TUScheduler.cpp 39 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
//===--- TUScheduler.cpp -----------------------------------------*-C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// For each file, managed by TUScheduler, we create a single ASTWorker that
// manages an AST for that file. All operations that modify or read the AST are
// run on a separate dedicated thread asynchronously in FIFO order.
//
// We start processing each update immediately after we receive it. If two or
// more updates come subsequently without reads in-between, we attempt to drop
// an older one to not waste time building the ASTs we don't need.
//
// The processing thread of the ASTWorker is also responsible for building the
// preamble. However, unlike AST, the same preamble can be read concurrently, so
// we run each of async preamble reads on its own thread.
//
// To limit the concurrent load that clangd produces we maintain a semaphore
// that keeps more than a fixed number of threads from running concurrently.
//
// Rationale for cancelling updates.
// LSP clients can send updates to clangd on each keystroke. Some files take
// significant time to parse (e.g. a few seconds) and clangd can get starved by
// the updates to those files. Therefore we try to process only the last update,
// if possible.
// Our current strategy to do that is the following:
// - For each update we immediately schedule rebuild of the AST.
// - Rebuild of the AST checks if it was cancelled before doing any actual work.
//   If it was, it does not do an actual rebuild, only reports llvm::None to the
//   callback
// - When adding an update, we cancel the last update in the queue if it didn't
//   have any reads.
// There is probably a optimal ways to do that. One approach we might take is
// the following:
// - For each update we remember the pending inputs, but delay rebuild of the
//   AST for some timeout.
// - If subsequent updates come before rebuild was started, we replace the
//   pending inputs and reset the timer.
// - If any reads of the AST are scheduled, we start building the AST
//   immediately.

#include "TUScheduler.h"
#include "Cancellation.h"
#include "Compiler.h"
#include "Context.h"
#include "Diagnostics.h"
#include "GlobalCompilationDatabase.h"
#include "Logger.h"
#include "ParsedAST.h"
#include "Preamble.h"
#include "Trace.h"
#include "index/CanonicalIncludes.h"
#include "clang/Frontend/CompilerInvocation.h"
#include "clang/Tooling/CompilationDatabase.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Threading.h"
#include <algorithm>
#include <memory>
#include <queue>
#include <thread>

namespace clang {
namespace clangd {
using std::chrono::steady_clock;

namespace {
class ASTWorker;
} // namespace

static clang::clangd::Key<std::string> kFileBeingProcessed;

llvm::Optional<llvm::StringRef> TUScheduler::getFileBeingProcessedInContext() {
  if (auto *File = Context::current().get(kFileBeingProcessed))
    return llvm::StringRef(*File);
  return None;
}

/// An LRU cache of idle ASTs.
/// Because we want to limit the overall number of these we retain, the cache
/// owns ASTs (and may evict them) while their workers are idle.
/// Workers borrow ASTs when active, and return them when done.
class TUScheduler::ASTCache {
public:
  using Key = const ASTWorker *;

  ASTCache(unsigned MaxRetainedASTs) : MaxRetainedASTs(MaxRetainedASTs) {}

  /// Returns result of getUsedBytes() for the AST cached by \p K.
  /// If no AST is cached, 0 is returned.
  std::size_t getUsedBytes(Key K) {
    std::lock_guard<std::mutex> Lock(Mut);
    auto It = findByKey(K);
    if (It == LRU.end() || !It->second)
      return 0;
    return It->second->getUsedBytes();
  }

  /// Store the value in the pool, possibly removing the last used AST.
  /// The value should not be in the pool when this function is called.
  void put(Key K, std::unique_ptr<ParsedAST> V) {
    std::unique_lock<std::mutex> Lock(Mut);
    assert(findByKey(K) == LRU.end());

    LRU.insert(LRU.begin(), {K, std::move(V)});
    if (LRU.size() <= MaxRetainedASTs)
      return;
    // We're past the limit, remove the last element.
    std::unique_ptr<ParsedAST> ForCleanup = std::move(LRU.back().second);
    LRU.pop_back();
    // Run the expensive destructor outside the lock.
    Lock.unlock();
    ForCleanup.reset();
  }

  /// Returns the cached value for \p K, or llvm::None if the value is not in
  /// the cache anymore. If nullptr was cached for \p K, this function will
  /// return a null unique_ptr wrapped into an optional.
  llvm::Optional<std::unique_ptr<ParsedAST>> take(Key K) {
    std::unique_lock<std::mutex> Lock(Mut);
    auto Existing = findByKey(K);
    if (Existing == LRU.end())
      return None;
    std::unique_ptr<ParsedAST> V = std::move(Existing->second);
    LRU.erase(Existing);
    // GCC 4.8 fails to compile `return V;`, as it tries to call the copy
    // constructor of unique_ptr, so we call the move ctor explicitly to avoid
    // this miscompile.
    return llvm::Optional<std::unique_ptr<ParsedAST>>(std::move(V));
  }

private:
  using KVPair = std::pair<Key, std::unique_ptr<ParsedAST>>;

  std::vector<KVPair>::iterator findByKey(Key K) {
    return llvm::find_if(LRU, [K](const KVPair &P) { return P.first == K; });
  }

  std::mutex Mut;
  unsigned MaxRetainedASTs;
  /// Items sorted in LRU order, i.e. first item is the most recently accessed
  /// one.
  std::vector<KVPair> LRU; /* GUARDED_BY(Mut) */
};

namespace {
class ASTWorkerHandle;

