);
isl_ast_expr_free(Arg);
isl_ast_expr_free(Expr);
isl_ast_node_free(TransferStmt);
}
void GPUNodeBuilder::createUser(__isl_take isl_ast_node *UserStmt) {
isl_ast_expr *Expr = isl_ast_node_user_get_expr(UserStmt);
isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
isl_id *Id = isl_ast_expr_get_id(StmtExpr);
isl_id_free(Id);
isl_ast_expr_free(StmtExpr);
const char *Str = isl_id_get_name(Id);
if (!strcmp(Str, "kernel")) {
createKernel(UserStmt);
if (PollyManagedMemory)
createCallSynchronizeDevice();
isl_ast_expr_free(Expr);
return;
}
if (!strcmp(Str, "init_device")) {
initializeAfterRTH();
isl_ast_node_free(UserStmt);
isl_ast_expr_free(Expr);
return;
}
if (!strcmp(Str, "clear_device")) {
finalize();
isl_ast_node_free(UserStmt);
isl_ast_expr_free(Expr);
return;
}
if (isPrefix(Str, "to_device")) {
if (!PollyManagedMemory)
createDataTransfer(UserStmt, HOST_TO_DEVICE);
else
isl_ast_node_free(UserStmt);
isl_ast_expr_free(Expr);
return;
}
if (isPrefix(Str, "from_device")) {
if (!PollyManagedMemory) {
createDataTransfer(UserStmt, DEVICE_TO_HOST);
} else {
isl_ast_node_free(UserStmt);
}
isl_ast_expr_free(Expr);
return;
}
isl_id *Anno = isl_ast_node_get_annotation(UserStmt);
struct ppcg_kernel_stmt *KernelStmt =
(struct ppcg_kernel_stmt *)isl_id_get_user(Anno);
isl_id_free(Anno);
switch (KernelStmt->type) {
case ppcg_kernel_domain:
createScopStmt(Expr, KernelStmt);
isl_ast_node_free(UserStmt);
return;
case ppcg_kernel_copy:
createKernelCopy(KernelStmt);
isl_ast_expr_free(Expr);
isl_ast_node_free(UserStmt);
return;
case ppcg_kernel_sync:
createKernelSync();
isl_ast_expr_free(Expr);
isl_ast_node_free(UserStmt);
return;
}
isl_ast_expr_free(Expr);
isl_ast_node_free(UserStmt);
}
void GPUNodeBuilder::createFor(__isl_take isl_ast_node *Node) {
createForSequential(isl::manage(Node), false);
}
void GPUNodeBuilder::createKernelCopy(ppcg_kernel_stmt *KernelStmt) {
isl_ast_expr *LocalIndex = isl_ast_expr_copy(KernelStmt->u.c.local_index);
LocalIndex = isl_ast_expr_address_of(LocalIndex);
Value *LocalAddr = ExprBuilder.create(LocalIndex);
isl_ast_expr *Index = isl_ast_expr_copy(KernelStmt->u.c.index);
Index = isl_ast_expr_address_of(Index);
Value *GlobalAddr = ExprBuilder.create(Index);
if (KernelStmt->u.c.read) {
LoadInst *Load = Builder.CreateLoad(GlobalAddr, "shared.read");
Builder.CreateStore(Load, LocalAddr);
} else {
LoadInst *Load = Builder.CreateLoad(LocalAddr, "shared.write");
Builder.CreateStore(Load, GlobalAddr);
}
}
void GPUNodeBuilder::createScopStmt(isl_ast_expr *Expr,
ppcg_kernel_stmt *KernelStmt) {
auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt;
isl_id_to_ast_expr *Indexes = KernelStmt->u.d.ref2expr;
LoopToScevMapT LTS;
LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end());
createSubstitutions(Expr, Stmt, LTS);
if (Stmt->isBlockStmt())
BlockGen.copyStmt(*Stmt, LTS, Indexes);
else
RegionGen.copyStmt(*Stmt, LTS, Indexes);
}
void GPUNodeBuilder::createKernelSync() {
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
const char *SpirName = "__gen_ocl_barrier_global";
Function *Sync;
switch (Arch) {
case GPUArch::SPIR64:
case GPUArch::SPIR32:
Sync = M->getFunction(SpirName);
// If Sync is not available, declare it.
if (!Sync) {
GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
std::vector<Type *> Args;
FunctionType *Ty = FunctionType::get(Builder.getVoidTy(), Args, false);
Sync = Function::Create(Ty, Linkage, SpirName, M);
Sync->setCallingConv(CallingConv::SPIR_FUNC);
}
break;
case GPUArch::NVPTX64:
Sync = Intrinsic::getDeclaration(M, Intrinsic::nvvm_barrier0);
break;
}
Builder.CreateCall(Sync, {});
}
/// Collect llvm::Values referenced from @p Node
///
/// This function only applies to isl_ast_nodes that are user_nodes referring
/// to a ScopStmt. All other node types are ignore.
///
/// @param Node The node to collect references for.
/// @param User A user pointer used as storage for the data that is collected.
///
/// @returns isl_bool_true if data could be collected successfully.
isl_bool collectReferencesInGPUStmt(__isl_keep isl_ast_node *Node, void *User) {
if (isl_ast_node_get_type(Node) != isl_ast_node_user)
return isl_bool_true;
isl_ast_expr *Expr = isl_ast_node_user_get_expr(Node);
isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
isl_id *Id = isl_ast_expr_get_id(StmtExpr);
const char *Str = isl_id_get_name(Id);
isl_id_free(Id);
isl_ast_expr_free(StmtExpr);
isl_ast_expr_free(Expr);
if (!isPrefix(Str, "Stmt"))
return isl_bool_true;
Id = isl_ast_node_get_annotation(Node);
auto *KernelStmt = (ppcg_kernel_stmt *)isl_id_get_user(Id);
auto Stmt = (ScopStmt *)KernelStmt->u.d.stmt->stmt;
isl_id_free(Id);
addReferencesFromStmt(Stmt, User, false /* CreateScalarRefs */);
return isl_bool_true;
}
/// A list of functions that are available in NVIDIA's libdevice.
const std::set<std::string> CUDALibDeviceFunctions = {
"exp", "expf", "expl", "cos", "cosf", "sqrt", "sqrtf",
"copysign", "copysignf", "copysignl", "log", "logf", "powi", "powif"};
// A map from intrinsics to their corresponding libdevice functions.
const std::map<std::string, std::string> IntrinsicToLibdeviceFunc = {
{"llvm.exp.f64", "exp"},
{"llvm.exp.f32", "expf"},
{"llvm.powi.f64", "powi"},
{"llvm.powi.f32", "powif"}};
/// Return the corresponding CUDA libdevice function name @p Name.
/// Note that this function will try to convert instrinsics in the list
/// IntrinsicToLibdeviceFunc into libdevice functions.
/// This is because some intrinsics such as `exp`
/// are not supported by the NVPTX backend.
/// If this restriction of the backend is lifted, we should refactor our code
/// so that we use intrinsics whenever possible.
///
/// Return "" if we are not compiling for CUDA.
std::string getCUDALibDeviceFuntion(StringRef Name) {
auto It = IntrinsicToLibdeviceFunc.find(Name);
if (It != IntrinsicToLibdeviceFunc.end())
return getCUDALibDeviceFuntion(It->second);
if (CUDALibDeviceFunctions.count(Name))
return ("__nv_" + Name).str();
return "";
}
/// Check if F is a function that we can code-generate in a GPU kernel.
static bool isValidFunctionInKernel(llvm::Function *F, bool AllowLibDevice) {
assert(F && "F is an invalid pointer");
// We string compare against the name of the function to allow
// all variants of the intrinsic "llvm.sqrt.*", "llvm.fabs", and
// "llvm.copysign".
const StringRef Name = F->getName();
if (AllowLibDevice && getCUDALibDeviceFuntion(Name).length() > 0)
return true;
return F->isIntrinsic() &&
(Name.startswith("llvm.sqrt") || Name.startswith("llvm.fabs") ||
Name.startswith("llvm.copysign"));
}
/// Do not take `Function` as a subtree value.
///
/// We try to take the reference of all subtree values and pass them along
/// to the kernel from the host. Taking an address of any function and
/// trying to pass along is nonsensical. Only allow `Value`s that are not
/// `Function`s.
static bool isValidSubtreeValue(llvm::Value *V) { return !isa<Function>(V); }
/// Return `Function`s from `RawSubtreeValues`.
static SetVector<Function *>
getFunctionsFromRawSubtreeValues(SetVector<Value *> RawSubtreeValues,
bool AllowCUDALibDevice) {
SetVector<Function *> SubtreeFunctions;
for (Value *It : RawSubtreeValues) {
Function *F = dyn_cast<Function>(It);
if (F) {
assert(isValidFunctionInKernel(F, AllowCUDALibDevice) &&
"Code should have bailed out by "
"this point if an invalid function "
"were present in a kernel.");
SubtreeFunctions.insert(F);
}
}
return SubtreeFunctions;
}
std::tuple<SetVector<Value *>, SetVector<Function *>, SetVector<const Loop *>,
isl::space>
GPUNodeBuilder::getReferencesInKernel(ppcg_kernel *Kernel) {
SetVector<Value *> SubtreeValues;
SetVector<const SCEV *> SCEVs;
SetVector<const Loop *> Loops;
isl::space ParamSpace = isl::space(S.getIslCtx(), 0, 0).params();
SubtreeReferences References = {
LI, SE, S, ValueMap, SubtreeValues, SCEVs, getBlockGenerator(),
&ParamSpace};
for (const auto &I : IDToValue)
SubtreeValues.insert(I.second);
// NOTE: this is populated in IslNodeBuilder::addParameters
// See [Code generation of induction variables of loops outside Scops].
for (const auto &I : OutsideLoopIterations)
SubtreeValues.insert(cast<SCEVUnknown>(I.second)->getValue());
isl_ast_node_foreach_descendant_top_down(
Kernel->tree, collectReferencesInGPUStmt, &References);
for (const SCEV *Expr : SCEVs) {
findValues(Expr, SE, SubtreeValues);
findLoops(Expr, Loops);
}
Loops.remove_if([this](const Loop *L) {
return S.contains(L) || L->contains(S.getEntry());
});
for (auto &SAI : S.arrays())
SubtreeValues.remove(SAI->getBasePtr());
isl_space *Space = S.getParamSpace().release();
for (long i = 0, n = isl_space_dim(Space, isl_dim_param); i < n; i++) {
isl_id *Id = isl_space_get_dim_id(Space, isl_dim_param, i);
assert(IDToValue.count(Id));
Value *Val = IDToValue[Id];
SubtreeValues.remove(Val);
isl_id_free(Id);
}
isl_space_free(Space);
for (long i = 0, n = isl_space_dim(Kernel->space, isl_dim_set); i < n; i++) {
isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
assert(IDToValue.count(Id));
Value *Val = IDToValue[Id];
SubtreeValues.remove(Val);
isl_id_free(Id);
}
// Note: { ValidSubtreeValues, ValidSubtreeFunctions } partitions
// SubtreeValues. This is important, because we should not lose any
// SubtreeValues in the process of constructing the
// "ValidSubtree{Values, Functions} sets. Nor should the set
// ValidSubtree{Values, Functions} have any common element.
