AVRInstrInfo.td 66.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
//===-- AVRInstrInfo.td - AVR Instruction defs -------------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the AVR instructions in TableGen format.
//
//===----------------------------------------------------------------------===//

include "AVRInstrFormats.td"

//===----------------------------------------------------------------------===//
// AVR Type Profiles
//===----------------------------------------------------------------------===//

def SDT_AVRCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i16>, SDTCisVT<1, i16>]>;
def SDT_AVRCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i16>, SDTCisVT<1, i16>]>;
def SDT_AVRCall : SDTypeProfile<0, -1, [SDTCisVT<0, iPTR>]>;
def SDT_AVRWrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>;
def SDT_AVRBrcond : SDTypeProfile<0, 2,
                                  [SDTCisVT<0, OtherVT>, SDTCisVT<1, i8>]>;
def SDT_AVRCmp : SDTypeProfile<0, 2, [SDTCisSameAs<0, 1>]>;
def SDT_AVRTst : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
def SDT_AVRSelectCC : SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>,
                                    SDTCisSameAs<1, 2>, SDTCisVT<3, i8>]>;

//===----------------------------------------------------------------------===//
// AVR Specific Node Definitions
//===----------------------------------------------------------------------===//

def AVRretflag : SDNode<"AVRISD::RET_FLAG", SDTNone,
                        [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def AVRretiflag : SDNode<"AVRISD::RETI_FLAG", SDTNone,
                         [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;

def AVRcallseq_start : SDNode<"ISD::CALLSEQ_START", SDT_AVRCallSeqStart,
                              [SDNPHasChain, SDNPOutGlue]>;
def AVRcallseq_end : SDNode<"ISD::CALLSEQ_END", SDT_AVRCallSeqEnd,
                            [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;

def AVRcall : SDNode<"AVRISD::CALL", SDT_AVRCall,
                     [SDNPHasChain, SDNPOutGlue, SDNPOptInGlue, SDNPVariadic]>;

def AVRWrapper : SDNode<"AVRISD::WRAPPER", SDT_AVRWrapper>;

def AVRbrcond : SDNode<"AVRISD::BRCOND", SDT_AVRBrcond,
                       [SDNPHasChain, SDNPInGlue]>;
def AVRcmp : SDNode<"AVRISD::CMP", SDT_AVRCmp, [SDNPOutGlue]>;
def AVRcmpc : SDNode<"AVRISD::CMPC", SDT_AVRCmp, [SDNPInGlue, SDNPOutGlue]>;
def AVRtst : SDNode<"AVRISD::TST", SDT_AVRTst, [SDNPOutGlue]>;
def AVRselectcc: SDNode<"AVRISD::SELECT_CC", SDT_AVRSelectCC, [SDNPInGlue]>;

// Shift nodes.
def AVRlsl : SDNode<"AVRISD::LSL", SDTIntUnaryOp>;
def AVRlsr : SDNode<"AVRISD::LSR", SDTIntUnaryOp>;
def AVRrol : SDNode<"AVRISD::ROL", SDTIntUnaryOp>;
def AVRror : SDNode<"AVRISD::ROR", SDTIntUnaryOp>;
def AVRasr : SDNode<"AVRISD::ASR", SDTIntUnaryOp>;

// Pseudo shift nodes for non-constant shift amounts.
def AVRlslLoop : SDNode<"AVRISD::LSLLOOP", SDTIntShiftOp>;
def AVRlsrLoop : SDNode<"AVRISD::LSRLOOP", SDTIntShiftOp>;
def AVRrolLoop : SDNode<"AVRISD::ROLLOOP", SDTIntShiftOp>;
def AVRrorLoop : SDNode<"AVRISD::RORLOOP", SDTIntShiftOp>;
def AVRasrLoop : SDNode<"AVRISD::ASRLOOP", SDTIntShiftOp>;

//===----------------------------------------------------------------------===//
// AVR Operands, Complex Patterns and Transformations Definitions.
//===----------------------------------------------------------------------===//

def imm8_neg_XFORM : SDNodeXForm<imm,
[{
  return CurDAG->getTargetConstant(-N->getAPIntValue(), SDLoc(N), MVT::i8);
}]>;

def imm16_neg_XFORM : SDNodeXForm<imm,
[{
  return CurDAG->getTargetConstant(-N->getAPIntValue(), SDLoc(N), MVT::i16);
}]>;

def imm0_63_neg : PatLeaf<(imm),
[{
  int64_t val = -N->getSExtValue();
  return val >= 0 && val < 64;
}], imm16_neg_XFORM>;

def uimm6 : PatLeaf<(imm), [{ return isUInt<6>(N->getZExtValue()); }]>;

// imm_com8_XFORM - Return the complement of a imm_com8 value
def imm_com8_XFORM : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(~((uint8_t)N->getZExtValue()), SDLoc(N),
                                   MVT::i8);
}]>;

// imm_com8 - Match an immediate that is a complement
// of a 8-bit immediate.
// Note: this pattern doesn't require an encoder method and such, as it's
// only used on aliases (Pat<> and InstAlias<>). The actual encoding
// is handled by the destination instructions, which use imm_com8.
def imm_com8_asmoperand : AsmOperandClass { let Name = "ImmCom8"; }
def imm_com8 : Operand<i8> {
  let ParserMatchClass = imm_com8_asmoperand;
}

def ioaddr_XFORM : SDNodeXForm<imm,
[{
  return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()) - 0x20, SDLoc(N), MVT::i8);
}]>;

def iobitpos8_XFORM : SDNodeXForm<imm,
[{
  return CurDAG->getTargetConstant(Log2_32(uint8_t(N->getZExtValue())),
                                   SDLoc(N), MVT::i8);
}]>;

def iobitposn8_XFORM : SDNodeXForm<imm,
[{
  return CurDAG->getTargetConstant(Log2_32(uint8_t(~N->getZExtValue())),
                                   SDLoc(N), MVT::i8);
}]>;

def ioaddr8 : PatLeaf<(imm),
[{
  uint64_t val = N->getZExtValue();
  return val >= 0x20 && val < 0x60;
}], ioaddr_XFORM>;

def lowioaddr8 : PatLeaf<(imm),
[{
  uint64_t val = N->getZExtValue();
  return val >= 0x20 && val < 0x40;
}], ioaddr_XFORM>;

def ioaddr16 : PatLeaf<(imm),
[{
  uint64_t val = N->getZExtValue();
  return val >= 0x20 && val < 0x5f;
}], ioaddr_XFORM>;

def iobitpos8 : PatLeaf<(imm),
[{
  return isPowerOf2_32(uint8_t(N->getZExtValue()));
}], iobitpos8_XFORM>;

def iobitposn8 : PatLeaf<(imm),
[{
  return isPowerOf2_32(uint8_t(~N->getZExtValue()));
}], iobitposn8_XFORM>;

def MemriAsmOperand : AsmOperandClass {
  let Name = "Memri";
  let ParserMethod = "parseMemriOperand";
}

