LoopConvertCheck.cpp
39.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
//===--- LoopConvertCheck.cpp - clang-tidy---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "LoopConvertCheck.h"
#include "clang/AST/ASTContext.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Lex/Lexer.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/Casting.h"
#include <cassert>
#include <cstring>
#include <utility>
using namespace clang::ast_matchers;
using namespace llvm;
namespace clang {
namespace tidy {
namespace modernize {
static const char LoopNameArray[] = "forLoopArray";
static const char LoopNameIterator[] = "forLoopIterator";
static const char LoopNamePseudoArray[] = "forLoopPseudoArray";
static const char ConditionBoundName[] = "conditionBound";
static const char ConditionVarName[] = "conditionVar";
static const char IncrementVarName[] = "incrementVar";
static const char InitVarName[] = "initVar";
static const char BeginCallName[] = "beginCall";
static const char EndCallName[] = "endCall";
static const char ConditionEndVarName[] = "conditionEndVar";
static const char EndVarName[] = "endVar";
static const char DerefByValueResultName[] = "derefByValueResult";
static const char DerefByRefResultName[] = "derefByRefResult";
// shared matchers
static const TypeMatcher AnyType() { return anything(); }
static const StatementMatcher IntegerComparisonMatcher() {
return expr(ignoringParenImpCasts(
declRefExpr(to(varDecl(hasType(isInteger())).bind(ConditionVarName)))));
}
static const DeclarationMatcher InitToZeroMatcher() {
return varDecl(
hasInitializer(ignoringParenImpCasts(integerLiteral(equals(0)))))
.bind(InitVarName);
}
static const StatementMatcher IncrementVarMatcher() {
return declRefExpr(to(varDecl(hasType(isInteger())).bind(IncrementVarName)));
}
/// The matcher for loops over arrays.
///
/// In this general example, assuming 'j' and 'k' are of integral type:
/// \code
/// for (int i = 0; j < 3 + 2; ++k) { ... }
/// \endcode
/// The following string identifiers are bound to these parts of the AST:
/// ConditionVarName: 'j' (as a VarDecl)
/// ConditionBoundName: '3 + 2' (as an Expr)
/// InitVarName: 'i' (as a VarDecl)
/// IncrementVarName: 'k' (as a VarDecl)
/// LoopName: The entire for loop (as a ForStmt)
///
/// Client code will need to make sure that:
/// - The three index variables identified by the matcher are the same
/// VarDecl.
/// - The index variable is only used as an array index.
/// - All arrays indexed by the loop are the same.
StatementMatcher makeArrayLoopMatcher() {
StatementMatcher ArrayBoundMatcher =
expr(hasType(isInteger())).bind(ConditionBoundName);
return forStmt(
unless(isInTemplateInstantiation()),
hasLoopInit(declStmt(hasSingleDecl(InitToZeroMatcher()))),
hasCondition(anyOf(
binaryOperator(hasOperatorName("<"),
hasLHS(IntegerComparisonMatcher()),
hasRHS(ArrayBoundMatcher)),
binaryOperator(hasOperatorName(">"), hasLHS(ArrayBoundMatcher),
hasRHS(IntegerComparisonMatcher())))),
hasIncrement(unaryOperator(hasOperatorName("++"),
hasUnaryOperand(IncrementVarMatcher()))))
.bind(LoopNameArray);
}
/// The matcher used for iterator-based for loops.
///
/// This matcher is more flexible than array-based loops. It will match
/// catch loops of the following textual forms (regardless of whether the
/// iterator type is actually a pointer type or a class type):
///
/// Assuming f, g, and h are of type containerType::iterator,
/// \code
/// for (containerType::iterator it = container.begin(),
/// e = createIterator(); f != g; ++h) { ... }
/// for (containerType::iterator it = container.begin();
/// f != anotherContainer.end(); ++h) { ... }
/// \endcode
/// The following string identifiers are bound to the parts of the AST:
/// InitVarName: 'it' (as a VarDecl)
/// ConditionVarName: 'f' (as a VarDecl)
/// LoopName: The entire for loop (as a ForStmt)
/// In the first example only:
/// EndVarName: 'e' (as a VarDecl)
/// ConditionEndVarName: 'g' (as a VarDecl)
/// In the second example only:
/// EndCallName: 'container.end()' (as a CXXMemberCallExpr)
///
/// Client code will need to make sure that:
/// - The iterator variables 'it', 'f', and 'h' are the same.
/// - The two containers on which 'begin' and 'end' are called are the same.
/// - If the end iterator variable 'g' is defined, it is the same as 'f'.