auto ValidSubtreeValuesIt =
make_filter_range(SubtreeValues, isValidSubtreeValue);
SetVector<Value *> ValidSubtreeValues(ValidSubtreeValuesIt.begin(),
ValidSubtreeValuesIt.end());
bool AllowCUDALibDevice = Arch == GPUArch::NVPTX64;
SetVector<Function *> ValidSubtreeFunctions(
getFunctionsFromRawSubtreeValues(SubtreeValues, AllowCUDALibDevice));
// @see IslNodeBuilder::getReferencesInSubtree
SetVector<Value *> ReplacedValues;
for (Value *V : ValidSubtreeValues) {
auto It = ValueMap.find(V);
if (It == ValueMap.end())
ReplacedValues.insert(V);
else
ReplacedValues.insert(It->second);
}
return std::make_tuple(ReplacedValues, ValidSubtreeFunctions, Loops,
ParamSpace);
}
void GPUNodeBuilder::clearDominators(Function *F) {
DomTreeNode *N = DT.getNode(&F->getEntryBlock());
std::vector<BasicBlock *> Nodes;
for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I)
Nodes.push_back(I->getBlock());
for (BasicBlock *BB : Nodes)
DT.eraseNode(BB);
}
void GPUNodeBuilder::clearScalarEvolution(Function *F) {
for (BasicBlock &BB : *F) {
Loop *L = LI.getLoopFor(&BB);
if (L)
SE.forgetLoop(L);
}
}
void GPUNodeBuilder::clearLoops(Function *F) {
SmallSet<Loop *, 1> WorkList;
for (BasicBlock &BB : *F) {
Loop *L = LI.getLoopFor(&BB);
if (L)
WorkList.insert(L);
}
for (auto *L : WorkList)
LI.erase(L);
}
std::tuple<Value *, Value *> GPUNodeBuilder::getGridSizes(ppcg_kernel *Kernel) {
std::vector<Value *> Sizes;
isl::ast_build Context = isl::ast_build::from_context(S.getContext());
isl::multi_pw_aff GridSizePwAffs = isl::manage_copy(Kernel->grid_size);
for (long i = 0; i < Kernel->n_grid; i++) {
isl::pw_aff Size = GridSizePwAffs.get_pw_aff(i);
isl::ast_expr GridSize = Context.expr_from(Size);
Value *Res = ExprBuilder.create(GridSize.release());
Res = Builder.CreateTrunc(Res, Builder.getInt32Ty());
Sizes.push_back(Res);
}
for (long i = Kernel->n_grid; i < 3; i++)
Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1));
return std::make_tuple(Sizes[0], Sizes[1]);
}
std::tuple<Value *, Value *, Value *>
GPUNodeBuilder::getBlockSizes(ppcg_kernel *Kernel) {
std::vector<Value *> Sizes;
for (long i = 0; i < Kernel->n_block; i++) {
Value *Res = ConstantInt::get(Builder.getInt32Ty(), Kernel->block_dim[i]);
Sizes.push_back(Res);
}
for (long i = Kernel->n_block; i < 3; i++)
Sizes.push_back(ConstantInt::get(Builder.getInt32Ty(), 1));
return std::make_tuple(Sizes[0], Sizes[1], Sizes[2]);
}
void GPUNodeBuilder::insertStoreParameter(Instruction *Parameters,
Instruction *Param, int Index) {
Value *Slot = Builder.CreateGEP(
Parameters, {Builder.getInt64(0), Builder.getInt64(Index)});
Value *ParamTyped = Builder.CreatePointerCast(Param, Builder.getInt8PtrTy());
Builder.CreateStore(ParamTyped, Slot);
}
Value *
GPUNodeBuilder::createLaunchParameters(ppcg_kernel *Kernel, Function *F,
SetVector<Value *> SubtreeValues) {
const int NumArgs = F->arg_size();
std::vector<int> ArgSizes(NumArgs);
// If we are using the OpenCL Runtime, we need to add the kernel argument
// sizes to the end of the launch-parameter list, so OpenCL can determine
// how big the respective kernel arguments are.
// Here we need to reserve adequate space for that.
Type *ArrayTy;
if (Runtime == GPURuntime::OpenCL)
ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), 2 * NumArgs);
else
ArrayTy = ArrayType::get(Builder.getInt8PtrTy(), NumArgs);
BasicBlock *EntryBlock =
&Builder.GetInsertBlock()->getParent()->getEntryBlock();
auto AddressSpace = F->getParent()->getDataLayout().getAllocaAddrSpace();
std::string Launch = "polly_launch_" + std::to_string(Kernel->id);
Instruction *Parameters = new AllocaInst(
ArrayTy, AddressSpace, Launch + "_params", EntryBlock->getTerminator());
int Index = 0;
for (long i = 0; i < Prog->n_array; i++) {
if (!ppcg_kernel_requires_array_argument(Kernel, i))
continue;
isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id));
if (Runtime == GPURuntime::OpenCL)
ArgSizes[Index] = SAI->getElemSizeInBytes();
Value *DevArray = nullptr;
if (PollyManagedMemory) {
DevArray = getManagedDeviceArray(&Prog->array[i],
const_cast<ScopArrayInfo *>(SAI));
} else {
DevArray = DeviceAllocations[const_cast<ScopArrayInfo *>(SAI)];
DevArray = createCallGetDevicePtr(DevArray);
}
assert(DevArray != nullptr && "Array to be offloaded to device not "
"initialized");
Value *Offset = getArrayOffset(&Prog->array[i]);
if (Offset) {
DevArray = Builder.CreatePointerCast(
DevArray, SAI->getElementType()->getPointerTo());
DevArray = Builder.CreateGEP(DevArray, Builder.CreateNeg(Offset));
DevArray = Builder.CreatePointerCast(DevArray, Builder.getInt8PtrTy());
}
Value *Slot = Builder.CreateGEP(
Parameters, {Builder.getInt64(0), Builder.getInt64(Index)});
if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
Value *ValPtr = nullptr;
if (PollyManagedMemory)
ValPtr = DevArray;
else
ValPtr = BlockGen.getOrCreateAlloca(SAI);
assert(ValPtr != nullptr && "ValPtr that should point to a valid object"
" to be stored into Parameters");
Value *ValPtrCast =
Builder.CreatePointerCast(ValPtr, Builder.getInt8PtrTy());
Builder.CreateStore(ValPtrCast, Slot);
} else {
Instruction *Param =
new AllocaInst(Builder.getInt8PtrTy(), AddressSpace,
Launch + "_param_" + std::to_string(Index),
EntryBlock->getTerminator());
Builder.CreateStore(DevArray, Param);
Value *ParamTyped =
Builder.CreatePointerCast(Param, Builder.getInt8PtrTy());
Builder.CreateStore(ParamTyped, Slot);
}
Index++;
}
int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set);
for (long i = 0; i < NumHostIters; i++) {
isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
Value *Val = IDToValue[Id];
isl_id_free(Id);
if (Runtime == GPURuntime::OpenCL)
ArgSizes[Index] = computeSizeInBytes(Val->getType());
Instruction *Param =
new AllocaInst(Val->getType(), AddressSpace,
Launch + "_param_" + std::to_string(Index),
EntryBlock->getTerminator());
Builder.CreateStore(Val, Param);
insertStoreParameter(Parameters, Param, Index);
Index++;
}
int NumVars = isl_space_dim(Kernel->space, isl_dim_param);
for (long i = 0; i < NumVars; i++) {
isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
Value *Val = IDToValue[Id];
if (ValueMap.count(Val))
Val = ValueMap[Val];
isl_id_free(Id);
if (Runtime == GPURuntime::OpenCL)
ArgSizes[Index] = computeSizeInBytes(Val->getType());
Instruction *Param =
new AllocaInst(Val->getType(), AddressSpace,
Launch + "_param_" + std::to_string(Index),
EntryBlock->getTerminator());
Builder.CreateStore(Val, Param);
insertStoreParameter(Parameters, Param, Index);
Index++;
}
for (auto Val : SubtreeValues) {
if (Runtime == GPURuntime::OpenCL)
ArgSizes[Index] = computeSizeInBytes(Val->getType());
Instruction *Param =
new AllocaInst(Val->getType(), AddressSpace,
Launch + "_param_" + std::to_string(Index),
EntryBlock->getTerminator());
Builder.CreateStore(Val, Param);
insertStoreParameter(Parameters, Param, Index);
Index++;
}
if (Runtime == GPURuntime::OpenCL) {
for (int i = 0; i < NumArgs; i++) {
Value *Val = ConstantInt::get(Builder.getInt32Ty(), ArgSizes[i]);
Instruction *Param =
new AllocaInst(Builder.getInt32Ty(), AddressSpace,
Launch + "_param_size_" + std::to_string(i),
EntryBlock->getTerminator());
Builder.CreateStore(Val, Param);
insertStoreParameter(Parameters, Param, Index);
Index++;
}
}
auto Location = EntryBlock->getTerminator();
return new BitCastInst(Parameters, Builder.getInt8PtrTy(),
Launch + "_params_i8ptr", Location);
}
void GPUNodeBuilder::setupKernelSubtreeFunctions(
SetVector<Function *> SubtreeFunctions) {
for (auto Fn : SubtreeFunctions) {
const std::string ClonedFnName = Fn->getName();
Function *Clone = GPUModule->getFunction(ClonedFnName);
if (!Clone)
Clone =
Function::Create(Fn->getFunctionType(), GlobalValue::ExternalLinkage,
ClonedFnName, GPUModule.get());
assert(Clone && "Expected cloned function to be initialized.");
assert(ValueMap.find(Fn) == ValueMap.end() &&
"Fn already present in ValueMap");
ValueMap[Fn] = Clone;
}
}
void GPUNodeBuilder::createKernel(__isl_take isl_ast_node *KernelStmt) {
isl_id *Id = isl_ast_node_get_annotation(KernelStmt);
ppcg_kernel *Kernel = (ppcg_kernel *)isl_id_get_user(Id);
isl_id_free(Id);
isl_ast_node_free(KernelStmt);
if (Kernel->n_grid > 1)
DeepestParallel =
std::max(DeepestParallel, isl_space_dim(Kernel->space, isl_dim_set));
else
DeepestSequential =
std::max(DeepestSequential, isl_space_dim(Kernel->space, isl_dim_set));
Value *BlockDimX, *BlockDimY, *BlockDimZ;
std::tie(BlockDimX, BlockDimY, BlockDimZ) = getBlockSizes(Kernel);
SetVector<Value *> SubtreeValues;
SetVector<Function *> SubtreeFunctions;
SetVector<const Loop *> Loops;
isl::space ParamSpace;
std::tie(SubtreeValues, SubtreeFunctions, Loops, ParamSpace) =
getReferencesInKernel(Kernel);
// Add parameters that appear only in the access function to the kernel
// space. This is important to make sure that all isl_ids are passed as
// parameters to the kernel, even though we may not have all parameters
// in the context to improve compile time.
