SCEVAffinator.cpp 20.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
//===--------- SCEVAffinator.cpp  - Create Scops from LLVM IR -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Create a polyhedral description for a SCEV value.
//
//===----------------------------------------------------------------------===//

#include "polly/Support/SCEVAffinator.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/SCEVValidator.h"
#include "isl/aff.h"
#include "isl/local_space.h"
#include "isl/set.h"
#include "isl/val.h"

using namespace llvm;
using namespace polly;

static cl::opt<bool> IgnoreIntegerWrapping(
    "polly-ignore-integer-wrapping",
    cl::desc("Do not build run-time checks to proof absence of integer "
             "wrapping"),
    cl::Hidden, cl::ZeroOrMore, cl::init(false), cl::cat(PollyCategory));

// The maximal number of basic sets we allow during the construction of a
// piecewise affine function. More complex ones will result in very high
// compile time.
static int const MaxDisjunctionsInPwAff = 100;

// The maximal number of bits for which a general expression is modeled
// precisely.
static unsigned const MaxSmallBitWidth = 7;

/// Add the number of basic sets in @p Domain to @p User
static isl_stat addNumBasicSets(__isl_take isl_set *Domain,
                                __isl_take isl_aff *Aff, void *User) {
  auto *NumBasicSets = static_cast<unsigned *>(User);
  *NumBasicSets += isl_set_n_basic_set(Domain);
  isl_set_free(Domain);
  isl_aff_free(Aff);
  return isl_stat_ok;
}

/// Determine if @p PWAC is too complex to continue.
static bool isTooComplex(PWACtx PWAC) {
  unsigned NumBasicSets = 0;
  isl_pw_aff_foreach_piece(PWAC.first.get(), addNumBasicSets, &NumBasicSets);
  if (NumBasicSets <= MaxDisjunctionsInPwAff)
    return false;
  return true;
}

/// Return the flag describing the possible wrapping of @p Expr.
static SCEV::NoWrapFlags getNoWrapFlags(const SCEV *Expr) {
  if (auto *NAry = dyn_cast<SCEVNAryExpr>(Expr))
    return NAry->getNoWrapFlags();
  return SCEV::NoWrapMask;
}

static PWACtx combine(PWACtx PWAC0, PWACtx PWAC1,
                      __isl_give isl_pw_aff *(Fn)(__isl_take isl_pw_aff *,
                                                  __isl_take isl_pw_aff *)) {
  PWAC0.first = isl::manage(Fn(PWAC0.first.release(), PWAC1.first.release()));
  PWAC0.second = PWAC0.second.unite(PWAC1.second);
  return PWAC0;
}

static __isl_give isl_pw_aff *getWidthExpValOnDomain(unsigned Width,
                                                     __isl_take isl_set *Dom) {
  auto *Ctx = isl_set_get_ctx(Dom);
  auto *WidthVal = isl_val_int_from_ui(Ctx, Width);
  auto *ExpVal = isl_val_2exp(WidthVal);
  return isl_pw_aff_val_on_domain(Dom, ExpVal);
}

SCEVAffinator::SCEVAffinator(Scop *S, LoopInfo &LI)
    : S(S), Ctx(S->getIslCtx().get()), SE(*S->getSE()), LI(LI),
      TD(S->getFunction().getParent()->getDataLayout()) {}

Loop *SCEVAffinator::getScope() { return BB ? LI.getLoopFor(BB) : nullptr; }

void SCEVAffinator::interpretAsUnsigned(PWACtx &PWAC, unsigned Width) {
  auto *NonNegDom = isl_pw_aff_nonneg_set(PWAC.first.copy());
  auto *NonNegPWA =
      isl_pw_aff_intersect_domain(PWAC.first.copy(), isl_set_copy(NonNegDom));
  auto *ExpPWA = getWidthExpValOnDomain(Width, isl_set_complement(NonNegDom));
  PWAC.first = isl::manage(isl_pw_aff_union_add(
      NonNegPWA, isl_pw_aff_add(PWAC.first.release(), ExpPWA)));
}