StatementMatcher makeIteratorLoopMatcher() {
StatementMatcher BeginCallMatcher =
cxxMemberCallExpr(
argumentCountIs(0),
callee(cxxMethodDecl(anyOf(hasName("begin"), hasName("cbegin")))))
.bind(BeginCallName);
DeclarationMatcher InitDeclMatcher =
varDecl(hasInitializer(anyOf(ignoringParenImpCasts(BeginCallMatcher),
materializeTemporaryExpr(
ignoringParenImpCasts(BeginCallMatcher)),
hasDescendant(BeginCallMatcher))))
.bind(InitVarName);
DeclarationMatcher EndDeclMatcher =
varDecl(hasInitializer(anything())).bind(EndVarName);
StatementMatcher EndCallMatcher = cxxMemberCallExpr(
argumentCountIs(0),
callee(cxxMethodDecl(anyOf(hasName("end"), hasName("cend")))));
StatementMatcher IteratorBoundMatcher =
expr(anyOf(ignoringParenImpCasts(
declRefExpr(to(varDecl().bind(ConditionEndVarName)))),
ignoringParenImpCasts(expr(EndCallMatcher).bind(EndCallName)),
materializeTemporaryExpr(ignoringParenImpCasts(
expr(EndCallMatcher).bind(EndCallName)))));
StatementMatcher IteratorComparisonMatcher = expr(
ignoringParenImpCasts(declRefExpr(to(varDecl().bind(ConditionVarName)))));
auto OverloadedNEQMatcher = ignoringImplicit(
cxxOperatorCallExpr(hasOverloadedOperatorName("!="), argumentCountIs(2),
hasArgument(0, IteratorComparisonMatcher),
hasArgument(1, IteratorBoundMatcher)));
// This matcher tests that a declaration is a CXXRecordDecl that has an
// overloaded operator*(). If the operator*() returns by value instead of by
// reference then the return type is tagged with DerefByValueResultName.
internal::Matcher<VarDecl> TestDerefReturnsByValue =
hasType(hasUnqualifiedDesugaredType(
recordType(hasDeclaration(cxxRecordDecl(hasMethod(cxxMethodDecl(
hasOverloadedOperatorName("*"),
anyOf(
// Tag the return type if it's by value.
returns(qualType(unless(hasCanonicalType(referenceType())))
.bind(DerefByValueResultName)),
returns(
// Skip loops where the iterator's operator* returns an
// rvalue reference. This is just weird.
qualType(unless(hasCanonicalType(rValueReferenceType())))
.bind(DerefByRefResultName))))))))));
return forStmt(
unless(isInTemplateInstantiation()),
hasLoopInit(anyOf(declStmt(declCountIs(2),
containsDeclaration(0, InitDeclMatcher),
containsDeclaration(1, EndDeclMatcher)),
declStmt(hasSingleDecl(InitDeclMatcher)))),
hasCondition(
anyOf(binaryOperator(hasOperatorName("!="),
hasLHS(IteratorComparisonMatcher),
hasRHS(IteratorBoundMatcher)),
binaryOperator(hasOperatorName("!="),
hasLHS(IteratorBoundMatcher),
hasRHS(IteratorComparisonMatcher)),
OverloadedNEQMatcher)),
hasIncrement(anyOf(
unaryOperator(hasOperatorName("++"),
hasUnaryOperand(declRefExpr(
to(varDecl(hasType(pointsTo(AnyType())))
.bind(IncrementVarName))))),
cxxOperatorCallExpr(
hasOverloadedOperatorName("++"),
hasArgument(
0, declRefExpr(to(varDecl(TestDerefReturnsByValue)
.bind(IncrementVarName))))))))
.bind(LoopNameIterator);
}
/// The matcher used for array-like containers (pseudoarrays).
///
/// This matcher is more flexible than array-based loops. It will match
/// loops of the following textual forms (regardless of whether the
/// iterator type is actually a pointer type or a class type):
///
/// Assuming f, g, and h are of type containerType::iterator,
/// \code
/// for (int i = 0, j = container.size(); f < g; ++h) { ... }
/// for (int i = 0; f < container.size(); ++h) { ... }
/// \endcode
/// The following string identifiers are bound to the parts of the AST:
/// InitVarName: 'i' (as a VarDecl)
/// ConditionVarName: 'f' (as a VarDecl)
/// LoopName: The entire for loop (as a ForStmt)
/// In the first example only:
/// EndVarName: 'j' (as a VarDecl)
/// ConditionEndVarName: 'g' (as a VarDecl)
/// In the second example only:
/// EndCallName: 'container.size()' (as a CXXMemberCallExpr)
///
/// Client code will need to make sure that:
/// - The index variables 'i', 'f', and 'h' are the same.
/// - The containers on which 'size()' is called is the container indexed.
/// - The index variable is only used in overloaded operator[] or
/// container.at().
/// - If the end iterator variable 'g' is defined, it is the same as 'j'.
/// - The container's iterators would not be invalidated during the loop.
StatementMatcher makePseudoArrayLoopMatcher() {
// Test that the incoming type has a record declaration that has methods
// called 'begin' and 'end'. If the incoming type is const, then make sure
// these methods are also marked const.