Kernel->space = isl_space_align_params(Kernel->space, ParamSpace.release());
assert(Kernel->tree && "Device AST of kernel node is empty");
Instruction &HostInsertPoint = *Builder.GetInsertPoint();
IslExprBuilder::IDToValueTy HostIDs = IDToValue;
ValueMapT HostValueMap = ValueMap;
BlockGenerator::AllocaMapTy HostScalarMap = ScalarMap;
ScalarMap.clear();
BlockGenerator::EscapeUsersAllocaMapTy HostEscapeMap = EscapeMap;
EscapeMap.clear();
// Create for all loops we depend on values that contain the current loop
// iteration. These values are necessary to generate code for SCEVs that
// depend on such loops. As a result we need to pass them to the subfunction.
for (const Loop *L : Loops) {
const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)),
SE.getUnknown(Builder.getInt64(1)),
L, SCEV::FlagAnyWrap);
Value *V = generateSCEV(OuterLIV);
OutsideLoopIterations[L] = SE.getUnknown(V);
SubtreeValues.insert(V);
}
createKernelFunction(Kernel, SubtreeValues, SubtreeFunctions);
setupKernelSubtreeFunctions(SubtreeFunctions);
create(isl_ast_node_copy(Kernel->tree));
finalizeKernelArguments(Kernel);
Function *F = Builder.GetInsertBlock()->getParent();
if (Arch == GPUArch::NVPTX64)
addCUDAAnnotations(F->getParent(), BlockDimX, BlockDimY, BlockDimZ);
clearDominators(F);
clearScalarEvolution(F);
clearLoops(F);
IDToValue = HostIDs;
ValueMap = std::move(HostValueMap);
ScalarMap = std::move(HostScalarMap);
EscapeMap = std::move(HostEscapeMap);
IDToSAI.clear();
Annotator.resetAlternativeAliasBases();
for (auto &BasePtr : LocalArrays)
S.invalidateScopArrayInfo(BasePtr, MemoryKind::Array);
LocalArrays.clear();
std::string ASMString = finalizeKernelFunction();
Builder.SetInsertPoint(&HostInsertPoint);
Value *Parameters = createLaunchParameters(Kernel, F, SubtreeValues);
std::string Name = getKernelFuncName(Kernel->id);
Value *KernelString = Builder.CreateGlobalStringPtr(ASMString, Name);
Value *NameString = Builder.CreateGlobalStringPtr(Name, Name + "_name");
Value *GPUKernel = createCallGetKernel(KernelString, NameString);
Value *GridDimX, *GridDimY;
std::tie(GridDimX, GridDimY) = getGridSizes(Kernel);
createCallLaunchKernel(GPUKernel, GridDimX, GridDimY, BlockDimX, BlockDimY,
BlockDimZ, Parameters);
createCallFreeKernel(GPUKernel);
for (auto Id : KernelIds)
isl_id_free(Id);
KernelIds.clear();
}
/// Compute the DataLayout string for the NVPTX backend.
///
/// @param is64Bit Are we looking for a 64 bit architecture?
static std::string computeNVPTXDataLayout(bool is64Bit) {
std::string Ret = "";
if (!is64Bit) {
Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
"64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:"
"64-v128:128:128-n16:32:64";
} else {
Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
"64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:"
"64-v128:128:128-n16:32:64";
}
return Ret;
}
/// Compute the DataLayout string for a SPIR kernel.
///
/// @param is64Bit Are we looking for a 64 bit architecture?
static std::string computeSPIRDataLayout(bool is64Bit) {
std::string Ret = "";
if (!is64Bit) {
Ret += "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
"64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:"
"32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:"
"256:256-v256:256:256-v512:512:512-v1024:1024:1024";
} else {
Ret += "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:"
"64-i128:128:128-f32:32:32-f64:64:64-v16:16:16-v24:32:32-v32:32:"
"32-v48:64:64-v64:64:64-v96:128:128-v128:128:128-v192:"
"256:256-v256:256:256-v512:512:512-v1024:1024:1024";
}
return Ret;
}
Function *
GPUNodeBuilder::createKernelFunctionDecl(ppcg_kernel *Kernel,
SetVector<Value *> &SubtreeValues) {
std::vector<Type *> Args;
std::string Identifier = getKernelFuncName(Kernel->id);
std::vector<Metadata *> MemoryType;
for (long i = 0; i < Prog->n_array; i++) {
if (!ppcg_kernel_requires_array_argument(Kernel, i))
continue;
if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage(Id));
Args.push_back(SAI->getElementType());
MemoryType.push_back(
ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
} else {
static const int UseGlobalMemory = 1;
Args.push_back(Builder.getInt8PtrTy(UseGlobalMemory));
MemoryType.push_back(
ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 1)));
}
}
int NumHostIters = isl_space_dim(Kernel->space, isl_dim_set);
for (long i = 0; i < NumHostIters; i++) {
Args.push_back(Builder.getInt64Ty());
MemoryType.push_back(
ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
}
int NumVars = isl_space_dim(Kernel->space, isl_dim_param);
for (long i = 0; i < NumVars; i++) {
isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
Value *Val = IDToValue[Id];
isl_id_free(Id);
Args.push_back(Val->getType());
MemoryType.push_back(
ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
}
for (auto *V : SubtreeValues) {
Args.push_back(V->getType());
MemoryType.push_back(
ConstantAsMetadata::get(ConstantInt::get(Builder.getInt32Ty(), 0)));
}
auto *FT = FunctionType::get(Builder.getVoidTy(), Args, false);
auto *FN = Function::Create(FT, Function::ExternalLinkage, Identifier,
GPUModule.get());
std::vector<Metadata *> EmptyStrings;
for (unsigned int i = 0; i < MemoryType.size(); i++) {
EmptyStrings.push_back(MDString::get(FN->getContext(), ""));
}
if (Arch == GPUArch::SPIR32 || Arch == GPUArch::SPIR64) {
FN->setMetadata("kernel_arg_addr_space",
MDNode::get(FN->getContext(), MemoryType));
FN->setMetadata("kernel_arg_name",
MDNode::get(FN->getContext(), EmptyStrings));
FN->setMetadata("kernel_arg_access_qual",
MDNode::get(FN->getContext(), EmptyStrings));
FN->setMetadata("kernel_arg_type",
MDNode::get(FN->getContext(), EmptyStrings));
FN->setMetadata("kernel_arg_type_qual",
MDNode::get(FN->getContext(), EmptyStrings));
FN->setMetadata("kernel_arg_base_type",
MDNode::get(FN->getContext(), EmptyStrings));
}
switch (Arch) {
case GPUArch::NVPTX64:
FN->setCallingConv(CallingConv::PTX_Kernel);
break;
case GPUArch::SPIR32:
case GPUArch::SPIR64:
FN->setCallingConv(CallingConv::SPIR_KERNEL);
break;
}
auto Arg = FN->arg_begin();
for (long i = 0; i < Kernel->n_array; i++) {
if (!ppcg_kernel_requires_array_argument(Kernel, i))
continue;
Arg->setName(Kernel->array[i].array->name);
isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id));
Type *EleTy = SAI->getElementType();
Value *Val = &*Arg;
SmallVector<const SCEV *, 4> Sizes;
isl_ast_build *Build =
isl_ast_build_from_context(isl_set_copy(Prog->context));
Sizes.push_back(nullptr);
for (long j = 1, n = Kernel->array[i].array->n_index; j < n; j++) {
isl_ast_expr *DimSize = isl_ast_build_expr_from_pw_aff(
Build, isl_multi_pw_aff_get_pw_aff(Kernel->array[i].array->bound, j));
auto V = ExprBuilder.create(DimSize);
Sizes.push_back(SE.getSCEV(V));
}
const ScopArrayInfo *SAIRep =
S.getOrCreateScopArrayInfo(Val, EleTy, Sizes, MemoryKind::Array);
LocalArrays.push_back(Val);
isl_ast_build_free(Build);
KernelIds.push_back(Id);
IDToSAI[Id] = SAIRep;
Arg++;
}
for (long i = 0; i < NumHostIters; i++) {
isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_set, i);
Arg->setName(isl_id_get_name(Id));
IDToValue[Id] = &*Arg;
KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
Arg++;
}
for (long i = 0; i < NumVars; i++) {
isl_id *Id = isl_space_get_dim_id(Kernel->space, isl_dim_param, i);
Arg->setName(isl_id_get_name(Id));
Value *Val = IDToValue[Id];
ValueMap[Val] = &*Arg;
IDToValue[Id] = &*Arg;
KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
Arg++;
}
for (auto *V : SubtreeValues) {
Arg->setName(V->getName());
ValueMap[V] = &*Arg;
Arg++;
}
return FN;
}
void GPUNodeBuilder::insertKernelIntrinsics(ppcg_kernel *Kernel) {
Intrinsic::ID IntrinsicsBID[2];
Intrinsic::ID IntrinsicsTID[3];
switch (Arch) {
case GPUArch::SPIR64:
case GPUArch::SPIR32:
llvm_unreachable("Cannot generate NVVM intrinsics for SPIR");
case GPUArch::NVPTX64:
IntrinsicsBID[0] = Intrinsic::nvvm_read_ptx_sreg_ctaid_x;
IntrinsicsBID[1] = Intrinsic::nvvm_read_ptx_sreg_ctaid_y;
IntrinsicsTID[0] = Intrinsic::nvvm_read_ptx_sreg_tid_x;
IntrinsicsTID[1] = Intrinsic::nvvm_read_ptx_sreg_tid_y;
IntrinsicsTID[2] = Intrinsic::nvvm_read_ptx_sreg_tid_z;
break;
}
auto addId = [this](__isl_take isl_id *Id, Intrinsic::ID Intr) mutable {
std::string Name = isl_id_get_name(Id);
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Function *IntrinsicFn = Intrinsic::getDeclaration(M, Intr);
Value *Val = Builder.CreateCall(IntrinsicFn, {});
Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name);
IDToValue[Id] = Val;
KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
};
for (int i = 0; i < Kernel->n_grid; ++i) {
isl_id *Id = isl_id_list_get_id(Kernel->block_ids, i);
addId(Id, IntrinsicsBID[i]);
}
for (int i = 0; i < Kernel->n_block; ++i) {
isl_id *Id = isl_id_list_get_id(Kernel->thread_ids, i);
addId(Id, IntrinsicsTID[i]);
}
}
void GPUNodeBuilder::insertKernelCallsSPIR(ppcg_kernel *Kernel,
bool SizeTypeIs64bit) {
const char *GroupName[3] = {"__gen_ocl_get_group_id0",
"__gen_ocl_get_group_id1",
"__gen_ocl_get_group_id2"};
const char *LocalName[3] = {"__gen_ocl_get_local_id0",
"__gen_ocl_get_local_id1",
"__gen_ocl_get_local_id2"};
IntegerType *SizeT =
SizeTypeIs64bit ? Builder.getInt64Ty() : Builder.getInt32Ty();
auto createFunc = [this](const char *Name, __isl_take isl_id *Id,
IntegerType *SizeT) mutable {
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
Function *FN = M->getFunction(Name);
// If FN is not available, declare it.