/// Address operand for `reg+imm` used by STD and LDD.
def memri : Operand<iPTR>
{
  let MIOperandInfo = (ops PTRDISPREGS, i16imm);

  let PrintMethod = "printMemri";
  let EncoderMethod = "encodeMemri";

  let ParserMatchClass = MemriAsmOperand;
}

// Address operand for `SP+imm` used by STD{W}SPQRr
def memspi : Operand<iPTR>
{
  let MIOperandInfo = (ops GPRSP, i16imm);
}

def relbrtarget_7 : Operand<OtherVT>
{
    let PrintMethod   = "printPCRelImm";
    let EncoderMethod = "encodeRelCondBrTarget<AVR::fixup_7_pcrel>";
}

def brtarget_13 : Operand<OtherVT>
{
    let PrintMethod   = "printPCRelImm";
    let EncoderMethod = "encodeRelCondBrTarget<AVR::fixup_13_pcrel>";
}

// The target of a 22 or 16-bit call/jmp instruction.
def call_target : Operand<iPTR>
{
    let EncoderMethod = "encodeCallTarget";
}

// A 16-bit address (which can lead to an R_AVR_16 relocation).
def imm16 : Operand<i16>
{
    let EncoderMethod = "encodeImm<AVR::fixup_16, 2>";
}

/// A 6-bit immediate used in the ADIW/SBIW instructions.
def imm_arith6 : Operand<i16>
{
    let EncoderMethod = "encodeImm<AVR::fixup_6_adiw, 0>";
}

/// An 8-bit immediate inside an instruction with the same format
/// as the `LDI` instruction (the `FRdK` format).
def imm_ldi8 : Operand<i8>
{
    let EncoderMethod = "encodeImm<AVR::fixup_ldi, 0>";
}

/// A 5-bit port number used in SBIC and friends (the `FIOBIT` format).
def imm_port5 : Operand<i8>
{
    let EncoderMethod = "encodeImm<AVR::fixup_port5, 0>";
}

/// A 6-bit port number used in the `IN` instruction and friends (the
/// `FIORdA` format.
def imm_port6 : Operand<i8>
{
    let EncoderMethod = "encodeImm<AVR::fixup_port6, 0>";
}

// Addressing mode pattern reg+imm6
def addr : ComplexPattern<iPTR, 2, "SelectAddr", [], [SDNPWantRoot]>;

// AsmOperand class for a pointer register.
// Used with the LD/ST family of instructions.
// See FSTLD in AVRInstrFormats.td
def PtrRegAsmOperand : AsmOperandClass
{
   let Name = "Reg";
}

// A special operand type for the LD/ST instructions.
// It converts the pointer register number into a two-bit field used in the
// instruction.
def LDSTPtrReg : Operand<i16>
{
    let MIOperandInfo = (ops PTRREGS);
    let EncoderMethod = "encodeLDSTPtrReg";

    let ParserMatchClass = PtrRegAsmOperand;
}

// A special operand type for the LDD/STD instructions.
// It behaves identically to the LD/ST version, except restricts
// the pointer registers to Y and Z.
def LDDSTDPtrReg : Operand<i16>
{
    let MIOperandInfo = (ops PTRDISPREGS);
    let EncoderMethod = "encodeLDSTPtrReg";

    let ParserMatchClass = PtrRegAsmOperand;
}

//===----------------------------------------------------------------------===//
// AVR predicates for subtarget features
//===----------------------------------------------------------------------===//

def HasSRAM       :    Predicate<"Subtarget->hasSRAM()">,
                         AssemblerPredicate<"FeatureSRAM">;

def HasJMPCALL    :    Predicate<"Subtarget->hasJMPCALL()">,
                         AssemblerPredicate<"FeatureJMPCALL">;

def HasIJMPCALL   :    Predicate<"Subtarget->hasIJMPCALL()">,
                         AssemblerPredicate<"FeatureIJMPCALL">;

def HasEIJMPCALL  :    Predicate<"Subtarget->hasEIJMPCALL()">,
                         AssemblerPredicate<"FeatureEIJMPCALL">;

def HasADDSUBIW   :    Predicate<"Subtarget->hasADDSUBIW()">,
                         AssemblerPredicate<"FeatureADDSUBIW">;

def HasSmallStack :    Predicate<"Subtarget->HasSmallStack()">,
                         AssemblerPredicate<"FeatureSmallStack">;

def HasMOVW       :    Predicate<"Subtarget->hasMOVW()">,
                         AssemblerPredicate<"FeatureMOVW">;

def HasLPM        :    Predicate<"Subtarget->hasLPM()">,
                         AssemblerPredicate<"FeatureLPM">;

def HasLPMX       :    Predicate<"Subtarget->hasLPMX()">,
                         AssemblerPredicate<"FeatureLPMX">;

def HasELPM       :    Predicate<"Subtarget->hasELPM()">,
                         AssemblerPredicate<"FeatureELPM">;

def HasELPMX      :    Predicate<"Subtarget->hasELPMX()">,
                         AssemblerPredicate<"FeatureELPMX">;

def HasSPM        :    Predicate<"Subtarget->hasSPM()">,
                         AssemblerPredicate<"FeatureSPM">;

def HasSPMX       :    Predicate<"Subtarget->hasSPMX()">,
                         AssemblerPredicate<"FeatureSPMX">;

def HasDES        :    Predicate<"Subtarget->hasDES()">,
                         AssemblerPredicate<"FeatureDES">;

def SupportsRMW   :    Predicate<"Subtarget->supportsRMW()">,
                         AssemblerPredicate<"FeatureRMW">;

def SupportsMultiplication : Predicate<"Subtarget->supportsMultiplication()">,
                               AssemblerPredicate<"FeatureMultiplication">;

def HasBREAK      :    Predicate<"Subtarget->hasBREAK()">,
                         AssemblerPredicate<"FeatureBREAK">;

def HasTinyEncoding : Predicate<"Subtarget->hasTinyEncoding()">,
                        AssemblerPredicate<"FeatureTinyEncoding">;