//
// FIXME: To be completely thorough this matcher should also ensure the
// return type of begin/end is an iterator that dereferences to the same as
// what operator[] or at() returns. Such a test isn't likely to fail except
// for pathological cases.
//
// FIXME: Also, a record doesn't necessarily need begin() and end(). Free
// functions called begin() and end() taking the container as an argument
// are also allowed.
TypeMatcher RecordWithBeginEnd = qualType(anyOf(
qualType(
isConstQualified(),
hasUnqualifiedDesugaredType(recordType(hasDeclaration(cxxRecordDecl(
hasMethod(cxxMethodDecl(hasName("begin"), isConst())),
hasMethod(cxxMethodDecl(hasName("end"),
isConst())))) // hasDeclaration
))), // qualType
qualType(unless(isConstQualified()),
hasUnqualifiedDesugaredType(recordType(hasDeclaration(
cxxRecordDecl(hasMethod(hasName("begin")),
hasMethod(hasName("end"))))))) // qualType
));
StatementMatcher SizeCallMatcher = cxxMemberCallExpr(
argumentCountIs(0),
callee(cxxMethodDecl(anyOf(hasName("size"), hasName("length")))),
on(anyOf(hasType(pointsTo(RecordWithBeginEnd)),
hasType(RecordWithBeginEnd))));
StatementMatcher EndInitMatcher =
expr(anyOf(ignoringParenImpCasts(expr(SizeCallMatcher).bind(EndCallName)),
explicitCastExpr(hasSourceExpression(ignoringParenImpCasts(
expr(SizeCallMatcher).bind(EndCallName))))));
DeclarationMatcher EndDeclMatcher =
varDecl(hasInitializer(EndInitMatcher)).bind(EndVarName);
StatementMatcher IndexBoundMatcher =
expr(anyOf(ignoringParenImpCasts(declRefExpr(to(
varDecl(hasType(isInteger())).bind(ConditionEndVarName)))),
EndInitMatcher));
return forStmt(
unless(isInTemplateInstantiation()),
hasLoopInit(
anyOf(declStmt(declCountIs(2),
containsDeclaration(0, InitToZeroMatcher()),
containsDeclaration(1, EndDeclMatcher)),
declStmt(hasSingleDecl(InitToZeroMatcher())))),
hasCondition(anyOf(
binaryOperator(hasOperatorName("<"),
hasLHS(IntegerComparisonMatcher()),
hasRHS(IndexBoundMatcher)),
binaryOperator(hasOperatorName(">"), hasLHS(IndexBoundMatcher),
hasRHS(IntegerComparisonMatcher())))),
hasIncrement(unaryOperator(hasOperatorName("++"),
hasUnaryOperand(IncrementVarMatcher()))))
.bind(LoopNamePseudoArray);
}
/// Determine whether Init appears to be an initializing an iterator.
///
/// If it is, returns the object whose begin() or end() method is called, and
/// the output parameter isArrow is set to indicate whether the initialization
/// is called via . or ->.
static const Expr *getContainerFromBeginEndCall(const Expr *Init, bool IsBegin,
bool *IsArrow) {
// FIXME: Maybe allow declaration/initialization outside of the for loop.
const auto *TheCall =
dyn_cast_or_null<CXXMemberCallExpr>(digThroughConstructors(Init));
if (!TheCall || TheCall->getNumArgs() != 0)
return nullptr;
const auto *Member = dyn_cast<MemberExpr>(TheCall->getCallee());
if (!Member)
return nullptr;
StringRef Name = Member->getMemberDecl()->getName();
StringRef TargetName = IsBegin ? "begin" : "end";
StringRef ConstTargetName = IsBegin ? "cbegin" : "cend";
if (Name != TargetName && Name != ConstTargetName)
return nullptr;
const Expr *SourceExpr = Member->getBase();
if (!SourceExpr)
return nullptr;
*IsArrow = Member->isArrow();
return SourceExpr;
}
/// Determines the container whose begin() and end() functions are called
/// for an iterator-based loop.
///
/// BeginExpr must be a member call to a function named "begin()", and EndExpr
/// must be a member.
static const Expr *findContainer(ASTContext *Context, const Expr *BeginExpr,
const Expr *EndExpr,
bool *ContainerNeedsDereference) {
// Now that we know the loop variable and test expression, make sure they are
// valid.
bool BeginIsArrow = false;
bool EndIsArrow = false;
const Expr *BeginContainerExpr =
getContainerFromBeginEndCall(BeginExpr, /*IsBegin=*/true, &BeginIsArrow);
if (!BeginContainerExpr)
return nullptr;
const Expr *EndContainerExpr =
getContainerFromBeginEndCall(EndExpr, /*IsBegin=*/false, &EndIsArrow);
// Disallow loops that try evil things like this (note the dot and arrow):
// for (IteratorType It = Obj.begin(), E = Obj->end(); It != E; ++It) { }
if (!EndContainerExpr || BeginIsArrow != EndIsArrow ||
!areSameExpr(Context, EndContainerExpr, BeginContainerExpr))
return nullptr;
*ContainerNeedsDereference = BeginIsArrow;
return BeginContainerExpr;
}
/// Obtain the original source code text from a SourceRange.
static StringRef getStringFromRange(SourceManager &SourceMgr,
const LangOptions &LangOpts,
SourceRange Range) {
if (SourceMgr.getFileID(Range.getBegin()) !=
SourceMgr.getFileID(Range.getEnd())) {
return StringRef(); // Empty string.