void SCEVAffinator::takeNonNegativeAssumption(PWACtx &PWAC) {
  auto *NegPWA = isl_pw_aff_neg(PWAC.first.copy());
  auto *NegDom = isl_pw_aff_pos_set(NegPWA);
  PWAC.second =
      isl::manage(isl_set_union(PWAC.second.release(), isl_set_copy(NegDom)));
  auto *Restriction = BB ? NegDom : isl_set_params(NegDom);
  auto DL = BB ? BB->getTerminator()->getDebugLoc() : DebugLoc();
  S->recordAssumption(UNSIGNED, isl::manage(Restriction), DL, AS_RESTRICTION,
                      BB);
}

PWACtx SCEVAffinator::getPWACtxFromPWA(isl::pw_aff PWA) {
  return std::make_pair(PWA, isl::set::empty(isl::space(Ctx, 0, NumIterators)));
}

PWACtx SCEVAffinator::getPwAff(const SCEV *Expr, BasicBlock *BB) {
  this->BB = BB;

  if (BB) {
    auto *DC = S->getDomainConditions(BB).release();
    NumIterators = isl_set_n_dim(DC);
    isl_set_free(DC);
  } else
    NumIterators = 0;

  return visit(Expr);
}

PWACtx SCEVAffinator::checkForWrapping(const SCEV *Expr, PWACtx PWAC) const {
  // If the SCEV flags do contain NSW (no signed wrap) then PWA already
  // represents Expr in modulo semantic (it is not allowed to overflow), thus we
  // are done. Otherwise, we will compute:
  //   PWA = ((PWA + 2^(n-1)) mod (2 ^ n)) - 2^(n-1)
  // whereas n is the number of bits of the Expr, hence:
  //   n = bitwidth(ExprType)

  if (IgnoreIntegerWrapping || (getNoWrapFlags(Expr) & SCEV::FlagNSW))
    return PWAC;

  isl::pw_aff PWAMod = addModuloSemantic(PWAC.first, Expr->getType());

  isl::set NotEqualSet = PWAC.first.ne_set(PWAMod);
  PWAC.second = PWAC.second.unite(NotEqualSet).coalesce();

  const DebugLoc &Loc = BB ? BB->getTerminator()->getDebugLoc() : DebugLoc();
  if (!BB)
    NotEqualSet = NotEqualSet.params();
  NotEqualSet = NotEqualSet.coalesce();

  if (!NotEqualSet.is_empty())
    S->recordAssumption(WRAPPING, NotEqualSet, Loc, AS_RESTRICTION, BB);

  return PWAC;
}

isl::pw_aff SCEVAffinator::addModuloSemantic(isl::pw_aff PWA,
                                             Type *ExprType) const {
  unsigned Width = TD.getTypeSizeInBits(ExprType);

  auto ModVal = isl::val::int_from_ui(Ctx, Width);
  ModVal = ModVal.pow2();

  isl::set Domain = PWA.domain();
  isl::pw_aff AddPW =
      isl::manage(getWidthExpValOnDomain(Width - 1, Domain.release()));

  return PWA.add(AddPW).mod(ModVal).sub(AddPW);
}

bool SCEVAffinator::hasNSWAddRecForLoop(Loop *L) const {
  for (const auto &CachedPair : CachedExpressions) {
    auto *AddRec = dyn_cast<SCEVAddRecExpr>(CachedPair.first.first);
    if (!AddRec)
      continue;
    if (AddRec->getLoop() != L)
      continue;
    if (AddRec->getNoWrapFlags() & SCEV::FlagNSW)
      return true;
  }

  return false;
}

bool SCEVAffinator::computeModuloForExpr(const SCEV *Expr) {
  unsigned Width = TD.getTypeSizeInBits(Expr->getType());
  // We assume nsw expressions never overflow.
  if (auto *NAry = dyn_cast<SCEVNAryExpr>(Expr))
    if (NAry->getNoWrapFlags() & SCEV::FlagNSW)
      return false;
  return Width <= MaxSmallBitWidth;
}