/// Owns one instance of the AST, schedules updates and reads of it.
/// Also responsible for building and providing access to the preamble.
/// Each ASTWorker processes the async requests sent to it on a separate
/// dedicated thread.
/// The ASTWorker that manages the AST is shared by both the processing thread
/// and the TUScheduler. The TUScheduler should discard an ASTWorker when
/// remove() is called, but its thread may be busy and we don't want to block.
/// So the workers are accessed via an ASTWorkerHandle. Destroying the handle
/// signals the worker to exit its run loop and gives up shared ownership of the
/// worker.
class ASTWorker {
  friend class ASTWorkerHandle;
  ASTWorker(PathRef FileName, const GlobalCompilationDatabase &CDB,
            TUScheduler::ASTCache &LRUCache, Semaphore &Barrier, bool RunSync,
            steady_clock::duration UpdateDebounce, bool StorePreamblesInMemory,
            ParsingCallbacks &Callbacks);

public:
  /// Create a new ASTWorker and return a handle to it.
  /// The processing thread is spawned using \p Tasks. However, when \p Tasks
  /// is null, all requests will be processed on the calling thread
  /// synchronously instead. \p Barrier is acquired when processing each
  /// request, it is used to limit the number of actively running threads.
  static ASTWorkerHandle
  create(PathRef FileName, const GlobalCompilationDatabase &CDB,
         TUScheduler::ASTCache &IdleASTs, AsyncTaskRunner *Tasks,
         Semaphore &Barrier, steady_clock::duration UpdateDebounce,
         bool StorePreamblesInMemory, ParsingCallbacks &Callbacks);
  ~ASTWorker();

  void update(ParseInputs Inputs, WantDiagnostics);
  void
  runWithAST(llvm::StringRef Name,
             llvm::unique_function<void(llvm::Expected<InputsAndAST>)> Action);
  bool blockUntilIdle(Deadline Timeout) const;

  std::shared_ptr<const PreambleData> getPossiblyStalePreamble() const;

  /// Obtain a preamble reflecting all updates so far. Threadsafe.
  /// It may be delivered immediately, or later on the worker thread.
  void getCurrentPreamble(
      llvm::unique_function<void(std::shared_ptr<const PreambleData>)>);
  /// Returns compile command from the current file inputs.
  tooling::CompileCommand getCurrentCompileCommand() const;

  /// Wait for the first build of preamble to finish. Preamble itself can be
  /// accessed via getPossiblyStalePreamble(). Note that this function will
  /// return after an unsuccessful build of the preamble too, i.e. result of
  /// getPossiblyStalePreamble() can be null even after this function returns.
  void waitForFirstPreamble() const;

  std::size_t getUsedBytes() const;
  bool isASTCached() const;

private:
  // Must be called exactly once on processing thread. Will return after
  // stop() is called on a separate thread and all pending requests are
  // processed.
  void run();
  /// Signal that run() should finish processing pending requests and exit.
  void stop();
  /// Adds a new task to the end of the request queue.
  void startTask(llvm::StringRef Name, llvm::unique_function<void()> Task,
                 llvm::Optional<WantDiagnostics> UpdateType);
  /// Updates the TUStatus and emits it. Only called in the worker thread.
  void emitTUStatus(TUAction FAction,
                    const TUStatus::BuildDetails *Detail = nullptr);

  /// Determines the next action to perform.
  /// All actions that should never run are discarded.
  /// Returns a deadline for the next action. If it's expired, run now.
  /// scheduleLocked() is called again at the deadline, or if requests arrive.
  Deadline scheduleLocked();
  /// Should the first task in the queue be skipped instead of run?
  bool shouldSkipHeadLocked() const;
  /// This is private because `FileInputs.FS` is not thread-safe and thus not
  /// safe to share. Callers should make sure not to expose `FS` via a public
  /// interface.
  std::shared_ptr<const ParseInputs> getCurrentFileInputs() const;

  struct Request {
    llvm::unique_function<void()> Action;
    std::string Name;
    steady_clock::time_point AddTime;
    Context Ctx;
    llvm::Optional<WantDiagnostics> UpdateType;
  };

  /// Handles retention of ASTs.
  TUScheduler::ASTCache &IdleASTs;
  const bool RunSync;
  /// Time to wait after an update to see whether another update obsoletes it.
  const steady_clock::duration UpdateDebounce;
  /// File that ASTWorker is responsible for.
  const Path FileName;
  const GlobalCompilationDatabase &CDB;
  /// Whether to keep the built preambles in memory or on disk.
  const bool StorePreambleInMemory;
  /// Callback invoked when preamble or main file AST is built.
  ParsingCallbacks &Callbacks;
  /// Only accessed by the worker thread.
  TUStatus Status;