}
return Lexer::getSourceText(CharSourceRange(Range, true), SourceMgr,
LangOpts);
}
/// If the given expression is actually a DeclRefExpr or a MemberExpr,
/// find and return the underlying ValueDecl; otherwise, return NULL.
static const ValueDecl *getReferencedVariable(const Expr *E) {
if (const DeclRefExpr *DRE = getDeclRef(E))
return dyn_cast<VarDecl>(DRE->getDecl());
if (const auto *Mem = dyn_cast<MemberExpr>(E->IgnoreParenImpCasts()))
return dyn_cast<FieldDecl>(Mem->getMemberDecl());
return nullptr;
}
/// Returns true when the given expression is a member expression
/// whose base is `this` (implicitly or not).
static bool isDirectMemberExpr(const Expr *E) {
if (const auto *Member = dyn_cast<MemberExpr>(E->IgnoreParenImpCasts()))
return isa<CXXThisExpr>(Member->getBase()->IgnoreParenImpCasts());
return false;
}
/// Given an expression that represents an usage of an element from the
/// containter that we are iterating over, returns false when it can be
/// guaranteed this element cannot be modified as a result of this usage.
static bool canBeModified(ASTContext *Context, const Expr *E) {
if (E->getType().isConstQualified())
return false;
auto Parents = Context->getParents(*E);
if (Parents.size() != 1)
return true;
if (const auto *Cast = Parents[0].get<ImplicitCastExpr>()) {
if ((Cast->getCastKind() == CK_NoOp &&
Cast->getType() == E->getType().withConst()) ||
(Cast->getCastKind() == CK_LValueToRValue &&
!Cast->getType().isNull() && Cast->getType()->isFundamentalType()))
return false;
}
// FIXME: Make this function more generic.
return true;
}
/// Returns true when it can be guaranteed that the elements of the
/// container are not being modified.
static bool usagesAreConst(ASTContext *Context, const UsageResult &Usages) {
for (const Usage &U : Usages) {
// Lambda captures are just redeclarations (VarDecl) of the same variable,
// not expressions. If we want to know if a variable that is captured by
// reference can be modified in an usage inside the lambda's body, we need
// to find the expression corresponding to that particular usage, later in
// this loop.
if (U.Kind != Usage::UK_CaptureByCopy && U.Kind != Usage::UK_CaptureByRef &&
canBeModified(Context, U.Expression))
return false;
}
return true;
}
/// Returns true if the elements of the container are never accessed
/// by reference.
static bool usagesReturnRValues(const UsageResult &Usages) {
for (const auto &U : Usages) {
if (U.Expression && !U.Expression->isRValue())
return false;
}
return true;
}
/// Returns true if the container is const-qualified.
static bool containerIsConst(const Expr *ContainerExpr, bool Dereference) {
if (const auto *VDec = getReferencedVariable(ContainerExpr)) {
QualType CType = VDec->getType();
if (Dereference) {
if (!CType->isPointerType())
return false;
CType = CType->getPointeeType();
}
// If VDec is a reference to a container, Dereference is false,
// but we still need to check the const-ness of the underlying container
// type.
CType = CType.getNonReferenceType();
return CType.isConstQualified();
}
return false;
}
LoopConvertCheck::RangeDescriptor::RangeDescriptor()
: ContainerNeedsDereference(false), DerefByConstRef(false),
DerefByValue(false) {}
LoopConvertCheck::LoopConvertCheck(StringRef Name, ClangTidyContext *Context)
: ClangTidyCheck(Name, Context), TUInfo(new TUTrackingInfo),
MaxCopySize(std::stoull(Options.get("MaxCopySize", "16"))),
MinConfidence(StringSwitch<Confidence::Level>(
Options.get("MinConfidence", "reasonable"))
.Case("safe", Confidence::CL_Safe)
.Case("risky", Confidence::CL_Risky)
.Default(Confidence::CL_Reasonable)),
NamingStyle(StringSwitch<VariableNamer::NamingStyle>(
Options.get("NamingStyle", "CamelCase"))
.Case("camelBack", VariableNamer::NS_CamelBack)
.Case("lower_case", VariableNamer::NS_LowerCase)
.Case("UPPER_CASE", VariableNamer::NS_UpperCase)
.Default(VariableNamer::NS_CamelCase)) {}
void LoopConvertCheck::storeOptions(ClangTidyOptions::OptionMap &Opts) {
Options.store(Opts, "MaxCopySize", std::to_string(MaxCopySize));
SmallVector<std::string, 3> Confs{"risky", "reasonable", "safe"};
Options.store(Opts, "MinConfidence", Confs[static_cast<int>(MinConfidence)]);
SmallVector<std::string, 4> Styles{"camelBack", "CamelCase", "lower_case",
"UPPER_CASE"};
Options.store(Opts, "NamingStyle", Styles[static_cast<int>(NamingStyle)]);
}
void LoopConvertCheck::registerMatchers(MatchFinder *Finder) {
// Only register the matchers for C++. Because this checker is used for
// modernization, it is reasonable to run it on any C++ standard with the
// assumption the user is trying to modernize their codebase.