PWACtx SCEVAffinator::visit(const SCEV *Expr) {

  auto Key = std::make_pair(Expr, BB);
  PWACtx PWAC = CachedExpressions[Key];
  if (PWAC.first)
    return PWAC;

  auto ConstantAndLeftOverPair = extractConstantFactor(Expr, SE);
  auto *Factor = ConstantAndLeftOverPair.first;
  Expr = ConstantAndLeftOverPair.second;

  auto *Scope = getScope();
  S->addParams(getParamsInAffineExpr(&S->getRegion(), Scope, Expr, SE));

  // In case the scev is a valid parameter, we do not further analyze this
  // expression, but create a new parameter in the isl_pw_aff. This allows us
  // to treat subexpressions that we cannot translate into an piecewise affine
  // expression, as constant parameters of the piecewise affine expression.
  if (isl_id *Id = S->getIdForParam(Expr).release()) {
    isl_space *Space = isl_space_set_alloc(Ctx.get(), 1, NumIterators);
    Space = isl_space_set_dim_id(Space, isl_dim_param, 0, Id);

    isl_set *Domain = isl_set_universe(isl_space_copy(Space));
    isl_aff *Affine = isl_aff_zero_on_domain(isl_local_space_from_space(Space));
    Affine = isl_aff_add_coefficient_si(Affine, isl_dim_param, 0, 1);

    PWAC = getPWACtxFromPWA(isl::manage(isl_pw_aff_alloc(Domain, Affine)));
  } else {
    PWAC = SCEVVisitor<SCEVAffinator, PWACtx>::visit(Expr);
    if (computeModuloForExpr(Expr))
      PWAC.first = addModuloSemantic(PWAC.first, Expr->getType());
    else
      PWAC = checkForWrapping(Expr, PWAC);
  }

  if (!Factor->getType()->isIntegerTy(1)) {
    PWAC = combine(PWAC, visitConstant(Factor), isl_pw_aff_mul);
    if (computeModuloForExpr(Key.first))
      PWAC.first = addModuloSemantic(PWAC.first, Expr->getType());
  }

  // For compile time reasons we need to simplify the PWAC before we cache and
  // return it.
  PWAC.first = PWAC.first.coalesce();
  if (!computeModuloForExpr(Key.first))
    PWAC = checkForWrapping(Key.first, PWAC);

  CachedExpressions[Key] = PWAC;
  return PWAC;
}

PWACtx SCEVAffinator::visitConstant(const SCEVConstant *Expr) {
  ConstantInt *Value = Expr->getValue();
  isl_val *v;

  // LLVM does not define if an integer value is interpreted as a signed or
  // unsigned value. Hence, without further information, it is unknown how
  // this value needs to be converted to GMP. At the moment, we only support
  // signed operations. So we just interpret it as signed. Later, there are
  // two options:
  //
  // 1. We always interpret any value as signed and convert the values on
  //    demand.
  // 2. We pass down the signedness of the calculation and use it to interpret
  //    this constant correctly.
  v = isl_valFromAPInt(Ctx.get(), Value->getValue(), /* isSigned */ true);

  isl_space *Space = isl_space_set_alloc(Ctx.get(), 0, NumIterators);
  isl_local_space *ls = isl_local_space_from_space(Space);
  return getPWACtxFromPWA(
      isl::manage(isl_pw_aff_from_aff(isl_aff_val_on_domain(ls, v))));
}

PWACtx SCEVAffinator::visitTruncateExpr(const SCEVTruncateExpr *Expr) {
  // Truncate operations are basically modulo operations, thus we can
  // model them that way. However, for large types we assume the operand
  // to fit in the new type size instead of introducing a modulo with a very
  // large constant.