  Semaphore &Barrier;
  /// Whether the 'onMainAST' callback ran for the current FileInputs.
  bool RanASTCallback = false;
  /// Guards members used by both TUScheduler and the worker thread.
  mutable std::mutex Mutex;
  /// File inputs, currently being used by the worker.
  /// Inputs are written and read by the worker thread, compile command can also
  /// be consumed by clients of ASTWorker.
  std::shared_ptr<const ParseInputs> FileInputs;         /* GUARDED_BY(Mutex) */
  std::shared_ptr<const PreambleData> LastBuiltPreamble; /* GUARDED_BY(Mutex) */
  /// Becomes ready when the first preamble build finishes.
  Notification PreambleWasBuilt;
  /// Set to true to signal run() to finish processing.
  bool Done;                    /* GUARDED_BY(Mutex) */
  std::deque<Request> Requests; /* GUARDED_BY(Mutex) */
  mutable std::condition_variable RequestsCV;
  /// Guards the callback that publishes results of AST-related computations
  /// (diagnostics, highlightings) and file statuses.
  std::mutex PublishMu;
  // Used to prevent remove document + add document races that lead to
  // out-of-order callbacks for publishing results of onMainAST callback.
  //
  // The lifetime of the old/new ASTWorkers will overlap, but their handles
  // don't. When the old handle is destroyed, the old worker will stop reporting
  // any results to the user.
  bool CanPublishResults = true; /* GUARDED_BY(PublishMu) */
};

/// A smart-pointer-like class that points to an active ASTWorker.
/// In destructor, signals to the underlying ASTWorker that no new requests will
/// be sent and the processing loop may exit (after running all pending
/// requests).
class ASTWorkerHandle {
  friend class ASTWorker;
  ASTWorkerHandle(std::shared_ptr<ASTWorker> Worker)
      : Worker(std::move(Worker)) {
    assert(this->Worker);
  }

public:
  ASTWorkerHandle(const ASTWorkerHandle &) = delete;
  ASTWorkerHandle &operator=(const ASTWorkerHandle &) = delete;
  ASTWorkerHandle(ASTWorkerHandle &&) = default;
  ASTWorkerHandle &operator=(ASTWorkerHandle &&) = default;

  ~ASTWorkerHandle() {
    if (Worker)
      Worker->stop();
  }

  ASTWorker &operator*() {
    assert(Worker && "Handle was moved from");
    return *Worker;
  }

  ASTWorker *operator->() {
    assert(Worker && "Handle was moved from");
    return Worker.get();
  }

  /// Returns an owning reference to the underlying ASTWorker that can outlive
  /// the ASTWorkerHandle. However, no new requests to an active ASTWorker can
  /// be schedule via the returned reference, i.e. only reads of the preamble
  /// are possible.
  std::shared_ptr<const ASTWorker> lock() { return Worker; }

private:
  std::shared_ptr<ASTWorker> Worker;
};

ASTWorkerHandle
ASTWorker::create(PathRef FileName, const GlobalCompilationDatabase &CDB,
                  TUScheduler::ASTCache &IdleASTs, AsyncTaskRunner *Tasks,
                  Semaphore &Barrier, steady_clock::duration UpdateDebounce,
                  bool StorePreamblesInMemory, ParsingCallbacks &Callbacks) {
  std::shared_ptr<ASTWorker> Worker(
      new ASTWorker(FileName, CDB, IdleASTs, Barrier, /*RunSync=*/!Tasks,
                    UpdateDebounce, StorePreamblesInMemory, Callbacks));
  if (Tasks)
    Tasks->runAsync("worker:" + llvm::sys::path::filename(FileName),
                    [Worker]() { Worker->run(); });

  return ASTWorkerHandle(std::move(Worker));
}

ASTWorker::ASTWorker(PathRef FileName, const GlobalCompilationDatabase &CDB,
                     TUScheduler::ASTCache &LRUCache, Semaphore &Barrier,
                     bool RunSync, steady_clock::duration UpdateDebounce,
                     bool StorePreamblesInMemory, ParsingCallbacks &Callbacks)
    : IdleASTs(LRUCache), RunSync(RunSync), UpdateDebounce(UpdateDebounce),
      FileName(FileName), CDB(CDB),
      StorePreambleInMemory(StorePreamblesInMemory),
      Callbacks(Callbacks), Status{TUAction(TUAction::Idle, ""),
                                   TUStatus::BuildDetails()},
      Barrier(Barrier), Done(false) {
  auto Inputs = std::make_shared<ParseInputs>();
  // Set a fallback command because compile command can be accessed before
  // `Inputs` is initialized. Other fields are only used after initialization
  // from client inputs.
  Inputs->CompileCommand = CDB.getFallbackCommand(FileName);
  FileInputs = std::move(Inputs);
}

ASTWorker::~ASTWorker() {
  // Make sure we remove the cached AST, if any.
  IdleASTs.take(this);
#ifndef NDEBUG
  std::lock_guard<std::mutex> Lock(Mutex);
  assert(Done && "handle was not destroyed");
  assert(Requests.empty() && "unprocessed requests when destroying ASTWorker");
#endif
}

void ASTWorker::update(ParseInputs Inputs, WantDiagnostics WantDiags) {
  llvm::StringRef TaskName = "Update";
  auto Task = [=]() mutable {
    auto RunPublish = [&](llvm::function_ref<void()> Publish) {
      // Ensure we only publish results from the worker if the file was not
      // removed, making sure there are not race conditions.
      std::lock_guard<std::mutex> Lock(PublishMu);
      if (CanPublishResults)
        Publish();
    };