if (!getLangOpts().CPlusPlus)
return;
Finder->addMatcher(makeArrayLoopMatcher(), this);
Finder->addMatcher(makeIteratorLoopMatcher(), this);
Finder->addMatcher(makePseudoArrayLoopMatcher(), this);
}
/// Given the range of a single declaration, such as:
/// \code
/// unsigned &ThisIsADeclarationThatCanSpanSeveralLinesOfCode =
/// InitializationValues[I];
/// next_instruction;
/// \endcode
/// Finds the range that has to be erased to remove this declaration without
/// leaving empty lines, by extending the range until the beginning of the
/// next instruction.
///
/// We need to delete a potential newline after the deleted alias, as
/// clang-format will leave empty lines untouched. For all other formatting we
/// rely on clang-format to fix it.
void LoopConvertCheck::getAliasRange(SourceManager &SM, SourceRange &Range) {
bool Invalid = false;
const char *TextAfter =
SM.getCharacterData(Range.getEnd().getLocWithOffset(1), &Invalid);
if (Invalid)
return;
unsigned Offset = std::strspn(TextAfter, " \t\r\n");
Range =
SourceRange(Range.getBegin(), Range.getEnd().getLocWithOffset(Offset));
}
/// Computes the changes needed to convert a given for loop, and
/// applies them.
void LoopConvertCheck::doConversion(
ASTContext *Context, const VarDecl *IndexVar,
const ValueDecl *MaybeContainer, const UsageResult &Usages,
const DeclStmt *AliasDecl, bool AliasUseRequired, bool AliasFromForInit,
const ForStmt *Loop, RangeDescriptor Descriptor) {
auto Diag = diag(Loop->getForLoc(), "use range-based for loop instead");
std::string VarName;
bool VarNameFromAlias = (Usages.size() == 1) && AliasDecl;
bool AliasVarIsRef = false;
bool CanCopy = true;
if (VarNameFromAlias) {
const auto *AliasVar = cast<VarDecl>(AliasDecl->getSingleDecl());
VarName = AliasVar->getName().str();
// Use the type of the alias if it's not the same
QualType AliasVarType = AliasVar->getType();
assert(!AliasVarType.isNull() && "Type in VarDecl is null");
if (AliasVarType->isReferenceType()) {
AliasVarType = AliasVarType.getNonReferenceType();
AliasVarIsRef = true;
}
if (Descriptor.ElemType.isNull() ||
!Context->hasSameUnqualifiedType(AliasVarType, Descriptor.ElemType))
Descriptor.ElemType = AliasVarType;
// We keep along the entire DeclStmt to keep the correct range here.
SourceRange ReplaceRange = AliasDecl->getSourceRange();
std::string ReplacementText;
if (AliasUseRequired) {
ReplacementText = VarName;
} else if (AliasFromForInit) {
// FIXME: Clang includes the location of the ';' but only for DeclStmt's
// in a for loop's init clause. Need to put this ';' back while removing
// the declaration of the alias variable. This is probably a bug.
ReplacementText = ";";
} else {
// Avoid leaving empty lines or trailing whitespaces.
getAliasRange(Context->getSourceManager(), ReplaceRange);
}
Diag << FixItHint::CreateReplacement(
CharSourceRange::getTokenRange(ReplaceRange), ReplacementText);
// No further replacements are made to the loop, since the iterator or index
// was used exactly once - in the initialization of AliasVar.
} else {
VariableNamer Namer(&TUInfo->getGeneratedDecls(),
&TUInfo->getParentFinder().getStmtToParentStmtMap(),
Loop, IndexVar, MaybeContainer, Context, NamingStyle);
VarName = Namer.createIndexName();
// First, replace all usages of the array subscript expression with our new
// variable.
for (const auto &Usage : Usages) {
std::string ReplaceText;
SourceRange Range = Usage.Range;
if (Usage.Expression) {
// If this is an access to a member through the arrow operator, after
// the replacement it must be accessed through the '.' operator.