if (!FN) {
GlobalValue::LinkageTypes Linkage = Function::ExternalLinkage;
std::vector<Type *> Args;
FunctionType *Ty = FunctionType::get(SizeT, Args, false);
FN = Function::Create(Ty, Linkage, Name, M);
FN->setCallingConv(CallingConv::SPIR_FUNC);
}
Value *Val = Builder.CreateCall(FN, {});
if (SizeT == Builder.getInt32Ty())
Val = Builder.CreateIntCast(Val, Builder.getInt64Ty(), false, Name);
IDToValue[Id] = Val;
KernelIDs.insert(std::unique_ptr<isl_id, IslIdDeleter>(Id));
};
for (int i = 0; i < Kernel->n_grid; ++i)
createFunc(GroupName[i], isl_id_list_get_id(Kernel->block_ids, i), SizeT);
for (int i = 0; i < Kernel->n_block; ++i)
createFunc(LocalName[i], isl_id_list_get_id(Kernel->thread_ids, i), SizeT);
}
void GPUNodeBuilder::prepareKernelArguments(ppcg_kernel *Kernel, Function *FN) {
auto Arg = FN->arg_begin();
for (long i = 0; i < Kernel->n_array; i++) {
if (!ppcg_kernel_requires_array_argument(Kernel, i))
continue;
isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id));
isl_id_free(Id);
if (SAI->getNumberOfDimensions() > 0) {
Arg++;
continue;
}
Value *Val = &*Arg;
if (!gpu_array_is_read_only_scalar(&Prog->array[i])) {
Type *TypePtr = SAI->getElementType()->getPointerTo();
Value *TypedArgPtr = Builder.CreatePointerCast(Val, TypePtr);
Val = Builder.CreateLoad(TypedArgPtr);
}
Value *Alloca = BlockGen.getOrCreateAlloca(SAI);
Builder.CreateStore(Val, Alloca);
Arg++;
}
}
void GPUNodeBuilder::finalizeKernelArguments(ppcg_kernel *Kernel) {
auto *FN = Builder.GetInsertBlock()->getParent();
auto Arg = FN->arg_begin();
bool StoredScalar = false;
for (long i = 0; i < Kernel->n_array; i++) {
if (!ppcg_kernel_requires_array_argument(Kernel, i))
continue;
isl_id *Id = isl_space_get_tuple_id(Prog->array[i].space, isl_dim_set);
const ScopArrayInfo *SAI = ScopArrayInfo::getFromId(isl::manage_copy(Id));
isl_id_free(Id);
if (SAI->getNumberOfDimensions() > 0) {
Arg++;
continue;
}
if (gpu_array_is_read_only_scalar(&Prog->array[i])) {
Arg++;
continue;
}
Value *Alloca = BlockGen.getOrCreateAlloca(SAI);
Value *ArgPtr = &*Arg;
Type *TypePtr = SAI->getElementType()->getPointerTo();
Value *TypedArgPtr = Builder.CreatePointerCast(ArgPtr, TypePtr);
Value *Val = Builder.CreateLoad(Alloca);
Builder.CreateStore(Val, TypedArgPtr);
StoredScalar = true;
Arg++;
}
if (StoredScalar) {
/// In case more than one thread contains scalar stores, the generated
/// code might be incorrect, if we only store at the end of the kernel.
/// To support this case we need to store these scalars back at each
/// memory store or at least before each kernel barrier.
if (Kernel->n_block != 0 || Kernel->n_grid != 0) {
BuildSuccessful = 0;
LLVM_DEBUG(
dbgs() << getUniqueScopName(&S)
<< " has a store to a scalar value that"
" would be undefined to run in parallel. Bailing out.\n";);
}
}
}
void GPUNodeBuilder::createKernelVariables(ppcg_kernel *Kernel, Function *FN) {
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
for (int i = 0; i < Kernel->n_var; ++i) {
struct ppcg_kernel_var &Var = Kernel->var[i];
isl_id *Id = isl_space_get_tuple_id(Var.array->space, isl_dim_set);
Type *EleTy = ScopArrayInfo::getFromId(isl::manage(Id))->getElementType();
Type *ArrayTy = EleTy;
SmallVector<const SCEV *, 4> Sizes;
Sizes.push_back(nullptr);
for (unsigned int j = 1; j < Var.array->n_index; ++j) {
isl_val *Val = isl_vec_get_element_val(Var.size, j);
long Bound = isl_val_get_num_si(Val);
isl_val_free(Val);
Sizes.push_back(S.getSE()->getConstant(Builder.getInt64Ty(), Bound));
}
for (int j = Var.array->n_index - 1; j >= 0; --j) {
isl_val *Val = isl_vec_get_element_val(Var.size, j);
long Bound = isl_val_get_num_si(Val);
isl_val_free(Val);
ArrayTy = ArrayType::get(ArrayTy, Bound);
}
const ScopArrayInfo *SAI;
Value *Allocation;
if (Var.type == ppcg_access_shared) {
auto GlobalVar = new GlobalVariable(
*M, ArrayTy, false, GlobalValue::InternalLinkage, 0, Var.name,
nullptr, GlobalValue::ThreadLocalMode::NotThreadLocal, 3);
GlobalVar->setAlignment(llvm::Align(EleTy->getPrimitiveSizeInBits() / 8));
GlobalVar->setInitializer(Constant::getNullValue(ArrayTy));
Allocation = GlobalVar;
} else if (Var.type == ppcg_access_private) {
Allocation = Builder.CreateAlloca(ArrayTy, 0, "private_array");
} else {
llvm_unreachable("unknown variable type");
}
SAI =
S.getOrCreateScopArrayInfo(Allocation, EleTy, Sizes, MemoryKind::Array);
Id = isl_id_alloc(S.getIslCtx().get(), Var.name, nullptr);
IDToValue[Id] = Allocation;
LocalArrays.push_back(Allocation);
KernelIds.push_back(Id);
IDToSAI[Id] = SAI;
}
}
void GPUNodeBuilder::createKernelFunction(
ppcg_kernel *Kernel, SetVector<Value *> &SubtreeValues,
SetVector<Function *> &SubtreeFunctions) {
std::string Identifier = getKernelFuncName(Kernel->id);
GPUModule.reset(new Module(Identifier, Builder.getContext()));
switch (Arch) {
case GPUArch::NVPTX64:
if (Runtime == GPURuntime::CUDA)
GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda"));
else if (Runtime == GPURuntime::OpenCL)
GPUModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-nvcl"));
GPUModule->setDataLayout(computeNVPTXDataLayout(true /* is64Bit */));
break;
case GPUArch::SPIR32:
GPUModule->setTargetTriple(Triple::normalize("spir-unknown-unknown"));
GPUModule->setDataLayout(computeSPIRDataLayout(false /* is64Bit */));
break;
case GPUArch::SPIR64:
GPUModule->setTargetTriple(Triple::normalize("spir64-unknown-unknown"));
GPUModule->setDataLayout(computeSPIRDataLayout(true /* is64Bit */));
break;
}
Function *FN = createKernelFunctionDecl(Kernel, SubtreeValues);
BasicBlock *PrevBlock = Builder.GetInsertBlock();
auto EntryBlock = BasicBlock::Create(Builder.getContext(), "entry", FN);
DT.addNewBlock(EntryBlock, PrevBlock);
Builder.SetInsertPoint(EntryBlock);
Builder.CreateRetVoid();
Builder.SetInsertPoint(EntryBlock, EntryBlock->begin());
ScopDetection::markFunctionAsInvalid(FN);
prepareKernelArguments(Kernel, FN);
createKernelVariables(Kernel, FN);
switch (Arch) {
case GPUArch::NVPTX64:
insertKernelIntrinsics(Kernel);
break;
case GPUArch::SPIR32:
insertKernelCallsSPIR(Kernel, false);
break;
case GPUArch::SPIR64:
insertKernelCallsSPIR(Kernel, true);
break;
}
}
std::string GPUNodeBuilder::createKernelASM() {
llvm::Triple GPUTriple;
switch (Arch) {
case GPUArch::NVPTX64:
switch (Runtime) {
case GPURuntime::CUDA:
GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-cuda"));
break;
case GPURuntime::OpenCL:
GPUTriple = llvm::Triple(Triple::normalize("nvptx64-nvidia-nvcl"));
break;
}
break;
case GPUArch::SPIR64:
case GPUArch::SPIR32:
std::string SPIRAssembly;
raw_string_ostream IROstream(SPIRAssembly);
IROstream << *GPUModule;
IROstream.flush();
return SPIRAssembly;
}
std::string ErrMsg;
auto GPUTarget = TargetRegistry::lookupTarget(GPUTriple.getTriple(), ErrMsg);
if (!GPUTarget) {
errs() << ErrMsg << "\n";
return "";
}
TargetOptions Options;
Options.UnsafeFPMath = FastMath;
std::string subtarget;
switch (Arch) {
case GPUArch::NVPTX64:
subtarget = CudaVersion;
break;
case GPUArch::SPIR32:
case GPUArch::SPIR64:
llvm_unreachable("No subtarget for SPIR architecture");
}
std::unique_ptr<TargetMachine> TargetM(GPUTarget->createTargetMachine(
GPUTriple.getTriple(), subtarget, "", Options, Optional<Reloc::Model>()));
SmallString<0> ASMString;
raw_svector_ostream ASMStream(ASMString);
llvm::legacy::PassManager PM;
PM.add(createTargetTransformInfoWrapperPass(TargetM->getTargetIRAnalysis()));
if (TargetM->addPassesToEmitFile(PM, ASMStream, nullptr, CGFT_AssemblyFile,
true /* verify */)) {
errs() << "The target does not support generation of this file type!\n";
return "";
}
PM.run(*GPUModule);
return ASMStream.str();
}
bool GPUNodeBuilder::requiresCUDALibDevice() {
bool RequiresLibDevice = false;
for (Function &F : GPUModule->functions()) {
if (!F.isDeclaration())
continue;
const std::string CUDALibDeviceFunc = getCUDALibDeviceFuntion(F.getName());
if (CUDALibDeviceFunc.length() != 0) {
// We need to handle the case where a module looks like this:
// @expf(..)
// @llvm.exp.f64(..)
// Both of these functions would be renamed to `__nv_expf`.
//
// So, we must first check for the existence of the libdevice function.
// If this exists, we replace our current function with it.
//
// If it does not exist, we rename the current function to the
// libdevice functiono name.
if (Function *Replacement = F.getParent()->getFunction(CUDALibDeviceFunc))
F.replaceAllUsesWith(Replacement);
else
F.setName(CUDALibDeviceFunc);
RequiresLibDevice = true;
}
}
return RequiresLibDevice;
}
void GPUNodeBuilder::addCUDALibDevice() {
if (Arch != GPUArch::NVPTX64)
return;
if (requiresCUDALibDevice()) {
SMDiagnostic Error;
errs() << CUDALibDevice << "\n";
auto LibDeviceModule =
parseIRFile(CUDALibDevice, Error, GPUModule->getContext());
if (!LibDeviceModule) {
BuildSuccessful = false;
report_fatal_error("Could not find or load libdevice. Skipping GPU "
"kernel generation. Please set -polly-acc-libdevice "
"accordingly.\n");
return;
}
Linker L(*GPUModule);
// Set an nvptx64 target triple to avoid linker warnings. The original
// triple of the libdevice files are nvptx-unknown-unknown.