    // Get the actual command as `Inputs` does not have a command.
    // FIXME: some build systems like Bazel will take time to preparing
    // environment to build the file, it would be nice if we could emit a
    // "PreparingBuild" status to inform users, it is non-trivial given the
    // current implementation.
    if (auto Cmd = CDB.getCompileCommand(FileName))
      Inputs.CompileCommand = *Cmd;
    else
      // FIXME: consider using old command if it's not a fallback one.
      Inputs.CompileCommand = CDB.getFallbackCommand(FileName);
    auto PrevInputs = getCurrentFileInputs();
    // Will be used to check if we can avoid rebuilding the AST.
    bool InputsAreTheSame =
        std::tie(PrevInputs->CompileCommand, PrevInputs->Contents) ==
        std::tie(Inputs.CompileCommand, Inputs.Contents);

    tooling::CompileCommand OldCommand = PrevInputs->CompileCommand;
    bool RanCallbackForPrevInputs = RanASTCallback;
    {
      std::lock_guard<std::mutex> Lock(Mutex);
      FileInputs = std::make_shared<ParseInputs>(Inputs);
    }
    RanASTCallback = false;
    emitTUStatus({TUAction::BuildingPreamble, TaskName});
    log("Updating file {0} with command {1}\n[{2}]\n{3}", FileName,
        Inputs.CompileCommand.Heuristic,
        Inputs.CompileCommand.Directory,
        llvm::join(Inputs.CompileCommand.CommandLine, " "));
    // Rebuild the preamble and the AST.
    StoreDiags CompilerInvocationDiagConsumer;
    std::vector<std::string> CC1Args;
    std::unique_ptr<CompilerInvocation> Invocation = buildCompilerInvocation(
        Inputs, CompilerInvocationDiagConsumer, &CC1Args);
    // Log cc1 args even (especially!) if creating invocation failed.
    if (!CC1Args.empty())
      vlog("Driver produced command: cc1 {0}", llvm::join(CC1Args, " "));
    std::vector<Diag> CompilerInvocationDiags =
        CompilerInvocationDiagConsumer.take();
    if (!Invocation) {
      elog("Could not build CompilerInvocation for file {0}", FileName);
      // Remove the old AST if it's still in cache.
      IdleASTs.take(this);
      TUStatus::BuildDetails Details;
      Details.BuildFailed = true;
      emitTUStatus({TUAction::BuildingPreamble, TaskName}, &Details);
      // Report the diagnostics we collected when parsing the command line.
      Callbacks.onFailedAST(FileName, std::move(CompilerInvocationDiags),
                            RunPublish);
      // Make sure anyone waiting for the preamble gets notified it could not
      // be built.
      PreambleWasBuilt.notify();
      return;
    }

    std::shared_ptr<const PreambleData> OldPreamble =
        getPossiblyStalePreamble();
    std::shared_ptr<const PreambleData> NewPreamble = buildPreamble(
        FileName, *Invocation, OldPreamble, OldCommand, Inputs,
        StorePreambleInMemory,
        [this](ASTContext &Ctx, std::shared_ptr<clang::Preprocessor> PP,
               const CanonicalIncludes &CanonIncludes) {
          Callbacks.onPreambleAST(FileName, Ctx, std::move(PP), CanonIncludes);
        });

    bool CanReuseAST = InputsAreTheSame && (OldPreamble == NewPreamble);
    {
      std::lock_guard<std::mutex> Lock(Mutex);
      LastBuiltPreamble = NewPreamble;
    }
    // Before doing the expensive AST reparse, we want to release our reference
    // to the old preamble, so it can be freed if there are no other references
    // to it.
    OldPreamble.reset();
    PreambleWasBuilt.notify();
    emitTUStatus({TUAction::BuildingFile, TaskName});
    if (!CanReuseAST) {
      IdleASTs.take(this); // Remove the old AST if it's still in cache.
    } else {
      // We don't need to rebuild the AST, check if we need to run the callback.
      if (RanCallbackForPrevInputs) {
        RanASTCallback = true;
        // Take a shortcut and don't report the diagnostics, since they should
        // not changed. All the clients should handle the lack of OnUpdated()
        // call anyway to handle empty result from buildAST.
        // FIXME(ibiryukov): the AST could actually change if non-preamble
        // includes changed, but we choose to ignore it.
        // FIXME(ibiryukov): should we refresh the cache in IdleASTs for the
        // current file at this point?
        log("Skipping rebuild of the AST for {0}, inputs are the same.",
            FileName);
        TUStatus::BuildDetails Details;
        Details.ReuseAST = true;
        emitTUStatus({TUAction::BuildingFile, TaskName}, &Details);
        return;
      }
    }

    // We only need to build the AST if diagnostics were requested.
    if (WantDiags == WantDiagnostics::No)
      return;

    {
      std::lock_guard<std::mutex> Lock(PublishMu);
      // No need to rebuild the AST if we won't send the diagnostics. However,
      // note that we don't prevent preamble rebuilds.
      if (!CanPublishResults)
        return;
    }