ReplaceText = Usage.Kind == Usage::UK_MemberThroughArrow ? VarName + "."
: VarName;
auto Parents = Context->getParents(*Usage.Expression);
if (Parents.size() == 1) {
if (const auto *Paren = Parents[0].get<ParenExpr>()) {
// Usage.Expression will be replaced with the new index variable,
// and parenthesis around a simple DeclRefExpr can always be
// removed.
Range = Paren->getSourceRange();
} else if (const auto *UOP = Parents[0].get<UnaryOperator>()) {
// If we are taking the address of the loop variable, then we must
// not use a copy, as it would mean taking the address of the loop's
// local index instead.
// FIXME: This won't catch cases where the address is taken outside
// of the loop's body (for instance, in a function that got the
// loop's index as a const reference parameter), or where we take
// the address of a member (like "&Arr[i].A.B.C").
if (UOP->getOpcode() == UO_AddrOf)
CanCopy = false;
}
}
} else {
// The Usage expression is only null in case of lambda captures (which
// are VarDecl). If the index is captured by value, add '&' to capture
// by reference instead.
ReplaceText =
Usage.Kind == Usage::UK_CaptureByCopy ? "&" + VarName : VarName;
}
TUInfo->getReplacedVars().insert(std::make_pair(Loop, IndexVar));
Diag << FixItHint::CreateReplacement(
CharSourceRange::getTokenRange(Range), ReplaceText);
}
}
// Now, we need to construct the new range expression.
SourceRange ParenRange(Loop->getLParenLoc(), Loop->getRParenLoc());
QualType Type = Context->getAutoDeductType();
if (!Descriptor.ElemType.isNull() && Descriptor.ElemType->isFundamentalType())
Type = Descriptor.ElemType.getUnqualifiedType();
// If the new variable name is from the aliased variable, then the reference
// type for the new variable should only be used if the aliased variable was
// declared as a reference.
bool IsCheapToCopy =
!Descriptor.ElemType.isNull() &&
Descriptor.ElemType.isTriviallyCopyableType(*Context) &&
// TypeInfo::Width is in bits.
Context->getTypeInfo(Descriptor.ElemType).Width <= 8 * MaxCopySize;
bool UseCopy = CanCopy && ((VarNameFromAlias && !AliasVarIsRef) ||
(Descriptor.DerefByConstRef && IsCheapToCopy));
if (!UseCopy) {
if (Descriptor.DerefByConstRef) {
Type = Context->getLValueReferenceType(Context->getConstType(Type));
} else if (Descriptor.DerefByValue) {
if (!IsCheapToCopy)
Type = Context->getRValueReferenceType(Type);
} else {
Type = Context->getLValueReferenceType(Type);
}
}
StringRef MaybeDereference = Descriptor.ContainerNeedsDereference ? "*" : "";
std::string TypeString = Type.getAsString(getLangOpts());
std::string Range = ("(" + TypeString + " " + VarName + " : " +
MaybeDereference + Descriptor.ContainerString + ")")
.str();
Diag << FixItHint::CreateReplacement(
CharSourceRange::getTokenRange(ParenRange), Range);
TUInfo->getGeneratedDecls().insert(make_pair(Loop, VarName));
}
/// Returns a string which refers to the container iterated over.
StringRef LoopConvertCheck::getContainerString(ASTContext *Context,
const ForStmt *Loop,
const Expr *ContainerExpr) {
StringRef ContainerString;
if (isa<CXXThisExpr>(ContainerExpr->IgnoreParenImpCasts())) {
ContainerString = "this";
} else {
ContainerString =
getStringFromRange(Context->getSourceManager(), Context->getLangOpts(),
ContainerExpr->getSourceRange());
}
return ContainerString;
}
/// Determines what kind of 'auto' must be used after converting a for
/// loop that iterates over an array or pseudoarray.
void LoopConvertCheck::getArrayLoopQualifiers(ASTContext *Context,
const BoundNodes &Nodes,
const Expr *ContainerExpr,
const UsageResult &Usages,
RangeDescriptor &Descriptor) {
// On arrays and pseudoarrays, we must figure out the qualifiers from the
// usages.
if (usagesAreConst(Context, Usages) ||
containerIsConst(ContainerExpr, Descriptor.ContainerNeedsDereference)) {
Descriptor.DerefByConstRef = true;
}
if (usagesReturnRValues(Usages)) {
// If the index usages (dereference, subscript, at, ...) return rvalues,
// then we should not use a reference, because we need to keep the code
// correct if it mutates the returned objects.