LibDeviceModule->setTargetTriple(Triple::normalize("nvptx64-nvidia-cuda"));
L.linkInModule(std::move(LibDeviceModule), Linker::LinkOnlyNeeded);
}
}
std::string GPUNodeBuilder::finalizeKernelFunction() {
if (verifyModule(*GPUModule)) {
LLVM_DEBUG(dbgs() << "verifyModule failed on module:\n";
GPUModule->print(dbgs(), nullptr); dbgs() << "\n";);
LLVM_DEBUG(dbgs() << "verifyModule Error:\n";
verifyModule(*GPUModule, &dbgs()););
if (FailOnVerifyModuleFailure)
llvm_unreachable("VerifyModule failed.");
BuildSuccessful = false;
return "";
}
addCUDALibDevice();
if (DumpKernelIR)
outs() << *GPUModule << "\n";
if (Arch != GPUArch::SPIR32 && Arch != GPUArch::SPIR64) {
// Optimize module.
llvm::legacy::PassManager OptPasses;
PassManagerBuilder PassBuilder;
PassBuilder.OptLevel = 3;
PassBuilder.SizeLevel = 0;
PassBuilder.populateModulePassManager(OptPasses);
OptPasses.run(*GPUModule);
}
std::string Assembly = createKernelASM();
if (DumpKernelASM)
outs() << Assembly << "\n";
GPUModule.release();
KernelIDs.clear();
return Assembly;
}
/// Construct an `isl_pw_aff_list` from a vector of `isl_pw_aff`
/// @param PwAffs The list of piecewise affine functions to create an
/// `isl_pw_aff_list` from. We expect an rvalue ref because
/// all the isl_pw_aff are used up by this function.
///
/// @returns The `isl_pw_aff_list`.
__isl_give isl_pw_aff_list *
createPwAffList(isl_ctx *Context,
const std::vector<__isl_take isl_pw_aff *> &&PwAffs) {
isl_pw_aff_list *List = isl_pw_aff_list_alloc(Context, PwAffs.size());
for (unsigned i = 0; i < PwAffs.size(); i++) {
List = isl_pw_aff_list_insert(List, i, PwAffs[i]);
}
return List;
}
/// Align all the `PwAffs` such that they have the same parameter dimensions.
///
/// We loop over all `pw_aff` and align all of their spaces together to
/// create a common space for all the `pw_aff`. This common space is the
/// `AlignSpace`. We then align all the `pw_aff` to this space. We start
/// with the given `SeedSpace`.
/// @param PwAffs The list of piecewise affine functions we want to align.
/// This is an rvalue reference because the entire vector is
/// used up by the end of the operation.
/// @param SeedSpace The space to start the alignment process with.
/// @returns A std::pair, whose first element is the aligned space,
/// whose second element is the vector of aligned piecewise
/// affines.
static std::pair<__isl_give isl_space *, std::vector<__isl_give isl_pw_aff *>>
alignPwAffs(const std::vector<__isl_take isl_pw_aff *> &&PwAffs,
__isl_take isl_space *SeedSpace) {
assert(SeedSpace && "Invalid seed space given.");
isl_space *AlignSpace = SeedSpace;
for (isl_pw_aff *PwAff : PwAffs) {
isl_space *PwAffSpace = isl_pw_aff_get_domain_space(PwAff);
AlignSpace = isl_space_align_params(AlignSpace, PwAffSpace);
}
std::vector<isl_pw_aff *> AdjustedPwAffs;
for (unsigned i = 0; i < PwAffs.size(); i++) {
isl_pw_aff *Adjusted = PwAffs[i];
assert(Adjusted && "Invalid pw_aff given.");
Adjusted = isl_pw_aff_align_params(Adjusted, isl_space_copy(AlignSpace));
AdjustedPwAffs.push_back(Adjusted);
}
return std::make_pair(AlignSpace, AdjustedPwAffs);
}
namespace {
class PPCGCodeGeneration : public ScopPass {
public:
static char ID;
GPURuntime Runtime = GPURuntime::CUDA;
GPUArch Architecture = GPUArch::NVPTX64;
/// The scop that is currently processed.
Scop *S;
LoopInfo *LI;
DominatorTree *DT;
ScalarEvolution *SE;
const DataLayout *DL;
RegionInfo *RI;
PPCGCodeGeneration() : ScopPass(ID) {}
/// Construct compilation options for PPCG.
///
/// @returns The compilation options.
ppcg_options *createPPCGOptions() {
auto DebugOptions =
(ppcg_debug_options *)malloc(sizeof(ppcg_debug_options));
auto Options = (ppcg_options *)malloc(sizeof(ppcg_options));
DebugOptions->dump_schedule_constraints = false;
DebugOptions->dump_schedule = false;
DebugOptions->dump_final_schedule = false;
DebugOptions->dump_sizes = false;
DebugOptions->verbose = false;
Options->debug = DebugOptions;
Options->group_chains = false;
Options->reschedule = true;
Options->scale_tile_loops = false;
Options->wrap = false;
Options->non_negative_parameters = false;
Options->ctx = nullptr;
Options->sizes = nullptr;
Options->tile = true;
Options->tile_size = 32;
Options->isolate_full_tiles = false;
Options->use_private_memory = PrivateMemory;
Options->use_shared_memory = SharedMemory;
Options->max_shared_memory = 48 * 1024;
Options->target = PPCG_TARGET_CUDA;
Options->openmp = false;
Options->linearize_device_arrays = true;
Options->allow_gnu_extensions = false;
Options->unroll_copy_shared = false;
Options->unroll_gpu_tile = false;
Options->live_range_reordering = true;
Options->live_range_reordering = true;
Options->hybrid = false;
Options->opencl_compiler_options = nullptr;
Options->opencl_use_gpu = false;
Options->opencl_n_include_file = 0;
Options->opencl_include_files = nullptr;
Options->opencl_print_kernel_types = false;
Options->opencl_embed_kernel_code = false;
Options->save_schedule_file = nullptr;
Options->load_schedule_file = nullptr;
return Options;
}
/// Get a tagged access relation containing all accesses of type @p AccessTy.
///
/// Instead of a normal access of the form:
///
/// Stmt[i,j,k] -> Array[f_0(i,j,k), f_1(i,j,k)]
///
/// a tagged access has the form
///
/// [Stmt[i,j,k] -> id[]] -> Array[f_0(i,j,k), f_1(i,j,k)]
///
/// where 'id' is an additional space that references the memory access that
/// triggered the access.
///
/// @param AccessTy The type of the memory accesses to collect.
///
/// @return The relation describing all tagged memory accesses.
isl_union_map *getTaggedAccesses(enum MemoryAccess::AccessType AccessTy) {
isl_union_map *Accesses = isl_union_map_empty(S->getParamSpace().release());
for (auto &Stmt : *S)
for (auto &Acc : Stmt)
if (Acc->getType() == AccessTy) {
isl_map *Relation = Acc->getAccessRelation().release();
Relation =
isl_map_intersect_domain(Relation, Stmt.getDomain().release());
isl_space *Space = isl_map_get_space(Relation);
Space = isl_space_range(Space);
Space = isl_space_from_range(Space);
Space =
isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release());
isl_map *Universe = isl_map_universe(Space);
Relation = isl_map_domain_product(Relation, Universe);
Accesses = isl_union_map_add_map(Accesses, Relation);
}
return Accesses;
}
/// Get the set of all read accesses, tagged with the access id.
///
/// @see getTaggedAccesses
isl_union_map *getTaggedReads() {
return getTaggedAccesses(MemoryAccess::READ);
}
/// Get the set of all may (and must) accesses, tagged with the access id.
///
/// @see getTaggedAccesses
isl_union_map *getTaggedMayWrites() {
return isl_union_map_union(getTaggedAccesses(MemoryAccess::MAY_WRITE),
getTaggedAccesses(MemoryAccess::MUST_WRITE));
}
/// Get the set of all must accesses, tagged with the access id.
///
/// @see getTaggedAccesses
isl_union_map *getTaggedMustWrites() {
return getTaggedAccesses(MemoryAccess::MUST_WRITE);
}
/// Collect parameter and array names as isl_ids.
///
/// To reason about the different parameters and arrays used, ppcg requires
/// a list of all isl_ids in use. As PPCG traditionally performs
/// source-to-source compilation each of these isl_ids is mapped to the
/// expression that represents it. As we do not have a corresponding
/// expression in Polly, we just map each id to a 'zero' expression to match
/// the data format that ppcg expects.
///
/// @returns Retun a map from collected ids to 'zero' ast expressions.
__isl_give isl_id_to_ast_expr *getNames() {
auto *Names = isl_id_to_ast_expr_alloc(
S->getIslCtx().get(),
S->getNumParams() + std::distance(S->array_begin(), S->array_end()));
auto *Zero = isl_ast_expr_from_val(isl_val_zero(S->getIslCtx().get()));
for (const SCEV *P : S->parameters()) {
isl_id *Id = S->getIdForParam(P).release();
Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero));
}
for (auto &Array : S->arrays()) {
auto Id = Array->getBasePtrId().release();
Names = isl_id_to_ast_expr_set(Names, Id, isl_ast_expr_copy(Zero));
}
isl_ast_expr_free(Zero);
return Names;
}
/// Create a new PPCG scop from the current scop.
///
/// The PPCG scop is initialized with data from the current polly::Scop. From
/// this initial data, the data-dependences in the PPCG scop are initialized.
/// We do not use Polly's dependence analysis for now, to ensure we match
/// the PPCG default behaviour more closely.
///
/// @returns A new ppcg scop.
ppcg_scop *createPPCGScop() {
MustKillsInfo KillsInfo = computeMustKillsInfo(*S);
auto PPCGScop = (ppcg_scop *)malloc(sizeof(ppcg_scop));
PPCGScop->options = createPPCGOptions();
// enable live range reordering
PPCGScop->options->live_range_reordering = 1;
PPCGScop->start = 0;
PPCGScop->end = 0;
PPCGScop->context = S->getContext().release();
PPCGScop->domain = S->getDomains().release();
// TODO: investigate this further. PPCG calls collect_call_domains.
PPCGScop->call = isl_union_set_from_set(S->getContext().release());
PPCGScop->tagged_reads = getTaggedReads();
PPCGScop->reads = S->getReads().release();
PPCGScop->live_in = nullptr;
PPCGScop->tagged_may_writes = getTaggedMayWrites();
PPCGScop->may_writes = S->getWrites().release();
PPCGScop->tagged_must_writes = getTaggedMustWrites();
PPCGScop->must_writes = S->getMustWrites().release();
PPCGScop->live_out = nullptr;
PPCGScop->tagged_must_kills = KillsInfo.TaggedMustKills.release();
PPCGScop->must_kills = KillsInfo.MustKills.release();
PPCGScop->tagger = nullptr;
PPCGScop->independence =
isl_union_map_empty(isl_set_get_space(PPCGScop->context));
PPCGScop->dep_flow = nullptr;
PPCGScop->tagged_dep_flow = nullptr;
PPCGScop->dep_false = nullptr;
PPCGScop->dep_forced = nullptr;
PPCGScop->dep_order = nullptr;
PPCGScop->tagged_dep_order = nullptr;
PPCGScop->schedule = S->getScheduleTree().release();
// If we have something non-trivial to kill, add it to the schedule
if (KillsInfo.KillsSchedule.get())
PPCGScop->schedule = isl_schedule_sequence(
PPCGScop->schedule, KillsInfo.KillsSchedule.release());
PPCGScop->names = getNames();
PPCGScop->pet = nullptr;
compute_tagger(PPCGScop);
compute_dependences(PPCGScop);
eliminate_dead_code(PPCGScop);
return PPCGScop;
}
/// Collect the array accesses in a statement.