    // Get the AST for diagnostics.
    llvm::Optional<std::unique_ptr<ParsedAST>> AST = IdleASTs.take(this);
    if (!AST) {
      llvm::Optional<ParsedAST> NewAST =
          buildAST(FileName, std::move(Invocation), CompilerInvocationDiags,
                   Inputs, NewPreamble);
      AST = NewAST ? std::make_unique<ParsedAST>(std::move(*NewAST)) : nullptr;
      if (!(*AST)) { // buildAST fails.
        TUStatus::BuildDetails Details;
        Details.BuildFailed = true;
        emitTUStatus({TUAction::BuildingFile, TaskName}, &Details);
      }
    } else {
      // We are reusing the AST.
      TUStatus::BuildDetails Details;
      Details.ReuseAST = true;
      emitTUStatus({TUAction::BuildingFile, TaskName}, &Details);
    }

    // We want to report the diagnostics even if this update was cancelled.
    // It seems more useful than making the clients wait indefinitely if they
    // spam us with updates.
    // Note *AST can still be null if buildAST fails.
    if (*AST) {
      trace::Span Span("Running main AST callback");

      Callbacks.onMainAST(FileName, **AST, RunPublish);
      RanASTCallback = true;
    } else {
      // Failed to build the AST, at least report diagnostics from the command
      // line if there were any.
      // FIXME: we might have got more errors while trying to build the AST,
      //        surface them too.
      Callbacks.onFailedAST(FileName, CompilerInvocationDiags, RunPublish);
    }
    // Stash the AST in the cache for further use.
    IdleASTs.put(this, std::move(*AST));
  };
  startTask(TaskName, std::move(Task), WantDiags);
}

void ASTWorker::runWithAST(
    llvm::StringRef Name,
    llvm::unique_function<void(llvm::Expected<InputsAndAST>)> Action) {
  auto Task = [=, Action = std::move(Action)]() mutable {
    if (isCancelled())
      return Action(llvm::make_error<CancelledError>());
    llvm::Optional<std::unique_ptr<ParsedAST>> AST = IdleASTs.take(this);
    auto CurrentInputs = getCurrentFileInputs();
    if (!AST) {
      StoreDiags CompilerInvocationDiagConsumer;
      std::unique_ptr<CompilerInvocation> Invocation = buildCompilerInvocation(
          *CurrentInputs, CompilerInvocationDiagConsumer);
      // Try rebuilding the AST.
      llvm::Optional<ParsedAST> NewAST =
          Invocation
              ? buildAST(FileName,
                         std::make_unique<CompilerInvocation>(*Invocation),
                         CompilerInvocationDiagConsumer.take(), *CurrentInputs,
                         getPossiblyStalePreamble())
              : None;
      AST = NewAST ? std::make_unique<ParsedAST>(std::move(*NewAST)) : nullptr;
    }
    // Make sure we put the AST back into the LRU cache.
    auto _ = llvm::make_scope_exit(
        [&AST, this]() { IdleASTs.put(this, std::move(*AST)); });
    // Run the user-provided action.
    if (!*AST)
      return Action(llvm::make_error<llvm::StringError>(
          "invalid AST", llvm::errc::invalid_argument));
    Action(InputsAndAST{*CurrentInputs, **AST});
  };
  startTask(Name, std::move(Task), /*UpdateType=*/None);
}

std::shared_ptr<const PreambleData>
ASTWorker::getPossiblyStalePreamble() const {
  std::lock_guard<std::mutex> Lock(Mutex);
  return LastBuiltPreamble;
}

void ASTWorker::getCurrentPreamble(
    llvm::unique_function<void(std::shared_ptr<const PreambleData>)> Callback) {
  // We could just call startTask() to throw the read on the queue, knowing
  // it will run after any updates. But we know this task is cheap, so to
  // improve latency we cheat: insert it on the queue after the last update.
  std::unique_lock<std::mutex> Lock(Mutex);
  auto LastUpdate =
      std::find_if(Requests.rbegin(), Requests.rend(),
                   [](const Request &R) { return R.UpdateType.hasValue(); });
  // If there were no writes in the queue, the preamble is ready now.
  if (LastUpdate == Requests.rend()) {
    Lock.unlock();
    return Callback(getPossiblyStalePreamble());
  }
  assert(!RunSync && "Running synchronously, but queue is non-empty!");
  Requests.insert(LastUpdate.base(),
                  Request{[Callback = std::move(Callback), this]() mutable {
                            Callback(getPossiblyStalePreamble());
                          },
                          "GetPreamble", steady_clock::now(),
                          Context::current().clone(),
                          /*UpdateType=*/None});
  Lock.unlock();
  RequestsCV.notify_all();
}

void ASTWorker::waitForFirstPreamble() const { PreambleWasBuilt.wait(); }

std::shared_ptr<const ParseInputs> ASTWorker::getCurrentFileInputs() const {
  std::unique_lock<std::mutex> Lock(Mutex);
  return FileInputs;
}

tooling::CompileCommand ASTWorker::getCurrentCompileCommand() const {
  std::unique_lock<std::mutex> Lock(Mutex);
  return FileInputs->CompileCommand;
}