// AVR specific condition code. These correspond to AVR_*_COND in
// AVRInstrInfo.td. They must be kept in synch.
def AVR_COND_EQ : PatLeaf<(i8 0)>;
def AVR_COND_NE : PatLeaf<(i8 1)>;
def AVR_COND_GE : PatLeaf<(i8 2)>;
def AVR_COND_LT : PatLeaf<(i8 3)>;
def AVR_COND_SH : PatLeaf<(i8 4)>;
def AVR_COND_LO : PatLeaf<(i8 5)>;
def AVR_COND_MI : PatLeaf<(i8 6)>;
def AVR_COND_PL : PatLeaf<(i8 7)>;


//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// AVR Instruction list
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//

// ADJCALLSTACKDOWN/UP implicitly use/def SP because they may be expanded into
// a stack adjustment and the codegen must know that they may modify the stack
// pointer before prolog-epilog rewriting occurs.
// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
// sub / add which can clobber SREG.
let Defs = [SP, SREG],
Uses = [SP] in
{
  def ADJCALLSTACKDOWN : Pseudo<(outs),
                                (ins i16imm:$amt, i16imm:$amt2),
                                "#ADJCALLSTACKDOWN",
                                [(AVRcallseq_start timm:$amt, timm:$amt2)]>;

  // R31R30 is used to update SP, since it is a scratch reg and this instruction
  // is placed after the function call then R31R30 should be always free.
  //let Defs = [R31R30],
  //Uses = [R31R30] in
  //:TODO: if we enable this, the pseudo is killed because it looks dead
  def ADJCALLSTACKUP : Pseudo<(outs),
                              (ins i16imm:$amt1, i16imm:$amt2),
                              "#ADJCALLSTACKUP",
                              [(AVRcallseq_end timm:$amt1, timm:$amt2)]>;
}

//===----------------------------------------------------------------------===//
// Addition
//===----------------------------------------------------------------------===//
let isCommutable = 1,
Constraints = "$src = $rd",
Defs = [SREG] in
{
  // ADD Rd, Rr
  // Adds two 8-bit registers.
  def ADDRdRr : FRdRr<0b0000,
                      0b11,
                      (outs GPR8:$rd),
                      (ins GPR8:$src, GPR8:$rr),
                      "add\t$rd, $rr",
                      [(set i8:$rd, (add i8:$src, i8:$rr)),
                       (implicit SREG)]>;

  // ADDW Rd+1:Rd, Rr+1:Rr
  // Pseudo instruction to add four 8-bit registers as two 16-bit values.
  //
  // Expands to:
  // add Rd,    Rr
  // adc Rd+1, Rr+1
  def ADDWRdRr : Pseudo<(outs DREGS:$rd),
                        (ins DREGS:$src, DREGS:$rr),
                        "addw\t$rd, $rr",
                        [(set i16:$rd, (add i16:$src, i16:$rr)),
                         (implicit SREG)]>;

  // ADC Rd, Rr
  // Adds two 8-bit registers with carry.
  let Uses = [SREG] in
  def ADCRdRr : FRdRr<0b0001,
                      0b11,
                      (outs GPR8:$rd),
                      (ins GPR8:$src, GPR8:$rr),
                      "adc\t$rd, $rr",
                      [(set i8:$rd, (adde i8:$src, i8:$rr)),
                       (implicit SREG)]>;

  // ADCW Rd+1:Rd, Rr+1:Rr
  // Pseudo instruction to add four 8-bit registers as two 16-bit values with
  // carry.
  //
  // Expands to:
  // adc Rd,   Rr
  // adc Rd+1, Rr+1
  let Uses = [SREG] in
  def ADCWRdRr : Pseudo<(outs DREGS:$rd),
                        (ins DREGS:$src, DREGS:$rr),
                        "adcw\t$rd, $rr",
                        [(set i16:$rd, (adde i16:$src, i16:$rr)),
                         (implicit SREG)]>;

  // AIDW Rd, k
  // Adds an immediate 6-bit value K to Rd, placing the result in Rd.
  def ADIWRdK : FWRdK<0b0,
                      (outs IWREGS:$rd),
                      (ins IWREGS:$src, imm_arith6:$k),
                      "adiw\t$rd, $k",
                      [(set i16:$rd, (add i16:$src, uimm6:$k)),
                       (implicit SREG)]>,
                Requires<[HasADDSUBIW]>;
}

//===----------------------------------------------------------------------===//
// Subtraction
//===----------------------------------------------------------------------===//
let Constraints = "$src = $rd",
Defs = [SREG] in
{
  // SUB Rd, Rr
  // Subtracts the 8-bit value of Rr from Rd and places the value in Rd.
  def SUBRdRr : FRdRr<0b0001,
                      0b10,
                      (outs GPR8:$rd),
                      (ins GPR8:$src, GPR8:$rr),
                      "sub\t$rd, $rr",
                      [(set i8:$rd, (sub i8:$src, i8:$rr)),
                       (implicit SREG)]>;

  // SUBW Rd+1:Rd, Rr+1:Rr
  // Subtracts two 16-bit values and places the result into Rd.
  //
  // Expands to:
  // sub Rd,   Rr
  // sbc Rd+1, Rr+1
  def SUBWRdRr : Pseudo<(outs DREGS:$rd),
                        (ins DREGS:$src, DREGS:$rr),
                        "subw\t$rd, $rr",
                        [(set i16:$rd, (sub i16:$src, i16:$rr)),
                         (implicit SREG)]>;

  def SUBIRdK : FRdK<0b0101,
                     (outs LD8:$rd),
                     (ins LD8:$src, imm_ldi8:$k),
                     "subi\t$rd, $k",
                     [(set i8:$rd, (sub i8:$src, imm:$k)),
                      (implicit SREG)]>;

  // SUBIW Rd+1:Rd, K+1:K
  //
  // Expands to:
  // subi Rd,   K
  // sbci Rd+1, K+1
  def SUBIWRdK : Pseudo<(outs DLDREGS:$rd),
                        (ins DLDREGS:$src, i16imm:$rr),
                        "subiw\t$rd, $rr",
                        [(set i16:$rd, (sub i16:$src, imm:$rr)),
                         (implicit SREG)]>;

  def SBIWRdK : FWRdK<0b1,
                      (outs IWREGS:$rd),
                      (ins IWREGS:$src, imm_arith6:$k),
                      "sbiw\t$rd, $k",
                      [(set i16:$rd, (sub i16:$src, uimm6:$k)),
                       (implicit SREG)]>,
                Requires<[HasADDSUBIW]>;