///
/// @param Stmt The statement for which to collect the accesses.
///
/// @returns A list of array accesses.
gpu_stmt_access *getStmtAccesses(ScopStmt &Stmt) {
gpu_stmt_access *Accesses = nullptr;
for (MemoryAccess *Acc : Stmt) {
auto Access =
isl_alloc_type(S->getIslCtx().get(), struct gpu_stmt_access);
Access->read = Acc->isRead();
Access->write = Acc->isWrite();
Access->access = Acc->getAccessRelation().release();
isl_space *Space = isl_map_get_space(Access->access);
Space = isl_space_range(Space);
Space = isl_space_from_range(Space);
Space = isl_space_set_tuple_id(Space, isl_dim_in, Acc->getId().release());
isl_map *Universe = isl_map_universe(Space);
Access->tagged_access =
isl_map_domain_product(Acc->getAccessRelation().release(), Universe);
Access->exact_write = !Acc->isMayWrite();
Access->ref_id = Acc->getId().release();
Access->next = Accesses;
Access->n_index = Acc->getScopArrayInfo()->getNumberOfDimensions();
// TODO: Also mark one-element accesses to arrays as fixed-element.
Access->fixed_element =
Acc->isLatestScalarKind() ? isl_bool_true : isl_bool_false;
Accesses = Access;
}
return Accesses;
}
/// Collect the list of GPU statements.
///
/// Each statement has an id, a pointer to the underlying data structure,
/// as well as a list with all memory accesses.
///
/// TODO: Initialize the list of memory accesses.
///
/// @returns A linked-list of statements.
gpu_stmt *getStatements() {
gpu_stmt *Stmts = isl_calloc_array(S->getIslCtx().get(), struct gpu_stmt,
std::distance(S->begin(), S->end()));
int i = 0;
for (auto &Stmt : *S) {
gpu_stmt *GPUStmt = &Stmts[i];
GPUStmt->id = Stmt.getDomainId().release();
// We use the pet stmt pointer to keep track of the Polly statements.
GPUStmt->stmt = (pet_stmt *)&Stmt;
GPUStmt->accesses = getStmtAccesses(Stmt);
i++;
}
return Stmts;
}
/// Derive the extent of an array.
///
/// The extent of an array is the set of elements that are within the
/// accessed array. For the inner dimensions, the extent constraints are
/// 0 and the size of the corresponding array dimension. For the first
/// (outermost) dimension, the extent constraints are the minimal and maximal
/// subscript value for the first dimension.
///
/// @param Array The array to derive the extent for.
///
/// @returns An isl_set describing the extent of the array.
isl::set getExtent(ScopArrayInfo *Array) {
unsigned NumDims = Array->getNumberOfDimensions();
if (Array->getNumberOfDimensions() == 0)
return isl::set::universe(Array->getSpace());
isl::union_map Accesses = S->getAccesses(Array);
isl::union_set AccessUSet = Accesses.range();
AccessUSet = AccessUSet.coalesce();
AccessUSet = AccessUSet.detect_equalities();
AccessUSet = AccessUSet.coalesce();
if (AccessUSet.is_empty())
return isl::set::empty(Array->getSpace());
isl::set AccessSet = AccessUSet.extract_set(Array->getSpace());
isl::local_space LS = isl::local_space(Array->getSpace());
isl::pw_aff Val = isl::aff::var_on_domain(LS, isl::dim::set, 0);
isl::pw_aff OuterMin = AccessSet.dim_min(0);
isl::pw_aff OuterMax = AccessSet.dim_max(0);
OuterMin = OuterMin.add_dims(isl::dim::in, Val.dim(isl::dim::in));
OuterMax = OuterMax.add_dims(isl::dim::in, Val.dim(isl::dim::in));
OuterMin = OuterMin.set_tuple_id(isl::dim::in, Array->getBasePtrId());
OuterMax = OuterMax.set_tuple_id(isl::dim::in, Array->getBasePtrId());
isl::set Extent = isl::set::universe(Array->getSpace());
Extent = Extent.intersect(OuterMin.le_set(Val));
Extent = Extent.intersect(OuterMax.ge_set(Val));
for (unsigned i = 1; i < NumDims; ++i)
Extent = Extent.lower_bound_si(isl::dim::set, i, 0);
for (unsigned i = 0; i < NumDims; ++i) {
isl::pw_aff PwAff = Array->getDimensionSizePw(i);
// isl_pw_aff can be NULL for zero dimension. Only in the case of a
// Fortran array will we have a legitimate dimension.
if (PwAff.is_null()) {
assert(i == 0 && "invalid dimension isl_pw_aff for nonzero dimension");
continue;
}
isl::pw_aff Val = isl::aff::var_on_domain(
isl::local_space(Array->getSpace()), isl::dim::set, i);
PwAff = PwAff.add_dims(isl::dim::in, Val.dim(isl::dim::in));
PwAff = PwAff.set_tuple_id(isl::dim::in, Val.get_tuple_id(isl::dim::in));
isl::set Set = PwAff.gt_set(Val);
Extent = Set.intersect(Extent);
}
return Extent;
}
/// Derive the bounds of an array.
///
/// For the first dimension we derive the bound of the array from the extent
/// of this dimension. For inner dimensions we obtain their size directly from
/// ScopArrayInfo.
///
/// @param PPCGArray The array to compute bounds for.
/// @param Array The polly array from which to take the information.
void setArrayBounds(gpu_array_info &PPCGArray, ScopArrayInfo *Array) {
std::vector<isl_pw_aff *> Bounds;
if (PPCGArray.n_index > 0) {
if (isl_set_is_empty(PPCGArray.extent)) {
isl_set *Dom = isl_set_copy(PPCGArray.extent);
isl_local_space *LS = isl_local_space_from_space(
isl_space_params(isl_set_get_space(Dom)));
isl_set_free(Dom);
isl_pw_aff *Zero = isl_pw_aff_from_aff(isl_aff_zero_on_domain(LS));
Bounds.push_back(Zero);
} else {
isl_set *Dom = isl_set_copy(PPCGArray.extent);
Dom = isl_set_project_out(Dom, isl_dim_set, 1, PPCGArray.n_index - 1);
isl_pw_aff *Bound = isl_set_dim_max(isl_set_copy(Dom), 0);
isl_set_free(Dom);
Dom = isl_pw_aff_domain(isl_pw_aff_copy(Bound));
isl_local_space *LS =
isl_local_space_from_space(isl_set_get_space(Dom));
isl_aff *One = isl_aff_zero_on_domain(LS);
One = isl_aff_add_constant_si(One, 1);
Bound = isl_pw_aff_add(Bound, isl_pw_aff_alloc(Dom, One));
Bound = isl_pw_aff_gist(Bound, S->getContext().release());
Bounds.push_back(Bound);
}
}
for (unsigned i = 1; i < PPCGArray.n_index; ++i) {
isl_pw_aff *Bound = Array->getDimensionSizePw(i).release();
auto LS = isl_pw_aff_get_domain_space(Bound);
auto Aff = isl_multi_aff_zero(LS);
// We need types to work out, which is why we perform this weird dance
// with `Aff` and `Bound`. Consider this example:
// LS: [p] -> { [] }
// Zero: [p] -> { [] } | Implicitly, is [p] -> { ~ -> [] }.
// This `~` is used to denote a "null space" (which is different from
// a *zero dimensional* space), which is something that ISL does not
// show you when pretty printing.
// Bound: [p] -> { [] -> [(10p)] } | Here, the [] is a *zero dimensional*
// space, not a "null space" which does not exist at all.
// When we pullback (precompose) `Bound` with `Zero`, we get:
// Bound . Zero =
// ([p] -> { [] -> [(10p)] }) . ([p] -> {~ -> [] }) =
// [p] -> { ~ -> [(10p)] } =
// [p] -> [(10p)] (as ISL pretty prints it)
// Bound Pullback: [p] -> { [(10p)] }
// We want this kind of an expression for Bound, without a
// zero dimensional input, but with a "null space" input for the types
// to work out later on, as far as I (Siddharth Bhat) understand.
// I was unable to find a reference to this in the ISL manual.
// References: Tobias Grosser.
Bound = isl_pw_aff_pullback_multi_aff(Bound, Aff);
Bounds.push_back(Bound);
}
/// To construct a `isl_multi_pw_aff`, we need all the indivisual `pw_aff`
/// to have the same parameter dimensions. So, we need to align them to an
/// appropriate space.
/// Scop::Context is _not_ an appropriate space, because when we have
/// `-polly-ignore-parameter-bounds` enabled, the Scop::Context does not
/// contain all parameter dimensions.
/// So, use the helper `alignPwAffs` to align all the `isl_pw_aff` together.
isl_space *SeedAlignSpace = S->getParamSpace().release();
SeedAlignSpace = isl_space_add_dims(SeedAlignSpace, isl_dim_set, 1);
isl_space *AlignSpace = nullptr;
std::vector<isl_pw_aff *> AlignedBounds;
std::tie(AlignSpace, AlignedBounds) =
alignPwAffs(std::move(Bounds), SeedAlignSpace);
assert(AlignSpace && "alignPwAffs did not initialise AlignSpace");
isl_pw_aff_list *BoundsList =
createPwAffList(S->getIslCtx().get(), std::move(AlignedBounds));
isl_space *BoundsSpace = isl_set_get_space(PPCGArray.extent);
BoundsSpace = isl_space_align_params(BoundsSpace, AlignSpace);
assert(BoundsSpace && "Unable to access space of array.");
assert(BoundsList && "Unable to access list of bounds.");
PPCGArray.bound =
isl_multi_pw_aff_from_pw_aff_list(BoundsSpace, BoundsList);
assert(PPCGArray.bound && "PPCGArray.bound was not constructed correctly.");
}
/// Create the arrays for @p PPCGProg.
///
/// @param PPCGProg The program to compute the arrays for.
void createArrays(gpu_prog *PPCGProg,
const SmallVector<ScopArrayInfo *, 4> &ValidSAIs) {
int i = 0;
for (auto &Array : ValidSAIs) {
std::string TypeName;
raw_string_ostream OS(TypeName);
OS << *Array->getElementType();
TypeName = OS.str();
gpu_array_info &PPCGArray = PPCGProg->array[i];
PPCGArray.space = Array->getSpace().release();
PPCGArray.type = strdup(TypeName.c_str());
PPCGArray.size = DL->getTypeAllocSize(Array->getElementType());
PPCGArray.name = strdup(Array->getName().c_str());
PPCGArray.extent = nullptr;
PPCGArray.n_index = Array->getNumberOfDimensions();
PPCGArray.extent = getExtent(Array).release();
PPCGArray.n_ref = 0;
PPCGArray.refs = nullptr;
PPCGArray.accessed = true;
PPCGArray.read_only_scalar =
Array->isReadOnly() && Array->getNumberOfDimensions() == 0;
PPCGArray.has_compound_element = false;
PPCGArray.local = false;
PPCGArray.declare_local = false;
PPCGArray.global = false;
PPCGArray.linearize = false;
PPCGArray.dep_order = nullptr;
PPCGArray.user = Array;
PPCGArray.bound = nullptr;
setArrayBounds(PPCGArray, Array);
i++;
collect_references(PPCGProg, &PPCGArray);
PPCGArray.only_fixed_element = only_fixed_element_accessed(&PPCGArray);
}
}
/// Create an identity map between the arrays in the scop.