std::size_t ASTWorker::getUsedBytes() const {
  // Note that we don't report the size of ASTs currently used for processing
  // the in-flight requests. We used this information for debugging purposes
  // only, so this should be fine.
  std::size_t Result = IdleASTs.getUsedBytes(this);
  if (auto Preamble = getPossiblyStalePreamble())
    Result += Preamble->Preamble.getSize();
  return Result;
}

bool ASTWorker::isASTCached() const { return IdleASTs.getUsedBytes(this) != 0; }

void ASTWorker::stop() {
  {
    std::lock_guard<std::mutex> Lock(PublishMu);
    CanPublishResults = false;
  }
  {
    std::lock_guard<std::mutex> Lock(Mutex);
    assert(!Done && "stop() called twice");
    Done = true;
  }
  RequestsCV.notify_all();
}

void ASTWorker::startTask(llvm::StringRef Name,
                          llvm::unique_function<void()> Task,
                          llvm::Optional<WantDiagnostics> UpdateType) {
  if (RunSync) {
    assert(!Done && "running a task after stop()");
    trace::Span Tracer(Name + ":" + llvm::sys::path::filename(FileName));
    Task();
    return;
  }

  {
    std::lock_guard<std::mutex> Lock(Mutex);
    assert(!Done && "running a task after stop()");
    Requests.push_back(
        {std::move(Task), Name, steady_clock::now(),
         Context::current().derive(kFileBeingProcessed, FileName), UpdateType});
  }
  RequestsCV.notify_all();
}

void ASTWorker::emitTUStatus(TUAction Action,
                             const TUStatus::BuildDetails *Details) {
  Status.Action = std::move(Action);
  if (Details)
    Status.Details = *Details;
  std::lock_guard<std::mutex> Lock(PublishMu);
  // Do not emit TU statuses when the ASTWorker is shutting down.
  if (CanPublishResults) {
    Callbacks.onFileUpdated(FileName, Status);
  }
}

void ASTWorker::run() {
  while (true) {
    Request Req;
    {
      std::unique_lock<std::mutex> Lock(Mutex);
      for (auto Wait = scheduleLocked(); !Wait.expired();
           Wait = scheduleLocked()) {
        if (Done) {
          if (Requests.empty())
            return;
          else     // Even though Done is set, finish pending requests.
            break; // However, skip delays to shutdown fast.
        }

        // Tracing: we have a next request, attribute this sleep to it.
        llvm::Optional<WithContext> Ctx;
        llvm::Optional<trace::Span> Tracer;
        if (!Requests.empty()) {
          Ctx.emplace(Requests.front().Ctx.clone());
          Tracer.emplace("Debounce");
          SPAN_ATTACH(*Tracer, "next_request", Requests.front().Name);
          if (!(Wait == Deadline::infinity())) {
            emitTUStatus({TUAction::Queued, Req.Name});
            SPAN_ATTACH(*Tracer, "sleep_ms",
                        std::chrono::duration_cast<std::chrono::milliseconds>(
                            Wait.time() - steady_clock::now())
                            .count());
          }
        }

        wait(Lock, RequestsCV, Wait);
      }
      Req = std::move(Requests.front());
      // Leave it on the queue for now, so waiters don't see an empty queue.
    } // unlock Mutex

    {
      std::unique_lock<Semaphore> Lock(Barrier, std::try_to_lock);
      if (!Lock.owns_lock()) {
        emitTUStatus({TUAction::Queued, Req.Name});
        Lock.lock();
      }
      WithContext Guard(std::move(Req.Ctx));
      trace::Span Tracer(Req.Name);
      emitTUStatus({TUAction::RunningAction, Req.Name});
      Req.Action();
    }

    bool IsEmpty = false;
    {
      std::lock_guard<std::mutex> Lock(Mutex);
      Requests.pop_front();
      IsEmpty = Requests.empty();
    }
    if (IsEmpty)
      emitTUStatus({TUAction::Idle, /*Name*/ ""});
    RequestsCV.notify_all();
  }
}

Deadline ASTWorker::scheduleLocked() {
  if (Requests.empty())
    return Deadline::infinity(); // Wait for new requests.
  // Handle cancelled requests first so the rest of the scheduler doesn't.
  for (auto I = Requests.begin(), E = Requests.end(); I != E; ++I) {
    if (!isCancelled(I->Ctx)) {
      // Cancellations after the first read don't affect current scheduling.
      if (I->UpdateType == None)
        break;
      continue;
    }
    // Cancelled reads are moved to the front of the queue and run immediately.
    if (I->UpdateType == None) {
      Request R = std::move(*I);
      Requests.erase(I);
      Requests.push_front(std::move(R));
      return Deadline::zero();
    }
    // Cancelled updates are downgraded to auto-diagnostics, and may be elided.
    if (I->UpdateType == WantDiagnostics::Yes)
      I->UpdateType = WantDiagnostics::Auto;
  }

  while (shouldSkipHeadLocked())
    Requests.pop_front();
  assert(!Requests.empty() && "skipped the whole queue");
  // Some updates aren't dead yet, but never end up being used.
  // e.g. the first keystroke is live until obsoleted by the second.
  // We debounce "maybe-unused" writes, sleeping 500ms in case they become dead.
  // But don't delay reads (including updates where diagnostics are needed).
  for (const auto &R : Requests)
    if (R.UpdateType == None || R.UpdateType == WantDiagnostics::Yes)
      return Deadline::zero();
  // Front request needs to be debounced, so determine when we're ready.
  Deadline D(Requests.front().AddTime + UpdateDebounce);
  return D;
}