  // Subtract with carry operations which must read the carry flag in SREG.
  let Uses = [SREG] in
  {
    def SBCRdRr : FRdRr<0b0000,
                        0b10,
                        (outs GPR8:$rd),
                        (ins GPR8:$src, GPR8:$rr),
                        "sbc\t$rd, $rr",
                        [(set i8:$rd, (sube i8:$src, i8:$rr)),
                         (implicit SREG)]>;

    // SBCW Rd+1:Rd, Rr+1:Rr
    //
    // Expands to:
    // sbc Rd,   Rr
    // sbc Rd+1, Rr+1
    def SBCWRdRr : Pseudo<(outs DREGS:$rd),
                          (ins DREGS:$src, DREGS:$rr),
                          "sbcw\t$rd, $rr",
                          [(set i16:$rd, (sube i16:$src, i16:$rr)),
                           (implicit SREG)]>;

    def SBCIRdK : FRdK<0b0100,
                       (outs LD8:$rd),
                       (ins LD8:$src, imm_ldi8:$k),
                       "sbci\t$rd, $k",
                       [(set i8:$rd, (sube i8:$src, imm:$k)),
                        (implicit SREG)]>;

    // SBCIW Rd+1:Rd, K+1:K
    // sbci Rd,   K
    // sbci Rd+1, K+1
    def SBCIWRdK : Pseudo<(outs DLDREGS:$rd),
                          (ins DLDREGS:$src, i16imm:$rr),
                          "sbciw\t$rd, $rr",
                          [(set i16:$rd, (sube i16:$src, imm:$rr)),
                           (implicit SREG)]>;
  }
}

//===----------------------------------------------------------------------===//
// Increment and Decrement
//===----------------------------------------------------------------------===//
let Constraints = "$src = $rd",
Defs = [SREG] in
{
  def INCRd : FRd<0b1001,
                  0b0100011,
                  (outs GPR8:$rd),
                  (ins GPR8:$src),
                  "inc\t$rd",
                  [(set i8:$rd, (add i8:$src, 1)), (implicit SREG)]>;

  def DECRd : FRd<0b1001,
                  0b0101010,
                  (outs GPR8:$rd),
                  (ins GPR8:$src),
                  "dec\t$rd",
                  [(set i8:$rd, (add i8:$src, -1)), (implicit SREG)]>;
}

//===----------------------------------------------------------------------===//
// Multiplication
//===----------------------------------------------------------------------===//

let isCommutable = 1,
Defs = [R1, R0, SREG] in
{
  // MUL Rd, Rr
  // Multiplies Rd by Rr and places the result into R1:R0.
  let usesCustomInserter = 1 in {
    def MULRdRr : FRdRr<0b1001, 0b11,
                        (outs),
                        (ins GPR8:$lhs, GPR8:$rhs),
                        "mul\t$lhs, $rhs",
                        [/*(set R1, R0, (smullohi i8:$lhs, i8:$rhs))*/]>,
                    Requires<[SupportsMultiplication]>;

    def MULSRdRr : FMUL2RdRr<0,
                             (outs),
                             (ins GPR8:$lhs, GPR8:$rhs),
                             "muls\t$lhs, $rhs",
                             []>,
                   Requires<[SupportsMultiplication]>;
  }

  def MULSURdRr : FMUL2RdRr<1,
                            (outs),
                            (ins GPR8:$lhs, GPR8:$rhs),
                            "mulsu\t$lhs, $rhs",
                            []>,
                  Requires<[SupportsMultiplication]>;

  def FMUL : FFMULRdRr<0b01,
                       (outs),
                       (ins GPR8:$lhs, GPR8:$rhs),
                       "fmul\t$lhs, $rhs",
                       []>,
             Requires<[SupportsMultiplication]>;

  def FMULS : FFMULRdRr<0b10,
                        (outs),
                        (ins GPR8:$lhs, GPR8:$rhs),
                        "fmuls\t$lhs, $rhs",
                        []>,
              Requires<[SupportsMultiplication]>;

  def FMULSU : FFMULRdRr<0b11,
                         (outs),
                         (ins GPR8:$lhs, GPR8:$rhs),
                         "fmulsu\t$lhs, $rhs",
                         []>,
               Requires<[SupportsMultiplication]>;
}

let Defs = [R15, R14, R13, R12, R11, R10, R9,
            R8, R7, R6, R5, R4, R3, R2, R1, R0] in
def DESK : FDES<(outs),
                (ins i8imm:$k),
                "des\t$k",
                []>,
           Requires<[HasDES]>;

//===----------------------------------------------------------------------===//
// Logic
//===----------------------------------------------------------------------===//
let Constraints = "$src = $rd",
Defs = [SREG] in
{
  // Register-Register logic instructions (which have the
  // property of commutativity).
  let isCommutable = 1 in
  {
    def ANDRdRr : FRdRr<0b0010,
                        0b00,
                        (outs GPR8:$rd),
                        (ins GPR8:$src, GPR8:$rr),
                        "and\t$rd, $rr",
                        [(set i8:$rd, (and i8:$src, i8:$rr)),
                         (implicit SREG)]>;

    // ANDW Rd+1:Rd, Rr+1:Rr
    //
    // Expands to:
    // and Rd,   Rr
    // and Rd+1, Rr+1
    def ANDWRdRr : Pseudo<(outs DREGS:$rd),
                          (ins DREGS:$src, DREGS:$rr),
                          "andw\t$rd, $rr",
                          [(set i16:$rd, (and i16:$src, i16:$rr)),
                           (implicit SREG)]>;

    def ORRdRr : FRdRr<0b0010,
                       0b10,
                       (outs GPR8:$rd),
                       (ins GPR8:$src, GPR8:$rr),
                       "or\t$rd, $rr",
                       [(set i8:$rd, (or i8:$src, i8:$rr)),
                        (implicit SREG)]>;

    // ORW Rd+1:Rd, Rr+1:Rr
    //
    // Expands to:
    // or Rd,   Rr
    // or Rd+1, Rr+1
    def ORWRdRr : Pseudo<(outs DREGS:$rd),
                         (ins DREGS:$src, DREGS:$rr),
                         "orw\t$rd, $rr",
                         [(set i16:$rd, (or i16:$src, i16:$rr)),
                          (implicit SREG)]>;

    def EORRdRr : FRdRr<0b0010,
                        0b01,
                        (outs GPR8:$rd),
                        (ins GPR8:$src, GPR8:$rr),
                        "eor\t$rd, $rr",
                        [(set i8:$rd, (xor i8:$src, i8:$rr)),
                         (implicit SREG)]>;