  auto *Op = Expr->getOperand();
  auto OpPWAC = visit(Op);

  unsigned Width = TD.getTypeSizeInBits(Expr->getType());

  if (computeModuloForExpr(Expr))
    return OpPWAC;

  auto *Dom = OpPWAC.first.domain().release();
  auto *ExpPWA = getWidthExpValOnDomain(Width - 1, Dom);
  auto *GreaterDom =
      isl_pw_aff_ge_set(OpPWAC.first.copy(), isl_pw_aff_copy(ExpPWA));
  auto *SmallerDom =
      isl_pw_aff_lt_set(OpPWAC.first.copy(), isl_pw_aff_neg(ExpPWA));
  auto *OutOfBoundsDom = isl_set_union(SmallerDom, GreaterDom);
  OpPWAC.second = OpPWAC.second.unite(isl::manage_copy(OutOfBoundsDom));

  if (!BB) {
    assert(isl_set_dim(OutOfBoundsDom, isl_dim_set) == 0 &&
           "Expected a zero dimensional set for non-basic-block domains");
    OutOfBoundsDom = isl_set_params(OutOfBoundsDom);
  }

  S->recordAssumption(UNSIGNED, isl::manage(OutOfBoundsDom), DebugLoc(),
                      AS_RESTRICTION, BB);

  return OpPWAC;
}

PWACtx SCEVAffinator::visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
  // A zero-extended value can be interpreted as a piecewise defined signed
  // value. If the value was non-negative it stays the same, otherwise it
  // is the sum of the original value and 2^n where n is the bit-width of
  // the original (or operand) type. Examples:
  //   zext i8 127 to i32 -> { [127] }
  //   zext i8  -1 to i32 -> { [256 + (-1)] } = { [255] }
  //   zext i8  %v to i32 -> [v] -> { [v] | v >= 0; [256 + v] | v < 0 }
  //
  // However, LLVM/Scalar Evolution uses zero-extend (potentially lead by a
  // truncate) to represent some forms of modulo computation. The left-hand side
  // of the condition in the code below would result in the SCEV
  // "zext i1 <false, +, true>for.body" which is just another description
  // of the C expression "i & 1 != 0" or, equivalently, "i % 2 != 0".
  //
  //   for (i = 0; i < N; i++)
  //     if (i & 1 != 0 /* == i % 2 */)
  //       /* do something */
  //
  // If we do not make the modulo explicit but only use the mechanism described
  // above we will get the very restrictive assumption "N < 3", because for all
  // values of N >= 3 the SCEVAddRecExpr operand of the zero-extend would wrap.
  // Alternatively, we can make the modulo in the operand explicit in the
  // resulting piecewise function and thereby avoid the assumption on N. For the
  // example this would result in the following piecewise affine function:
  // { [i0] -> [(1)] : 2*floor((-1 + i0)/2) = -1 + i0;
  //   [i0] -> [(0)] : 2*floor((i0)/2) = i0 }
  // To this end we can first determine if the (immediate) operand of the
  // zero-extend can wrap and, in case it might, we will use explicit modulo
  // semantic to compute the result instead of emitting non-wrapping
  // assumptions.
  //
  // Note that operands with large bit-widths are less likely to be negative
  // because it would result in a very large access offset or loop bound after
  // the zero-extend. To this end one can optimistically assume the operand to
  // be positive and avoid the piecewise definition if the bit-width is bigger
  // than some threshold (here MaxZextSmallBitWidth).
  //
  // We choose to go with a hybrid solution of all modeling techniques described
  // above. For small bit-widths (up to MaxZextSmallBitWidth) we will model the
  // wrapping explicitly and use a piecewise defined function. However, if the
  // bit-width is bigger than MaxZextSmallBitWidth we will employ overflow
  // assumptions and assume the "former negative" piece will not exist.

  auto *Op = Expr->getOperand();
  auto OpPWAC = visit(Op);

  // If the width is to big we assume the negative part does not occur.
  if (!computeModuloForExpr(Op)) {
    takeNonNegativeAssumption(OpPWAC);
    return OpPWAC;
  }

  // If the width is small build the piece for the non-negative part and
  // the one for the negative part and unify them.
  unsigned Width = TD.getTypeSizeInBits(Op->getType());
  interpretAsUnsigned(OpPWAC, Width);
  return OpPWAC;
}

PWACtx SCEVAffinator::visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
  // As all values are represented as signed, a sign extension is a noop.
  return visit(Expr->getOperand());
}