// Returns true if Requests.front() is a dead update that can be skipped.
bool ASTWorker::shouldSkipHeadLocked() const {
  assert(!Requests.empty());
  auto Next = Requests.begin();
  auto UpdateType = Next->UpdateType;
  if (!UpdateType) // Only skip updates.
    return false;
  ++Next;
  // An update is live if its AST might still be read.
  // That is, if it's not immediately followed by another update.
  if (Next == Requests.end() || !Next->UpdateType)
    return false;
  // The other way an update can be live is if its diagnostics might be used.
  switch (*UpdateType) {
  case WantDiagnostics::Yes:
    return false; // Always used.
  case WantDiagnostics::No:
    return true; // Always dead.
  case WantDiagnostics::Auto:
    // Used unless followed by an update that generates diagnostics.
    for (; Next != Requests.end(); ++Next)
      if (Next->UpdateType == WantDiagnostics::Yes ||
          Next->UpdateType == WantDiagnostics::Auto)
        return true; // Prefer later diagnostics.
    return false;
  }
  llvm_unreachable("Unknown WantDiagnostics");
}

bool ASTWorker::blockUntilIdle(Deadline Timeout) const {
  std::unique_lock<std::mutex> Lock(Mutex);
  return wait(Lock, RequestsCV, Timeout, [&] { return Requests.empty(); });
}

// Render a TUAction to a user-facing string representation.
// TUAction represents clangd-internal states, we don't intend to expose them
// to users (say C++ programmers) directly to avoid confusion, we use terms that
// are familiar by C++ programmers.
std::string renderTUAction(const TUAction &Action) {
  std::string Result;
  llvm::raw_string_ostream OS(Result);
  switch (Action.S) {
  case TUAction::Queued:
    OS << "file is queued";
    break;
  case TUAction::RunningAction:
    OS << "running " << Action.Name;
    break;
  case TUAction::BuildingPreamble:
    OS << "parsing includes";
    break;
  case TUAction::BuildingFile:
    OS << "parsing main file";
    break;
  case TUAction::Idle:
    OS << "idle";
    break;
  }
  return OS.str();
}

} // namespace

unsigned getDefaultAsyncThreadsCount() {
  unsigned HardwareConcurrency = llvm::heavyweight_hardware_concurrency();
  // heavyweight_hardware_concurrency may fall back to hardware_concurrency.
  // C++ standard says that hardware_concurrency() may return 0; fallback to 1
  // worker thread in that case.
  if (HardwareConcurrency == 0)
    return 1;
  return HardwareConcurrency;
}

FileStatus TUStatus::render(PathRef File) const {
  FileStatus FStatus;
  FStatus.uri = URIForFile::canonicalize(File, /*TUPath=*/File);
  FStatus.state = renderTUAction(Action);
  return FStatus;
}

struct TUScheduler::FileData {
  /// Latest inputs, passed to TUScheduler::update().
  std::string Contents;
  ASTWorkerHandle Worker;
};

TUScheduler::TUScheduler(const GlobalCompilationDatabase &CDB,
                         unsigned AsyncThreadsCount,
                         bool StorePreamblesInMemory,
                         std::unique_ptr<ParsingCallbacks> Callbacks,
                         std::chrono::steady_clock::duration UpdateDebounce,
                         ASTRetentionPolicy RetentionPolicy)
    : CDB(CDB), StorePreamblesInMemory(StorePreamblesInMemory),
      Callbacks(Callbacks ? move(Callbacks)
                          : std::make_unique<ParsingCallbacks>()),
      Barrier(AsyncThreadsCount),
      IdleASTs(std::make_unique<ASTCache>(RetentionPolicy.MaxRetainedASTs)),
      UpdateDebounce(UpdateDebounce) {
  if (0 < AsyncThreadsCount) {
    PreambleTasks.emplace();
    WorkerThreads.emplace();
  }
}

TUScheduler::~TUScheduler() {
  // Notify all workers that they need to stop.
  Files.clear();

  // Wait for all in-flight tasks to finish.
  if (PreambleTasks)
    PreambleTasks->wait();
  if (WorkerThreads)
    WorkerThreads->wait();
}

bool TUScheduler::blockUntilIdle(Deadline D) const {
  for (auto &File : Files)
    if (!File.getValue()->Worker->blockUntilIdle(D))
      return false;
  if (PreambleTasks)
    if (!PreambleTasks->wait(D))
      return false;
  return true;
}

bool TUScheduler::update(PathRef File, ParseInputs Inputs,
                         WantDiagnostics WantDiags) {
  std::unique_ptr<FileData> &FD = Files[File];
  bool NewFile = FD == nullptr;
  if (!FD) {
    // Create a new worker to process the AST-related tasks.
    ASTWorkerHandle Worker = ASTWorker::create(
        File, CDB, *IdleASTs,
        WorkerThreads ? WorkerThreads.getPointer() : nullptr, Barrier,
        UpdateDebounce, StorePreamblesInMemory, *Callbacks);
    FD = std::unique_ptr<FileData>(
        new FileData{Inputs.Contents, std::move(Worker)});
  } else {
    FD->Contents = Inputs.Contents;
  }
  FD->Worker->update(std::move(Inputs), WantDiags);
  return NewFile;
}