    // EORW Rd+1:Rd, Rr+1:Rr
    //
    // Expands to:
    // eor Rd,   Rr
    // eor Rd+1, Rr+1
    def EORWRdRr : Pseudo<(outs DREGS:$rd),
                          (ins DREGS:$src, DREGS:$rr),
                          "eorw\t$rd, $rr",
                          [(set i16:$rd, (xor i16:$src, i16:$rr)),
                           (implicit SREG)]>;
  }

  def ANDIRdK : FRdK<0b0111,
                     (outs LD8:$rd),
                     (ins LD8:$src, imm_ldi8:$k),
                     "andi\t$rd, $k",
                     [(set i8:$rd, (and i8:$src, imm:$k)),
                      (implicit SREG)]>;

  // ANDI Rd+1:Rd, K+1:K
  //
  // Expands to:
  // andi Rd,   K
  // andi Rd+1, K+1
  def ANDIWRdK : Pseudo<(outs DLDREGS:$rd),
                        (ins DLDREGS:$src, i16imm:$k),
                        "andiw\t$rd, $k",
                        [(set i16:$rd, (and i16:$src, imm:$k)),
                         (implicit SREG)]>;

  def ORIRdK : FRdK<0b0110,
                    (outs LD8:$rd),
                    (ins LD8:$src, imm_ldi8:$k),
                    "ori\t$rd, $k",
                    [(set i8:$rd, (or i8:$src, imm:$k)),
                     (implicit SREG)]>;

  // ORIW Rd+1:Rd, K+1,K
  //
  // Expands to:
  // ori Rd,   K
  // ori Rd+1, K+1
  def ORIWRdK : Pseudo<(outs DLDREGS:$rd),
                       (ins DLDREGS:$src, i16imm:$rr),
                       "oriw\t$rd, $rr",
                       [(set i16:$rd, (or i16:$src, imm:$rr)),
                        (implicit SREG)]>;
}

//===----------------------------------------------------------------------===//
// One's/Two's Complement
//===----------------------------------------------------------------------===//
let Constraints = "$src = $rd",
Defs = [SREG] in
{
  def COMRd : FRd<0b1001,
                  0b0100000,
                  (outs GPR8:$rd),
                  (ins GPR8:$src),
                  "com\t$rd",
                  [(set i8:$rd, (not i8:$src)), (implicit SREG)]>;

  // COMW Rd+1:Rd
  //
  // Expands to:
  // com Rd
  // com Rd+1
  def COMWRd : Pseudo<(outs DREGS:$rd),
                      (ins DREGS:$src),
                      "comw\t$rd",
                      [(set i16:$rd, (not i16:$src)), (implicit SREG)]>;

  //:TODO: optimize NEG for wider types
  def NEGRd : FRd<0b1001,
                  0b0100001,
                  (outs GPR8:$rd),
                  (ins GPR8:$src),
                  "neg\t$rd",
                  [(set i8:$rd, (ineg i8:$src)), (implicit SREG)]>;
}

// TST Rd
// Test for zero of minus.
// This operation is identical to a `Rd AND Rd`.
def : InstAlias<"tst\t$rd", (ANDRdRr GPR8:$rd, GPR8:$rd)>;

// SBR Rd, K
//
// Mnemonic alias to 'ORI Rd, K'. Same bit pattern, same operands,
// same everything.
def : InstAlias<"sbr\t$rd, $k",
                (ORIRdK LD8:$rd, imm_ldi8:$k),
                /* Disable display, so we don't override ORI */ 0>;

//===----------------------------------------------------------------------===//
// Jump instructions
//===----------------------------------------------------------------------===//
let isBarrier = 1,
isBranch = 1,
isTerminator = 1 in
{
  def RJMPk : FBRk<0,
                   (outs),
                   (ins brtarget_13:$target),
                   "rjmp\t$target",
                   [(br bb:$target)]>;

  let isIndirectBranch = 1,
  Uses = [R31R30] in
  def IJMP : F16<0b1001010000001001,
                 (outs),
                 (ins),
                 "ijmp",
                 []>,
             Requires<[HasIJMPCALL]>;

  let isIndirectBranch = 1,
  Uses = [R31R30] in
  def EIJMP : F16<0b1001010000011001,
                  (outs),
                  (ins),
                  "eijmp",
                  []>,
              Requires<[HasEIJMPCALL]>;

  def JMPk : F32BRk<0b110,
                    (outs),
                    (ins call_target:$k),
                    "jmp\t$k",
                    []>,
             Requires<[HasJMPCALL]>;
}

//===----------------------------------------------------------------------===//
// Call instructions
//===----------------------------------------------------------------------===//
let isCall = 1 in
{
  // SP is marked as a use to prevent stack-pointer assignments that appear
  // immediately before calls from potentially appearing dead.
  let Uses = [SP] in
  def RCALLk : FBRk<1,
                    (outs),
                    (ins brtarget_13:$target),
                    "rcall\t$target",
                    []>;

  // SP is marked as a use to prevent stack-pointer assignments that appear
  // immediately before calls from potentially appearing dead.
  let Uses = [SP, R31R30] in
  def ICALL : F16<0b1001010100001001,
                  (outs),
                  (ins variable_ops),
                  "icall",
                  []>,
              Requires<[HasIJMPCALL]>;

  // SP is marked as a use to prevent stack-pointer assignments that appear
  // immediately before calls from potentially appearing dead.
  let Uses = [SP, R31R30] in
  def EICALL : F16<0b1001010100011001,
                   (outs),
                   (ins variable_ops),
                   "eicall",
                   []>,
               Requires<[HasEIJMPCALL]>;

  // SP is marked as a use to prevent stack-pointer assignments that appear
  // immediately before calls from potentially appearing dead.
  //
  //:TODO: the imm field can be either 16 or 22 bits in devices with more
  // than 64k of ROM, fix it once we support the largest devices.
  let Uses = [SP] in
  def CALLk : F32BRk<0b111,
                     (outs),
                     (ins call_target:$k),
                     "call\t$k",
                     [(AVRcall imm:$k)]>,
              Requires<[HasJMPCALL]>;
}

//===----------------------------------------------------------------------===//
// Return instructions.
//===----------------------------------------------------------------------===//
let isTerminator = 1,
isReturn = 1,
isBarrier = 1 in 
{
  def RET : F16<0b1001010100001000,
                (outs),
                (ins),
                "ret",
                [(AVRretflag)]>;

  def RETI : F16<0b1001010100011000,
                 (outs),
                 (ins),
                 "reti",
                 [(AVRretiflag)]>;
}