PWACtx SCEVAffinator::visitAddExpr(const SCEVAddExpr *Expr) {
  PWACtx Sum = visit(Expr->getOperand(0));

  for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
    Sum = combine(Sum, visit(Expr->getOperand(i)), isl_pw_aff_add);
    if (isTooComplex(Sum))
      return complexityBailout();
  }

  return Sum;
}

PWACtx SCEVAffinator::visitMulExpr(const SCEVMulExpr *Expr) {
  PWACtx Prod = visit(Expr->getOperand(0));

  for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
    Prod = combine(Prod, visit(Expr->getOperand(i)), isl_pw_aff_mul);
    if (isTooComplex(Prod))
      return complexityBailout();
  }

  return Prod;
}

PWACtx SCEVAffinator::visitAddRecExpr(const SCEVAddRecExpr *Expr) {
  assert(Expr->isAffine() && "Only affine AddRecurrences allowed");

  auto Flags = Expr->getNoWrapFlags();

  // Directly generate isl_pw_aff for Expr if 'start' is zero.
  if (Expr->getStart()->isZero()) {
    assert(S->contains(Expr->getLoop()) &&
           "Scop does not contain the loop referenced in this AddRec");

    PWACtx Step = visit(Expr->getOperand(1));
    isl_space *Space = isl_space_set_alloc(Ctx.get(), 0, NumIterators);
    isl_local_space *LocalSpace = isl_local_space_from_space(Space);

    unsigned loopDimension = S->getRelativeLoopDepth(Expr->getLoop());

    isl_aff *LAff = isl_aff_set_coefficient_si(
        isl_aff_zero_on_domain(LocalSpace), isl_dim_in, loopDimension, 1);
    isl_pw_aff *LPwAff = isl_pw_aff_from_aff(LAff);

    Step.first = Step.first.mul(isl::manage(LPwAff));
    return Step;
  }

  // Translate AddRecExpr from '{start, +, inc}' into 'start + {0, +, inc}'
  // if 'start' is not zero.
  // TODO: Using the original SCEV no-wrap flags is not always safe, however
  //       as our code generation is reordering the expression anyway it doesn't
  //       really matter.
  const SCEV *ZeroStartExpr =
      SE.getAddRecExpr(SE.getConstant(Expr->getStart()->getType(), 0),
                       Expr->getStepRecurrence(SE), Expr->getLoop(), Flags);

  PWACtx Result = visit(ZeroStartExpr);
  PWACtx Start = visit(Expr->getStart());
  Result = combine(Result, Start, isl_pw_aff_add);
  return Result;
}

PWACtx SCEVAffinator::visitSMaxExpr(const SCEVSMaxExpr *Expr) {
  PWACtx Max = visit(Expr->getOperand(0));

  for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
    Max = combine(Max, visit(Expr->getOperand(i)), isl_pw_aff_max);
    if (isTooComplex(Max))
      return complexityBailout();
  }

  return Max;
}

PWACtx SCEVAffinator::visitSMinExpr(const SCEVSMinExpr *Expr) {
  PWACtx Min = visit(Expr->getOperand(0));

  for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
    Min = combine(Min, visit(Expr->getOperand(i)), isl_pw_aff_min);
    if (isTooComplex(Min))
      return complexityBailout();
  }

  return Min;
}

PWACtx SCEVAffinator::visitUMaxExpr(const SCEVUMaxExpr *Expr) {
  llvm_unreachable("SCEVUMaxExpr not yet supported");
}

PWACtx SCEVAffinator::visitUMinExpr(const SCEVUMinExpr *Expr) {
  llvm_unreachable("SCEVUMinExpr not yet supported");
}