void TUScheduler::remove(PathRef File) {
  bool Removed = Files.erase(File);
  if (!Removed)
    elog("Trying to remove file from TUScheduler that is not tracked: {0}",
         File);
}

llvm::StringRef TUScheduler::getContents(PathRef File) const {
  auto It = Files.find(File);
  if (It == Files.end()) {
    elog("getContents() for untracked file: {0}", File);
    return "";
  }
  return It->second->Contents;
}

llvm::StringMap<std::string> TUScheduler::getAllFileContents() const {
  llvm::StringMap<std::string> Results;
  for (auto &It : Files)
    Results.try_emplace(It.getKey(), It.getValue()->Contents);
  return Results;
}

void TUScheduler::run(llvm::StringRef Name,
                      llvm::unique_function<void()> Action) {
  if (!PreambleTasks)
    return Action();
  PreambleTasks->runAsync(Name, [Ctx = Context::current().clone(),
                                 Action = std::move(Action)]() mutable {
    WithContext WC(std::move(Ctx));
    Action();
  });
}

void TUScheduler::runWithAST(
    llvm::StringRef Name, PathRef File,
    llvm::unique_function<void(llvm::Expected<InputsAndAST>)> Action) {
  auto It = Files.find(File);
  if (It == Files.end()) {
    Action(llvm::make_error<LSPError>(
        "trying to get AST for non-added document", ErrorCode::InvalidParams));
    return;
  }

  It->second->Worker->runWithAST(Name, std::move(Action));
}

void TUScheduler::runWithPreamble(llvm::StringRef Name, PathRef File,
                                  PreambleConsistency Consistency,
                                  Callback<InputsAndPreamble> Action) {
  auto It = Files.find(File);
  if (It == Files.end()) {
    Action(llvm::make_error<LSPError>(
        "trying to get preamble for non-added document",
        ErrorCode::InvalidParams));
    return;
  }

  if (!PreambleTasks) {
    trace::Span Tracer(Name);
    SPAN_ATTACH(Tracer, "file", File);
    std::shared_ptr<const PreambleData> Preamble =
        It->second->Worker->getPossiblyStalePreamble();
    Action(InputsAndPreamble{It->second->Contents,
                             It->second->Worker->getCurrentCompileCommand(),
                             Preamble.get()});
    return;
  }

  // Future is populated if the task needs a specific preamble.
  std::future<std::shared_ptr<const PreambleData>> ConsistentPreamble;
  if (Consistency == Consistent) {
    std::promise<std::shared_ptr<const PreambleData>> Promise;
    ConsistentPreamble = Promise.get_future();
    It->second->Worker->getCurrentPreamble(
        [Promise = std::move(Promise)](
            std::shared_ptr<const PreambleData> Preamble) mutable {
          Promise.set_value(std::move(Preamble));
        });
  }

  std::shared_ptr<const ASTWorker> Worker = It->second->Worker.lock();
  auto Task = [Worker, Consistency, Name = Name.str(), File = File.str(),
               Contents = It->second->Contents,
               Command = Worker->getCurrentCompileCommand(),
               Ctx = Context::current().derive(kFileBeingProcessed, File),
               ConsistentPreamble = std::move(ConsistentPreamble),
               Action = std::move(Action), this]() mutable {
    std::shared_ptr<const PreambleData> Preamble;
    if (ConsistentPreamble.valid()) {
      Preamble = ConsistentPreamble.get();
    } else {
      if (Consistency != PreambleConsistency::StaleOrAbsent) {
        // Wait until the preamble is built for the first time, if preamble is
        // required. This avoids extra work of processing the preamble headers
        // in parallel multiple times.
        Worker->waitForFirstPreamble();
      }
      Preamble = Worker->getPossiblyStalePreamble();
    }

    std::lock_guard<Semaphore> BarrierLock(Barrier);
    WithContext Guard(std::move(Ctx));
    trace::Span Tracer(Name);
    SPAN_ATTACH(Tracer, "file", File);
    Action(InputsAndPreamble{Contents, Command, Preamble.get()});
  };

  PreambleTasks->runAsync("task:" + llvm::sys::path::filename(File),
                          std::move(Task));
}

std::vector<std::pair<Path, std::size_t>>
TUScheduler::getUsedBytesPerFile() const {
  std::vector<std::pair<Path, std::size_t>> Result;
  Result.reserve(Files.size());
  for (auto &&PathAndFile : Files)
    Result.push_back(
        {PathAndFile.first(), PathAndFile.second->Worker->getUsedBytes()});
  return Result;
}

std::vector<Path> TUScheduler::getFilesWithCachedAST() const {
  std::vector<Path> Result;
  for (auto &&PathAndFile : Files) {
    if (!PathAndFile.second->Worker->isASTCached())
      continue;
    Result.push_back(PathAndFile.first());
  }
  return Result;
}

} // namespace clangd
} // namespace clang