//===----------------------------------------------------------------------===//
// Compare operations.
//===----------------------------------------------------------------------===//
let Defs = [SREG] in
{
  // CPSE Rd, Rr
  // Compare Rd and Rr, skipping the next instruction if they are equal.
  let isBarrier = 1,
  isBranch = 1,
  isTerminator = 1 in
  def CPSE : FRdRr<0b0001,
                   0b00,
                   (outs),
                   (ins GPR8:$rd, GPR8:$rr),
                   "cpse\t$rd, $rr",
                   []>;

  def CPRdRr : FRdRr<0b0001,
                     0b01,
                     (outs),
                     (ins GPR8:$rd, GPR8:$rr),
                     "cp\t$rd, $rr",
                     [(AVRcmp i8:$rd, i8:$rr), (implicit SREG)]>;

  // CPW Rd+1:Rd, Rr+1:Rr
  //
  // Expands to:
  // cp  Rd,   Rr
  // cpc Rd+1, Rr+1
  def CPWRdRr : Pseudo<(outs),
                       (ins DREGS:$src, DREGS:$src2),
                       "cpw\t$src, $src2",
                       [(AVRcmp i16:$src, i16:$src2), (implicit SREG)]>;

  let Uses = [SREG] in
  def CPCRdRr : FRdRr<0b0000,
                      0b01,
                      (outs),
                      (ins GPR8:$rd, GPR8:$rr),
                      "cpc\t$rd, $rr",
                      [(AVRcmpc i8:$rd, i8:$rr), (implicit SREG)]>;

  // CPCW Rd+1:Rd. Rr+1:Rr
  //
  // Expands to:
  // cpc Rd,   Rr
  // cpc Rd+1, Rr+1
  let Uses = [SREG] in
  def CPCWRdRr : Pseudo<(outs),
                        (ins DREGS:$src, DREGS:$src2),
                        "cpcw\t$src, $src2",
                        [(AVRcmpc i16:$src, i16:$src2), (implicit SREG)]>;

  // CPI Rd, K
  // Compares a register with an 8 bit immediate.
  def CPIRdK : FRdK<0b0011,
                    (outs),
                    (ins LD8:$rd, imm_ldi8:$k),
                    "cpi\t$rd, $k",
                    [(AVRcmp i8:$rd, imm:$k), (implicit SREG)]>;
}

//===----------------------------------------------------------------------===//
// Register conditional skipping/branching operations.
//===----------------------------------------------------------------------===//
let isBranch = 1,
isTerminator = 1 in
{
  // Conditional skipping on GPR register bits, and
  // conditional skipping on IO register bits.
  let isBarrier = 1 in
  {
    def SBRCRrB : FRdB<0b10,
                       (outs),
                       (ins GPR8:$rr, i8imm:$b),
                       "sbrc\t$rr, $b",
                       []>;

    def SBRSRrB : FRdB<0b11,
                       (outs),
                       (ins GPR8:$rr, i8imm:$b),
                       "sbrs\t$rr, $b",
                       []>;

    def SBICAb : FIOBIT<0b01,
                        (outs),
                        (ins imm_port5:$a, i8imm:$b),
                        "sbic\t$a, $b",
                        []>;

    def SBISAb : FIOBIT<0b11,
                        (outs),
                        (ins imm_port5:$a, i8imm:$b),
                        "sbis\t$a, $b",
                        []>;
  }

  // Relative branches on status flag bits.
  let Uses = [SREG] in
  {
    // BRBS s, k
    // Branch if `s` flag in status register is set.
    def BRBSsk : FSK<0,
                     (outs),
                     (ins i8imm:$s, relbrtarget_7:$k),
                     "brbs\t$s, $k",
                     []>;

    // BRBC s, k
    // Branch if `s` flag in status register is clear.
    def BRBCsk : FSK<1,
                     (outs),
                     (ins i8imm:$s, relbrtarget_7:$k),
                     "brbc\t$s, $k",
                     []>;
  }
}


// BRCS k
// Branch if carry flag is set
def : InstAlias<"brcs\t$k", (BRBSsk 0, relbrtarget_7:$k)>;

// BRCC k
// Branch if carry flag is clear
def : InstAlias<"brcc\t$k", (BRBCsk 0, relbrtarget_7:$k)>;

// BRHS k
// Branch if half carry flag is set
def : InstAlias<"brhs\t$k", (BRBSsk 5, relbrtarget_7:$k)>;

// BRHC k
// Branch if half carry flag is clear
def : InstAlias<"brhc\t$k", (BRBCsk 5, relbrtarget_7:$k)>;

// BRTS k
// Branch if the T flag is set
def : InstAlias<"brts\t$k", (BRBSsk 6, relbrtarget_7:$k)>;

// BRTC k
// Branch if the T flag is clear
def : InstAlias<"brtc\t$k", (BRBCsk 6, relbrtarget_7:$k)>;

// BRVS k
// Branch if the overflow flag is set
def : InstAlias<"brvs\t$k", (BRBSsk 3, relbrtarget_7:$k)>;

// BRVC k
// Branch if the overflow flag is clear
def : InstAlias<"brvc\t$k", (BRBCsk 3, relbrtarget_7:$k)>;

// BRIE k
// Branch if the global interrupt flag is enabled
def : InstAlias<"brie\t$k", (BRBSsk 7, relbrtarget_7:$k)>;

// BRID k
// Branch if the global interrupt flag is disabled
def : InstAlias<"brid\t$k", (BRBCsk 7, relbrtarget_7:$k)>;

//===----------------------------------------------------------------------===//
// PC-relative conditional branches
//===----------------------------------------------------------------------===//
// Based on status register. We cannot simplify these into instruction aliases
// because we also need to be able to specify a pattern to match for ISel.
let isBranch = 1,
isTerminator = 1,
Uses = [SREG] in
{
  def BREQk : FBRsk<0,
                    0b001,
                    (outs),
                    (ins relbrtarget_7:$target),
                    "breq\t$target",
                    [(AVRbrcond bb:$target, AVR_COND_EQ)]>;

  def BRNEk : FBRsk<1,
                    0b001,
                    (outs),
                    (ins relbrtarget_7:$target),
                    "brne\t$target",
                    [(AVRbrcond bb:$target, AVR_COND_NE)]>;


  def BRSHk : FBRsk<1,
                    0b000,
                    (outs),
                    (ins relbrtarget_7:$target),
                    "brsh\t$target",
                    [(AVRbrcond bb:$target, AVR_COND_SH)]>;

  def BRLOk : FBRsk<0,
                    0b000,
                    (outs),
                    (ins relbrtarget_7:$target),
                    "brlo\t$target",
                    [(AVRbrcond bb:$target, AVR_COND_LO)]>;