Descriptor.DerefByValue = true;
}
// Try to find the type of the elements on the container, to check if
// they are trivially copyable.
for (const Usage &U : Usages) {
if (!U.Expression || U.Expression->getType().isNull())
continue;
QualType Type = U.Expression->getType().getCanonicalType();
if (U.Kind == Usage::UK_MemberThroughArrow) {
if (!Type->isPointerType()) {
continue;
}
Type = Type->getPointeeType();
}
Descriptor.ElemType = Type;
}
}
/// Determines what kind of 'auto' must be used after converting an
/// iterator based for loop.
void LoopConvertCheck::getIteratorLoopQualifiers(ASTContext *Context,
const BoundNodes &Nodes,
RangeDescriptor &Descriptor) {
// The matchers for iterator loops provide bound nodes to obtain this
// information.
const auto *InitVar = Nodes.getNodeAs<VarDecl>(InitVarName);
QualType CanonicalInitVarType = InitVar->getType().getCanonicalType();
const auto *DerefByValueType =
Nodes.getNodeAs<QualType>(DerefByValueResultName);
Descriptor.DerefByValue = DerefByValueType;
if (Descriptor.DerefByValue) {
// If the dereference operator returns by value then test for the
// canonical const qualification of the init variable type.
Descriptor.DerefByConstRef = CanonicalInitVarType.isConstQualified();
Descriptor.ElemType = *DerefByValueType;
} else {
if (const auto *DerefType =
Nodes.getNodeAs<QualType>(DerefByRefResultName)) {
// A node will only be bound with DerefByRefResultName if we're dealing
// with a user-defined iterator type. Test the const qualification of
// the reference type.
auto ValueType = DerefType->getNonReferenceType();
Descriptor.DerefByConstRef = ValueType.isConstQualified();
Descriptor.ElemType = ValueType;
} else {
// By nature of the matcher this case is triggered only for built-in
// iterator types (i.e. pointers).
assert(isa<PointerType>(CanonicalInitVarType) &&
"Non-class iterator type is not a pointer type");
// We test for const qualification of the pointed-at type.
Descriptor.DerefByConstRef =
CanonicalInitVarType->getPointeeType().isConstQualified();
Descriptor.ElemType = CanonicalInitVarType->getPointeeType();
}
}
}
/// Determines the parameters needed to build the range replacement.
void LoopConvertCheck::determineRangeDescriptor(
ASTContext *Context, const BoundNodes &Nodes, const ForStmt *Loop,
LoopFixerKind FixerKind, const Expr *ContainerExpr,
const UsageResult &Usages, RangeDescriptor &Descriptor) {
Descriptor.ContainerString = getContainerString(Context, Loop, ContainerExpr);
if (FixerKind == LFK_Iterator)
getIteratorLoopQualifiers(Context, Nodes, Descriptor);
else
getArrayLoopQualifiers(Context, Nodes, ContainerExpr, Usages, Descriptor);
}
/// Check some of the conditions that must be met for the loop to be
/// convertible.
bool LoopConvertCheck::isConvertible(ASTContext *Context,
const ast_matchers::BoundNodes &Nodes,
const ForStmt *Loop,
LoopFixerKind FixerKind) {
// If we already modified the range of this for loop, don't do any further
// updates on this iteration.
if (TUInfo->getReplacedVars().count(Loop))
return false;
// Check that we have exactly one index variable and at most one end variable.
const auto *LoopVar = Nodes.getNodeAs<VarDecl>(IncrementVarName);
const auto *CondVar = Nodes.getNodeAs<VarDecl>(ConditionVarName);
const auto *InitVar = Nodes.getNodeAs<VarDecl>(InitVarName);
if (!areSameVariable(LoopVar, CondVar) || !areSameVariable(LoopVar, InitVar))
return false;
const auto *EndVar = Nodes.getNodeAs<VarDecl>(EndVarName);
const auto *ConditionEndVar = Nodes.getNodeAs<VarDecl>(ConditionEndVarName);
if (EndVar && !areSameVariable(EndVar, ConditionEndVar))
return false;
// FIXME: Try to put most of this logic inside a matcher.
if (FixerKind == LFK_Iterator) {
QualType InitVarType = InitVar->getType();
QualType CanonicalInitVarType = InitVarType.getCanonicalType();
const auto *BeginCall = Nodes.getNodeAs<CXXMemberCallExpr>(BeginCallName);
assert(BeginCall && "Bad Callback. No begin call expression");
QualType CanonicalBeginType =
BeginCall->getMethodDecl()->getReturnType().getCanonicalType();
if (CanonicalBeginType->isPointerType() &&
CanonicalInitVarType->isPointerType()) {
// If the initializer and the variable are both pointers check if the
// un-qualified pointee types match, otherwise we don't use auto.
if (!Context->hasSameUnqualifiedType(
CanonicalBeginType->getPointeeType(),
CanonicalInitVarType->getPointeeType()))
return false;
}
} else if (FixerKind == LFK_PseudoArray) {
// This call is required to obtain the container.