///
/// @returns An identity map between the arrays in the scop.
isl_union_map *getArrayIdentity() {
isl_union_map *Maps = isl_union_map_empty(S->getParamSpace().release());
for (auto &Array : S->arrays()) {
isl_space *Space = Array->getSpace().release();
Space = isl_space_map_from_set(Space);
isl_map *Identity = isl_map_identity(Space);
Maps = isl_union_map_add_map(Maps, Identity);
}
return Maps;
}
/// Create a default-initialized PPCG GPU program.
///
/// @returns A new gpu program description.
gpu_prog *createPPCGProg(ppcg_scop *PPCGScop) {
if (!PPCGScop)
return nullptr;
auto PPCGProg = isl_calloc_type(S->getIslCtx().get(), struct gpu_prog);
PPCGProg->ctx = S->getIslCtx().get();
PPCGProg->scop = PPCGScop;
PPCGProg->context = isl_set_copy(PPCGScop->context);
PPCGProg->read = isl_union_map_copy(PPCGScop->reads);
PPCGProg->may_write = isl_union_map_copy(PPCGScop->may_writes);
PPCGProg->must_write = isl_union_map_copy(PPCGScop->must_writes);
PPCGProg->tagged_must_kill =
isl_union_map_copy(PPCGScop->tagged_must_kills);
PPCGProg->to_inner = getArrayIdentity();
PPCGProg->to_outer = getArrayIdentity();
// TODO: verify that this assignment is correct.
PPCGProg->any_to_outer = nullptr;
PPCGProg->n_stmts = std::distance(S->begin(), S->end());
PPCGProg->stmts = getStatements();
// Only consider arrays that have a non-empty extent.
// Otherwise, this will cause us to consider the following kinds of
// empty arrays:
// 1. Invariant loads that are represented by SAI objects.
// 2. Arrays with statically known zero size.
auto ValidSAIsRange =
make_filter_range(S->arrays(), [this](ScopArrayInfo *SAI) -> bool {
return !getExtent(SAI).is_empty();
});
SmallVector<ScopArrayInfo *, 4> ValidSAIs(ValidSAIsRange.begin(),
ValidSAIsRange.end());
PPCGProg->n_array =
ValidSAIs.size(); // std::distance(S->array_begin(), S->array_end());
PPCGProg->array = isl_calloc_array(
S->getIslCtx().get(), struct gpu_array_info, PPCGProg->n_array);
createArrays(PPCGProg, ValidSAIs);
PPCGProg->array_order = nullptr;
collect_order_dependences(PPCGProg);
PPCGProg->may_persist = compute_may_persist(PPCGProg);
return PPCGProg;
}
struct PrintGPUUserData {
struct cuda_info *CudaInfo;
struct gpu_prog *PPCGProg;
std::vector<ppcg_kernel *> Kernels;
};
/// Print a user statement node in the host code.
///
/// We use ppcg's printing facilities to print the actual statement and
/// additionally build up a list of all kernels that are encountered in the
/// host ast.
///
/// @param P The printer to print to
/// @param Options The printing options to use
/// @param Node The node to print
/// @param User A user pointer to carry additional data. This pointer is
/// expected to be of type PrintGPUUserData.
///
/// @returns A printer to which the output has been printed.
static __isl_give isl_printer *
printHostUser(__isl_take isl_printer *P,
__isl_take isl_ast_print_options *Options,
__isl_take isl_ast_node *Node, void *User) {
auto Data = (struct PrintGPUUserData *)User;
auto Id = isl_ast_node_get_annotation(Node);
if (Id) {
bool IsUser = !strcmp(isl_id_get_name(Id), "user");
// If this is a user statement, format it ourselves as ppcg would
// otherwise try to call pet functionality that is not available in
// Polly.
if (IsUser) {
P = isl_printer_start_line(P);
P = isl_printer_print_ast_node(P, Node);
P = isl_printer_end_line(P);
isl_id_free(Id);
isl_ast_print_options_free(Options);
return P;
}
auto Kernel = (struct ppcg_kernel *)isl_id_get_user(Id);
isl_id_free(Id);
Data->Kernels.push_back(Kernel);
}
return print_host_user(P, Options, Node, User);
}
/// Print C code corresponding to the control flow in @p Kernel.
///
/// @param Kernel The kernel to print
void printKernel(ppcg_kernel *Kernel) {
auto *P = isl_printer_to_str(S->getIslCtx().get());
P = isl_printer_set_output_format(P, ISL_FORMAT_C);
auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get());
P = isl_ast_node_print(Kernel->tree, P, Options);
char *String = isl_printer_get_str(P);
outs() << String << "\n";
free(String);
isl_printer_free(P);
}
/// Print C code corresponding to the GPU code described by @p Tree.
///
/// @param Tree An AST describing GPU code
/// @param PPCGProg The PPCG program from which @Tree has been constructed.
void printGPUTree(isl_ast_node *Tree, gpu_prog *PPCGProg) {
auto *P = isl_printer_to_str(S->getIslCtx().get());
P = isl_printer_set_output_format(P, ISL_FORMAT_C);
PrintGPUUserData Data;
Data.PPCGProg = PPCGProg;
auto *Options = isl_ast_print_options_alloc(S->getIslCtx().get());
Options =
isl_ast_print_options_set_print_user(Options, printHostUser, &Data);
P = isl_ast_node_print(Tree, P, Options);
char *String = isl_printer_get_str(P);
outs() << "# host\n";
outs() << String << "\n";
free(String);
isl_printer_free(P);
for (auto Kernel : Data.Kernels) {
outs() << "# kernel" << Kernel->id << "\n";
printKernel(Kernel);
}
}
// Generate a GPU program using PPCG.
//
// GPU mapping consists of multiple steps:
//
// 1) Compute new schedule for the program.
// 2) Map schedule to GPU (TODO)
// 3) Generate code for new schedule (TODO)
//
// We do not use here the Polly ScheduleOptimizer, as the schedule optimizer
// is mostly CPU specific. Instead, we use PPCG's GPU code generation
// strategy directly from this pass.
gpu_gen *generateGPU(ppcg_scop *PPCGScop, gpu_prog *PPCGProg) {
auto PPCGGen = isl_calloc_type(S->getIslCtx().get(), struct gpu_gen);
PPCGGen->ctx = S->getIslCtx().get();
PPCGGen->options = PPCGScop->options;
PPCGGen->print = nullptr;
PPCGGen->print_user = nullptr;
PPCGGen->build_ast_expr = &pollyBuildAstExprForStmt;
PPCGGen->prog = PPCGProg;
PPCGGen->tree = nullptr;
PPCGGen->types.n = 0;
PPCGGen->types.name = nullptr;
PPCGGen->sizes = nullptr;
PPCGGen->used_sizes = nullptr;
PPCGGen->kernel_id = 0;
// Set scheduling strategy to same strategy PPCG is using.
isl_options_set_schedule_outer_coincidence(PPCGGen->ctx, true);
isl_options_set_schedule_maximize_band_depth(PPCGGen->ctx, true);
isl_options_set_schedule_whole_component(PPCGGen->ctx, false);
isl_schedule *Schedule = get_schedule(PPCGGen);
int has_permutable = has_any_permutable_node(Schedule);
Schedule =
isl_schedule_align_params(Schedule, S->getFullParamSpace().release());
if (!has_permutable || has_permutable < 0) {
Schedule = isl_schedule_free(Schedule);
LLVM_DEBUG(dbgs() << getUniqueScopName(S)
<< " does not have permutable bands. Bailing out\n";);
} else {
const bool CreateTransferToFromDevice = !PollyManagedMemory;
Schedule = map_to_device(PPCGGen, Schedule, CreateTransferToFromDevice);
PPCGGen->tree = generate_code(PPCGGen, isl_schedule_copy(Schedule));
}
if (DumpSchedule) {
isl_printer *P = isl_printer_to_str(S->getIslCtx().get());
P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
P = isl_printer_print_str(P, "Schedule\n");
P = isl_printer_print_str(P, "========\n");
if (Schedule)
P = isl_printer_print_schedule(P, Schedule);
else
P = isl_printer_print_str(P, "No schedule found\n");
outs() << isl_printer_get_str(P) << "\n";
isl_printer_free(P);
}
if (DumpCode) {
outs() << "Code\n";
outs() << "====\n";
if (PPCGGen->tree)
printGPUTree(PPCGGen->tree, PPCGProg);
else
outs() << "No code generated\n";
}
isl_schedule_free(Schedule);
return PPCGGen;
}
/// Free gpu_gen structure.
///
/// @param PPCGGen The ppcg_gen object to free.
void freePPCGGen(gpu_gen *PPCGGen) {
isl_ast_node_free(PPCGGen->tree);
isl_union_map_free(PPCGGen->sizes);
isl_union_map_free(PPCGGen->used_sizes);
free(PPCGGen);
}
/// Free the options in the ppcg scop structure.
///
/// ppcg is not freeing these options for us. To avoid leaks we do this
/// ourselves.
///
/// @param PPCGScop The scop referencing the options to free.
void freeOptions(ppcg_scop *PPCGScop) {
free(PPCGScop->options->debug);
PPCGScop->options->debug = nullptr;
free(PPCGScop->options);
PPCGScop->options = nullptr;
}
/// Approximate the number of points in the set.
///
/// This function returns an ast expression that overapproximates the number
/// of points in an isl set through the rectangular hull surrounding this set.
///
/// @param Set The set to count.
/// @param Build The isl ast build object to use for creating the ast
/// expression.
///
/// @returns An approximation of the number of points in the set.
__isl_give isl_ast_expr *approxPointsInSet(__isl_take isl_set *Set,
__isl_keep isl_ast_build *Build) {
isl_val *One = isl_val_int_from_si(isl_set_get_ctx(Set), 1);
auto *Expr = isl_ast_expr_from_val(isl_val_copy(One));
isl_space *Space = isl_set_get_space(Set);
Space = isl_space_params(Space);
auto *Univ = isl_set_universe(Space);
isl_pw_aff *OneAff = isl_pw_aff_val_on_domain(Univ, One);
for (long i = 0, n = isl_set_dim(Set, isl_dim_set); i < n; i++) {
isl_pw_aff *Max = isl_set_dim_max(isl_set_copy(Set), i);
isl_pw_aff *Min = isl_set_dim_min(isl_set_copy(Set), i);
isl_pw_aff *DimSize = isl_pw_aff_sub(Max, Min);
DimSize = isl_pw_aff_add(DimSize, isl_pw_aff_copy(OneAff));
auto DimSizeExpr = isl_ast_build_expr_from_pw_aff(Build, DimSize);
Expr = isl_ast_expr_mul(Expr, DimSizeExpr);
}
isl_set_free(Set);
isl_pw_aff_free(OneAff);
return Expr;
}
/// Approximate a number of dynamic instructions executed by a given
/// statement.
///
/// @param Stmt The statement for which to compute the number of dynamic
/// instructions.
/// @param Build The isl ast build object to use for creating the ast
/// expression.
/// @returns An approximation of the number of dynamic instructions executed
/// by @p Stmt.