PWACtx SCEVAffinator::visitUDivExpr(const SCEVUDivExpr *Expr) {
  // The handling of unsigned division is basically the same as for signed
  // division, except the interpretation of the operands. As the divisor
  // has to be constant in both cases we can simply interpret it as an
  // unsigned value without additional complexity in the representation.
  // For the dividend we could choose from the different representation
  // schemes introduced for zero-extend operations but for now we will
  // simply use an assumption.
  auto *Dividend = Expr->getLHS();
  auto *Divisor = Expr->getRHS();
  assert(isa<SCEVConstant>(Divisor) &&
         "UDiv is no parameter but has a non-constant RHS.");

  auto DividendPWAC = visit(Dividend);
  auto DivisorPWAC = visit(Divisor);

  if (SE.isKnownNegative(Divisor)) {
    // Interpret negative divisors unsigned. This is a special case of the
    // piece-wise defined value described for zero-extends as we already know
    // the actual value of the constant divisor.
    unsigned Width = TD.getTypeSizeInBits(Expr->getType());
    auto *DivisorDom = DivisorPWAC.first.domain().release();
    auto *WidthExpPWA = getWidthExpValOnDomain(Width, DivisorDom);
    DivisorPWAC.first = DivisorPWAC.first.add(isl::manage(WidthExpPWA));
  }

  // TODO: One can represent the dividend as piece-wise function to be more
  //       precise but therefor a heuristic is needed.

  // Assume a non-negative dividend.
  takeNonNegativeAssumption(DividendPWAC);

  DividendPWAC = combine(DividendPWAC, DivisorPWAC, isl_pw_aff_div);
  DividendPWAC.first = DividendPWAC.first.floor();

  return DividendPWAC;
}

PWACtx SCEVAffinator::visitSDivInstruction(Instruction *SDiv) {
  assert(SDiv->getOpcode() == Instruction::SDiv && "Assumed SDiv instruction!");

  auto *Scope = getScope();
  auto *Divisor = SDiv->getOperand(1);
  auto *DivisorSCEV = SE.getSCEVAtScope(Divisor, Scope);
  auto DivisorPWAC = visit(DivisorSCEV);
  assert(isa<SCEVConstant>(DivisorSCEV) &&
         "SDiv is no parameter but has a non-constant RHS.");

  auto *Dividend = SDiv->getOperand(0);
  auto *DividendSCEV = SE.getSCEVAtScope(Dividend, Scope);
  auto DividendPWAC = visit(DividendSCEV);
  DividendPWAC = combine(DividendPWAC, DivisorPWAC, isl_pw_aff_tdiv_q);
  return DividendPWAC;
}

PWACtx SCEVAffinator::visitSRemInstruction(Instruction *SRem) {
  assert(SRem->getOpcode() == Instruction::SRem && "Assumed SRem instruction!");

  auto *Scope = getScope();
  auto *Divisor = SRem->getOperand(1);
  auto *DivisorSCEV = SE.getSCEVAtScope(Divisor, Scope);
  auto DivisorPWAC = visit(DivisorSCEV);
  assert(isa<ConstantInt>(Divisor) &&
         "SRem is no parameter but has a non-constant RHS.");

  auto *Dividend = SRem->getOperand(0);
  auto *DividendSCEV = SE.getSCEVAtScope(Dividend, Scope);
  auto DividendPWAC = visit(DividendSCEV);
  DividendPWAC = combine(DividendPWAC, DivisorPWAC, isl_pw_aff_tdiv_r);
  return DividendPWAC;
}

PWACtx SCEVAffinator::visitUnknown(const SCEVUnknown *Expr) {
  if (Instruction *I = dyn_cast<Instruction>(Expr->getValue())) {
    switch (I->getOpcode()) {
    case Instruction::IntToPtr:
      return visit(SE.getSCEVAtScope(I->getOperand(0), getScope()));
    case Instruction::PtrToInt:
      return visit(SE.getSCEVAtScope(I->getOperand(0), getScope()));
    case Instruction::SDiv:
      return visitSDivInstruction(I);
    case Instruction::SRem:
      return visitSRemInstruction(I);
    default:
      break; // Fall through.
    }
  }

  llvm_unreachable(
      "Unknowns SCEV was neither parameter nor a valid instruction.");
}

PWACtx SCEVAffinator::complexityBailout() {
  // We hit the complexity limit for affine expressions; invalidate the scop
  // and return a constant zero.
  const DebugLoc &Loc = BB ? BB->getTerminator()->getDebugLoc() : DebugLoc();
  S->invalidate(COMPLEXITY, Loc);
  return visit(SE.getZero(Type::getInt32Ty(S->getFunction().getContext())));
}