const auto *EndCall = Nodes.getNodeAs<CXXMemberCallExpr>(EndCallName);
if (!EndCall || !dyn_cast<MemberExpr>(EndCall->getCallee()))
return false;
}
return true;
}
void LoopConvertCheck::check(const MatchFinder::MatchResult &Result) {
const BoundNodes &Nodes = Result.Nodes;
Confidence ConfidenceLevel(Confidence::CL_Safe);
ASTContext *Context = Result.Context;
const ForStmt *Loop;
LoopFixerKind FixerKind;
RangeDescriptor Descriptor;
if ((Loop = Nodes.getNodeAs<ForStmt>(LoopNameArray))) {
FixerKind = LFK_Array;
} else if ((Loop = Nodes.getNodeAs<ForStmt>(LoopNameIterator))) {
FixerKind = LFK_Iterator;
} else {
Loop = Nodes.getNodeAs<ForStmt>(LoopNamePseudoArray);
assert(Loop && "Bad Callback. No for statement");
FixerKind = LFK_PseudoArray;
}
if (!isConvertible(Context, Nodes, Loop, FixerKind))
return;
const auto *LoopVar = Nodes.getNodeAs<VarDecl>(IncrementVarName);
const auto *EndVar = Nodes.getNodeAs<VarDecl>(EndVarName);
// If the loop calls end()/size() after each iteration, lower our confidence
// level.
if (FixerKind != LFK_Array && !EndVar)
ConfidenceLevel.lowerTo(Confidence::CL_Reasonable);
// If the end comparison isn't a variable, we can try to work with the
// expression the loop variable is being tested against instead.
const auto *EndCall = Nodes.getNodeAs<CXXMemberCallExpr>(EndCallName);
const auto *BoundExpr = Nodes.getNodeAs<Expr>(ConditionBoundName);
// Find container expression of iterators and pseudoarrays, and determine if
// this expression needs to be dereferenced to obtain the container.
// With array loops, the container is often discovered during the
// ForLoopIndexUseVisitor traversal.
const Expr *ContainerExpr = nullptr;
if (FixerKind == LFK_Iterator) {
ContainerExpr = findContainer(Context, LoopVar->getInit(),
EndVar ? EndVar->getInit() : EndCall,
&Descriptor.ContainerNeedsDereference);
} else if (FixerKind == LFK_PseudoArray) {
ContainerExpr = EndCall->getImplicitObjectArgument();
Descriptor.ContainerNeedsDereference =
dyn_cast<MemberExpr>(EndCall->getCallee())->isArrow();
}
// We must know the container or an array length bound.
if (!ContainerExpr && !BoundExpr)
return;
ForLoopIndexUseVisitor Finder(Context, LoopVar, EndVar, ContainerExpr,
BoundExpr,
Descriptor.ContainerNeedsDereference);
// Find expressions and variables on which the container depends.
if (ContainerExpr) {
ComponentFinderASTVisitor ComponentFinder;
ComponentFinder.findExprComponents(ContainerExpr->IgnoreParenImpCasts());
Finder.addComponents(ComponentFinder.getComponents());
}
// Find usages of the loop index. If they are not used in a convertible way,
// stop here.
if (!Finder.findAndVerifyUsages(Loop->getBody()))
return;
ConfidenceLevel.lowerTo(Finder.getConfidenceLevel());
// Obtain the container expression, if we don't have it yet.
if (FixerKind == LFK_Array) {
ContainerExpr = Finder.getContainerIndexed()->IgnoreParenImpCasts();
// Very few loops are over expressions that generate arrays rather than
// array variables. Consider loops over arrays that aren't just represented
// by a variable to be risky conversions.
if (!getReferencedVariable(ContainerExpr) &&
!isDirectMemberExpr(ContainerExpr))
ConfidenceLevel.lowerTo(Confidence::CL_Risky);
}
// Find out which qualifiers we have to use in the loop range.
const UsageResult &Usages = Finder.getUsages();
determineRangeDescriptor(Context, Nodes, Loop, FixerKind, ContainerExpr,
Usages, Descriptor);
// Ensure that we do not try to move an expression dependent on a local
// variable declared inside the loop outside of it.
// FIXME: Determine when the external dependency isn't an expression converted
// by another loop.
TUInfo->getParentFinder().gatherAncestors(*Context);
DependencyFinderASTVisitor DependencyFinder(
&TUInfo->getParentFinder().getStmtToParentStmtMap(),
&TUInfo->getParentFinder().getDeclToParentStmtMap(),
&TUInfo->getReplacedVars(), Loop);
if (DependencyFinder.dependsOnInsideVariable(ContainerExpr) ||
Descriptor.ContainerString.empty() || Usages.empty() ||
ConfidenceLevel.getLevel() < MinConfidence)
return;
doConversion(Context, LoopVar, getReferencedVariable(ContainerExpr), Usages,
Finder.getAliasDecl(), Finder.aliasUseRequired(),
Finder.aliasFromForInit(), Loop, Descriptor);
}
} // namespace modernize
} // namespace tidy
} // namespace clang