__isl_give isl_ast_expr *approxDynamicInst(ScopStmt &Stmt,
__isl_keep isl_ast_build *Build) {
auto Iterations = approxPointsInSet(Stmt.getDomain().release(), Build);
long InstCount = 0;
if (Stmt.isBlockStmt()) {
auto *BB = Stmt.getBasicBlock();
InstCount = std::distance(BB->begin(), BB->end());
} else {
auto *R = Stmt.getRegion();
for (auto *BB : R->blocks()) {
InstCount += std::distance(BB->begin(), BB->end());
}
}
isl_val *InstVal = isl_val_int_from_si(S->getIslCtx().get(), InstCount);
auto *InstExpr = isl_ast_expr_from_val(InstVal);
return isl_ast_expr_mul(InstExpr, Iterations);
}
/// Approximate dynamic instructions executed in scop.
///
/// @param S The scop for which to approximate dynamic instructions.
/// @param Build The isl ast build object to use for creating the ast
/// expression.
/// @returns An approximation of the number of dynamic instructions executed
/// in @p S.
__isl_give isl_ast_expr *
getNumberOfIterations(Scop &S, __isl_keep isl_ast_build *Build) {
isl_ast_expr *Instructions;
isl_val *Zero = isl_val_int_from_si(S.getIslCtx().get(), 0);
Instructions = isl_ast_expr_from_val(Zero);
for (ScopStmt &Stmt : S) {
isl_ast_expr *StmtInstructions = approxDynamicInst(Stmt, Build);
Instructions = isl_ast_expr_add(Instructions, StmtInstructions);
}
return Instructions;
}
/// Create a check that ensures sufficient compute in scop.
///
/// @param S The scop for which to ensure sufficient compute.
/// @param Build The isl ast build object to use for creating the ast
/// expression.
/// @returns An expression that evaluates to TRUE in case of sufficient
/// compute and to FALSE, otherwise.
__isl_give isl_ast_expr *
createSufficientComputeCheck(Scop &S, __isl_keep isl_ast_build *Build) {
auto Iterations = getNumberOfIterations(S, Build);
auto *MinComputeVal = isl_val_int_from_si(S.getIslCtx().get(), MinCompute);
auto *MinComputeExpr = isl_ast_expr_from_val(MinComputeVal);
return isl_ast_expr_ge(Iterations, MinComputeExpr);
}
/// Check if the basic block contains a function we cannot codegen for GPU
/// kernels.
///
/// If this basic block does something with a `Function` other than calling
/// a function that we support in a kernel, return true.
bool containsInvalidKernelFunctionInBlock(const BasicBlock *BB,
bool AllowCUDALibDevice) {
for (const Instruction &Inst : *BB) {
const CallInst *Call = dyn_cast<CallInst>(&Inst);
if (Call && isValidFunctionInKernel(Call->getCalledFunction(),
AllowCUDALibDevice))
continue;
for (Value *Op : Inst.operands())
// Look for (<func-type>*) among operands of Inst
if (auto PtrTy = dyn_cast<PointerType>(Op->getType())) {
if (isa<FunctionType>(PtrTy->getElementType())) {
LLVM_DEBUG(dbgs()
<< Inst << " has illegal use of function in kernel.\n");
return true;
}
}
}
return false;
}
/// Return whether the Scop S uses functions in a way that we do not support.
bool containsInvalidKernelFunction(const Scop &S, bool AllowCUDALibDevice) {
for (auto &Stmt : S) {
if (Stmt.isBlockStmt()) {
if (containsInvalidKernelFunctionInBlock(Stmt.getBasicBlock(),
AllowCUDALibDevice))
return true;
} else {
assert(Stmt.isRegionStmt() &&
"Stmt was neither block nor region statement");
for (const BasicBlock *BB : Stmt.getRegion()->blocks())
if (containsInvalidKernelFunctionInBlock(BB, AllowCUDALibDevice))
return true;
}
}
return false;
}
/// Generate code for a given GPU AST described by @p Root.
///
/// @param Root An isl_ast_node pointing to the root of the GPU AST.
/// @param Prog The GPU Program to generate code for.
void generateCode(__isl_take isl_ast_node *Root, gpu_prog *Prog) {
ScopAnnotator Annotator;
Annotator.buildAliasScopes(*S);
Region *R = &S->getRegion();
simplifyRegion(R, DT, LI, RI);
BasicBlock *EnteringBB = R->getEnteringBlock();
PollyIRBuilder Builder = createPollyIRBuilder(EnteringBB, Annotator);
// Only build the run-time condition and parameters _after_ having
// introduced the conditional branch. This is important as the conditional
// branch will guard the original scop from new induction variables that
// the SCEVExpander may introduce while code generating the parameters and
// which may introduce scalar dependences that prevent us from correctly
// code generating this scop.
BBPair StartExitBlocks;
BranchInst *CondBr = nullptr;
std::tie(StartExitBlocks, CondBr) =
executeScopConditionally(*S, Builder.getTrue(), *DT, *RI, *LI);
BasicBlock *StartBlock = std::get<0>(StartExitBlocks);
assert(CondBr && "CondBr not initialized by executeScopConditionally");
GPUNodeBuilder NodeBuilder(Builder, Annotator, *DL, *LI, *SE, *DT, *S,
StartBlock, Prog, Runtime, Architecture);
// TODO: Handle LICM
auto SplitBlock = StartBlock->getSinglePredecessor();
Builder.SetInsertPoint(SplitBlock->getTerminator());
isl_ast_build *Build = isl_ast_build_alloc(S->getIslCtx().get());
isl_ast_expr *Condition = IslAst::buildRunCondition(*S, Build);
isl_ast_expr *SufficientCompute = createSufficientComputeCheck(*S, Build);
Condition = isl_ast_expr_and(Condition, SufficientCompute);
isl_ast_build_free(Build);
// preload invariant loads. Note: This should happen before the RTC
// because the RTC may depend on values that are invariant load hoisted.
if (!NodeBuilder.preloadInvariantLoads()) {
// Patch the introduced branch condition to ensure that we always execute
// the original SCoP.
auto *FalseI1 = Builder.getFalse();
auto *SplitBBTerm = Builder.GetInsertBlock()->getTerminator();
SplitBBTerm->setOperand(0, FalseI1);
LLVM_DEBUG(dbgs() << "preloading invariant loads failed in function: " +
S->getFunction().getName() +
" | Scop Region: " + S->getNameStr());
// adjust the dominator tree accordingly.
auto *ExitingBlock = StartBlock->getUniqueSuccessor();
assert(ExitingBlock);
auto *MergeBlock = ExitingBlock->getUniqueSuccessor();
assert(MergeBlock);
polly::markBlockUnreachable(*StartBlock, Builder);
polly::markBlockUnreachable(*ExitingBlock, Builder);
auto *ExitingBB = S->getExitingBlock();
assert(ExitingBB);
DT->changeImmediateDominator(MergeBlock, ExitingBB);
DT->eraseNode(ExitingBlock);
isl_ast_expr_free(Condition);
isl_ast_node_free(Root);
} else {
if (polly::PerfMonitoring) {
PerfMonitor P(*S, EnteringBB->getParent()->getParent());
P.initialize();
P.insertRegionStart(SplitBlock->getTerminator());
// TODO: actually think if this is the correct exiting block to place
// the `end` performance marker. Invariant load hoisting changes
// the CFG in a way that I do not precisely understand, so I
// (Siddharth<siddu.druid@gmail.com>) should come back to this and
// think about which exiting block to use.
auto *ExitingBlock = StartBlock->getUniqueSuccessor();
assert(ExitingBlock);
BasicBlock *MergeBlock = ExitingBlock->getUniqueSuccessor();
P.insertRegionEnd(MergeBlock->getTerminator());
}
NodeBuilder.addParameters(S->getContext().release());
Value *RTC = NodeBuilder.createRTC(Condition);
Builder.GetInsertBlock()->getTerminator()->setOperand(0, RTC);
Builder.SetInsertPoint(&*StartBlock->begin());
NodeBuilder.create(Root);
}
/// In case a sequential kernel has more surrounding loops as any parallel
/// kernel, the SCoP is probably mostly sequential. Hence, there is no
/// point in running it on a GPU.
if (NodeBuilder.DeepestSequential > NodeBuilder.DeepestParallel)
CondBr->setOperand(0, Builder.getFalse());
if (!NodeBuilder.BuildSuccessful)
CondBr->setOperand(0, Builder.getFalse());
}
bool runOnScop(Scop &CurrentScop) override {
S = &CurrentScop;
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
DL = &S->getRegion().getEntry()->getModule()->getDataLayout();
RI = &getAnalysis<RegionInfoPass>().getRegionInfo();
LLVM_DEBUG(dbgs() << "PPCGCodeGen running on : " << getUniqueScopName(S)
<< " | loop depth: " << S->getMaxLoopDepth() << "\n");
// We currently do not support functions other than intrinsics inside
// kernels, as code generation will need to offload function calls to the
// kernel. This may lead to a kernel trying to call a function on the host.
// This also allows us to prevent codegen from trying to take the
// address of an intrinsic function to send to the kernel.
if (containsInvalidKernelFunction(CurrentScop,
Architecture == GPUArch::NVPTX64)) {
LLVM_DEBUG(
dbgs() << getUniqueScopName(S)
<< " contains function which cannot be materialised in a GPU "
"kernel. Bailing out.\n";);
return false;
}
auto PPCGScop = createPPCGScop();
auto PPCGProg = createPPCGProg(PPCGScop);
auto PPCGGen = generateGPU(PPCGScop, PPCGProg);
if (PPCGGen->tree) {
generateCode(isl_ast_node_copy(PPCGGen->tree), PPCGProg);
CurrentScop.markAsToBeSkipped();
} else {
LLVM_DEBUG(dbgs() << getUniqueScopName(S)
<< " has empty PPCGGen->tree. Bailing out.\n");
}
freeOptions(PPCGScop);
freePPCGGen(PPCGGen);
gpu_prog_free(PPCGProg);
ppcg_scop_free(PPCGScop);
return true;
}
void printScop(raw_ostream &, Scop &) const override {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
ScopPass::getAnalysisUsage(AU);
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<RegionInfoPass>();
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addRequired<ScopDetectionWrapperPass>();
AU.addRequired<ScopInfoRegionPass>();
AU.addRequired<LoopInfoWrapperPass>();
// FIXME: We do not yet add regions for the newly generated code to the
// region tree.
}
};
} // namespace
char PPCGCodeGeneration::ID = 1;
Pass *polly::createPPCGCodeGenerationPass(GPUArch Arch, GPURuntime Runtime) {
PPCGCodeGeneration *generator = new PPCGCodeGeneration();
generator->Runtime = Runtime;
generator->Architecture = Arch;
return generator;
}
INITIALIZE_PASS_BEGIN(PPCGCodeGeneration, "polly-codegen-ppcg",
"Polly - Apply PPCG translation to SCOP", false, false)
INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass);
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass);
INITIALIZE_PASS_DEPENDENCY(RegionInfoPass);
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass);
INITIALIZE_PASS_DEPENDENCY(ScopDetectionWrapperPass);
INITIALIZE_PASS_END(PPCGCodeGeneration, "polly-codegen-ppcg",
"Polly - Apply PPCG translation to SCOP", false, false)