  def BRMIk : FBRsk<0,
                    0b010,
                    (outs),
                    (ins relbrtarget_7:$target),
                    "brmi\t$target",
                    [(AVRbrcond bb:$target, AVR_COND_MI)]>;

  def BRPLk : FBRsk<1,
                    0b010,
                    (outs),
                    (ins relbrtarget_7:$target),
                    "brpl\t$target",
                    [(AVRbrcond bb:$target, AVR_COND_PL)]>;

  def BRGEk : FBRsk<1,
                    0b100,
                    (outs),
                    (ins relbrtarget_7:$target),
                    "brge\t$target",
                    [(AVRbrcond bb:$target, AVR_COND_GE)]>;

  def BRLTk : FBRsk<0,
                    0b100,
                    (outs),
                    (ins relbrtarget_7:$target),
                    "brlt\t$target",
                    [(AVRbrcond bb:$target, AVR_COND_LT)]>;
}

//===----------------------------------------------------------------------===//
// Data transfer instructions
//===----------------------------------------------------------------------===//
// 8 and 16-bit register move instructions.
let hasSideEffects = 0 in
{
  def MOVRdRr : FRdRr<0b0010,
                      0b11,
                      (outs GPR8:$rd),
                      (ins GPR8:$rr),
                      "mov\t$rd, $rr",
                      []>;

  def MOVWRdRr : FMOVWRdRr<(outs DREGS:$dst),
                           (ins DREGS:$src),
                           "movw\t$dst, $src",
                           []>,
                 Requires<[HasMOVW]>;
}

// Load immediate values into registers.
let isReMaterializable = 1 in
{
  def LDIRdK : FRdK<0b1110,
                    (outs LD8:$rd),
                    (ins imm_ldi8:$k),
                    "ldi\t$rd, $k",
                    [(set i8:$rd, imm:$k)]>;

  // LDIW Rd+1:Rd, K+1:K
  //
  // Expands to:
  // ldi Rd,   K
  // ldi Rd+1, K+1
  def LDIWRdK : Pseudo<(outs DLDREGS:$dst),
                       (ins i16imm:$src),
                       "ldiw\t$dst, $src",
                       [(set i16:$dst, imm:$src)]>;
}

// Load from data space into register.
let canFoldAsLoad = 1,
isReMaterializable = 1 in
{
  def LDSRdK : F32DM<0b0,
                     (outs GPR8:$rd),
                     (ins imm16:$k),
                     "lds\t$rd, $k",
                     [(set i8:$rd, (load imm:$k))]>,
               Requires<[HasSRAM]>;

  // LDSW Rd+1:Rd, K+1:K
  //
  // Expands to:
  // lds Rd,  (K+1:K)
  // lds Rd+1 (K+1:K) + 1
  def LDSWRdK : Pseudo<(outs DREGS:$dst),
                       (ins i16imm:$src),
                       "ldsw\t$dst, $src",
                       [(set i16:$dst, (load imm:$src))]>,
                Requires<[HasSRAM]>;
}

// Indirect loads.
let canFoldAsLoad = 1,
isReMaterializable = 1 in
{
  def LDRdPtr : FSTLD<0,
                      0b00,
                      (outs GPR8:$reg),
                      (ins LDSTPtrReg:$ptrreg),
                      "ld\t$reg, $ptrreg",
                      [(set GPR8:$reg, (load i16:$ptrreg))]>,
                Requires<[HasSRAM]>;

  // LDW Rd+1:Rd, P
  //
  // Expands to:
  // ld  Rd,   P
  // ldd Rd+1, P+1
  let Constraints = "@earlyclobber $reg" in
  def LDWRdPtr : Pseudo<(outs DREGS:$reg),
                        (ins PTRDISPREGS:$ptrreg),
                        "ldw\t$reg, $ptrreg",
                        [(set i16:$reg, (load i16:$ptrreg))]>,
                 Requires<[HasSRAM]>;
}

// Indirect loads (with postincrement or predecrement).
let mayLoad = 1,
hasSideEffects = 0,
Constraints = "$ptrreg = $base_wb,@earlyclobber $reg" in
{
  def LDRdPtrPi : FSTLD<0,
                        0b01,
                        (outs GPR8:$reg, PTRREGS:$base_wb),
                        (ins LDSTPtrReg:$ptrreg),
                        "ld\t$reg, $ptrreg+",
                        []>,
                  Requires<[HasSRAM]>;

  // LDW Rd+1:Rd, P+
  // Expands to:
  // ld Rd,   P+
  // ld Rd+1, P+
  def LDWRdPtrPi : Pseudo<(outs DREGS:$reg, PTRREGS:$base_wb),
                          (ins PTRREGS:$ptrreg),
                          "ldw\t$reg, $ptrreg+",
                          []>,
                   Requires<[HasSRAM]>;

  def LDRdPtrPd : FSTLD<0,
                        0b10,
                        (outs GPR8:$reg, PTRREGS:$base_wb),
                        (ins LDSTPtrReg:$ptrreg),
                        "ld\t$reg, -$ptrreg",
                        []>,
                  Requires<[HasSRAM]>;

  // LDW Rd+1:Rd, -P
  //
  // Expands to:
  // ld Rd+1, -P
  // ld Rd,   -P
  def LDWRdPtrPd : Pseudo<(outs DREGS:$reg, PTRREGS:$base_wb),
                          (ins PTRREGS:$ptrreg),
                          "ldw\t$reg, -$ptrreg",
                          []>,
                   Requires<[HasSRAM]>;
}

// Load indirect with displacement operations.
let canFoldAsLoad = 1,
isReMaterializable = 1 in
{
  let Constraints = "@earlyclobber $reg" in
  def LDDRdPtrQ : FSTDLDD<0,
                          (outs GPR8:$reg),
                          (ins memri:$memri),
                          "ldd\t$reg, $memri",
                          [(set i8:$reg, (load addr:$memri))]>,
                  Requires<[HasSRAM]>;

  // LDDW Rd+1:Rd, P+q
  //
  // Expands to:
  // ldd Rd,   P+q
  // ldd Rd+1, P+q+1
  let Constraints = "@earlyclobber $dst" in
  def LDDWRdPtrQ : Pseudo<(outs DREGS_WITHOUT_YZ_WORKAROUND:$dst),
                          (ins memri:$memri),
                          "lddw\t$dst, $memri",
                          [(set i16:$dst, (load addr:$memri))]>,
                   Requires<[HasSRAM]>;

  // An identical pseudo instruction to LDDWRdPtrQ, expect restricted to the Y
  // register and without the @earlyclobber flag.
  //
  // Used to work around a bug caused by the register allocator not
  // being able to handle the expansion of a COPY into an machine instruction
  // that has an earlyclobber flag. This is because the register allocator will
  // try expand a copy from a register slot into an earlyclobber instruction.
  // Instructions that are earlyclobber need to be in a dedicated earlyclobber slot.
  //
  // This pseudo instruction can be used pre-AVR pseudo expansion in order to
  // get a frame index load without directly using earlyclobber instructions.
  //
  // The pseudo expansion pass trivially expands this into LDDWRdPtrQ.
  //
  // This instruction may be removed once PR13375 is fixed.
  let mayLoad = 1,
  hasSideEffects = 0 in
  def LDDWRdYQ : Pseudo<(outs DREGS:$dst),
                        (ins memri:$memri),
                        "lddw\t$dst, $memri",
                        []>,
                 Requires<[HasSRAM]>;
}

class AtomicLoad<PatFrag Op, RegisterClass DRC,
                 RegisterClass PTRRC> :
  Pseudo<(outs DRC:$rd), (ins PTRRC:$rr), "atomic_op",
         [(set DRC:$rd, (Op i16:$rr))]>;

class AtomicStore<PatFrag Op, RegisterClass DRC,
                  RegisterClass PTRRC> :
  Pseudo<(outs), (ins PTRRC:$rd, DRC:$rr), "atomic_op",
         [(Op i16:$rd, DRC:$rr)]>;

class AtomicLoadOp<PatFrag Op, RegisterClass DRC,
                   RegisterClass PTRRC> :
  Pseudo<(outs DRC:$rd), (ins PTRRC:$rr, DRC:$operand),
         "atomic_op",
         [(set DRC:$rd, (Op i16:$rr, DRC:$operand))]>;

// FIXME: I think 16-bit atomic binary ops need to mark
// r0 as clobbered.

// Atomic instructions
// ===================
//
// These are all expanded by AVRExpandPseudoInsts
//
// 8-bit operations can use any pointer register because
// they are expanded directly into an LD/ST instruction.
//
// 16-bit operations use 16-bit load/store postincrement instructions,
// which require PTRDISPREGS.

def AtomicLoad8   : AtomicLoad<atomic_load_8, GPR8, PTRREGS>;
def AtomicLoad16  : AtomicLoad<atomic_load_16, DREGS, PTRDISPREGS>;

def AtomicStore8  : AtomicStore<atomic_store_8, GPR8, PTRREGS>;
def AtomicStore16 : AtomicStore<atomic_store_16, DREGS, PTRDISPREGS>;

class AtomicLoadOp8<PatFrag Op> : AtomicLoadOp<Op, GPR8, PTRREGS>;
class AtomicLoadOp16<PatFrag Op> : AtomicLoadOp<Op, DREGS, PTRDISPREGS>;

def AtomicLoadAdd8  : AtomicLoadOp8<atomic_load_add_8>;
def AtomicLoadAdd16 : AtomicLoadOp16<atomic_load_add_16>;
def AtomicLoadSub8  : AtomicLoadOp8<atomic_load_sub_8>;
def AtomicLoadSub16 : AtomicLoadOp16<atomic_load_sub_16>;
def AtomicLoadAnd8  : AtomicLoadOp8<atomic_load_and_8>;
def AtomicLoadAnd16 : AtomicLoadOp16<atomic_load_and_16>;
def AtomicLoadOr8   : AtomicLoadOp8<atomic_load_or_8>;
def AtomicLoadOr16  : AtomicLoadOp16<atomic_load_or_16>;
def AtomicLoadXor8  : AtomicLoadOp8<atomic_load_xor_8>;
def AtomicLoadXor16 : AtomicLoadOp16<atomic_load_xor_16>;
def AtomicFence     : Pseudo<(outs), (ins), "atomic_fence",
                             [(atomic_fence timm, timm)]>;

// Indirect store from register to data space.
def STSKRr : F32DM<0b1,
                   (outs),
                   (ins imm16:$k, GPR8:$rd),
                   "sts\t$k, $rd",
                   [(store i8:$rd, imm:$k)]>,
             Requires<[HasSRAM]>;

// STSW K+1:K, Rr+1:Rr
//
// Expands to:
// sts Rr+1, (K+1:K) + 1
// sts Rr,   (K+1:K)
def STSWKRr : Pseudo<(outs),
                     (ins i16imm:$dst, DREGS:$src),
                     "stsw\t$dst, $src",
                     [(store i16:$src, imm:$dst)]>,
              Requires<[HasSRAM]>;

// Indirect stores.
// ST P, Rr
// Stores the value of Rr into the location addressed by pointer P.
def STPtrRr : FSTLD<1,
                    0b00,
                    (outs),
                    (ins LDSTPtrReg:$ptrreg, GPR8:$reg),
                    "st\t$ptrreg, $reg",
                    [(store GPR8:$reg, i16:$ptrreg)]>,
              Requires<[HasSRAM]>;

// STW P, Rr+1:Rr
// Stores the value of Rr into the location addressed by pointer P.
//
// Expands to:
// st P, Rr
// std P+1, Rr+1
def STWPtrRr : Pseudo<(outs),
                      (ins PTRDISPREGS:$ptrreg, DREGS:$reg),
                      "stw\t$ptrreg, $reg",
                      [(store i16:$reg, i16:$ptrreg)]>,
               Requires<[HasSRAM]>;

// Indirect stores (with postincrement or predecrement).
let Constraints = "$ptrreg = $base_wb,@earlyclobber $base_wb" in
{

  // ST P+, Rr
  // Stores the value of Rr into the location addressed by pointer P.
  // Post increments P.
  def STPtrPiRr : FSTLD<1,
                        0b01,
                        (outs LDSTPtrReg:$base_wb),
                        (ins LDSTPtrReg:$ptrreg, GPR8:$reg, i8imm:$offs),
                        "st\t$ptrreg+, $reg",
                        [(set i16:$base_wb,
                         (post_store GPR8:$reg, i16:$ptrreg, imm:$offs))]>,
                  Requires<[HasSRAM]>;

  // STW P+, Rr+1:Rr
  // Stores the value of Rr into the location addressed by pointer P.
  // Post increments P.
  //
  // Expands to:
  // st P+, Rr
  // st P+, Rr+1
  def STWPtrPiRr : Pseudo<(outs PTRREGS:$base_wb),
                          (ins PTRREGS:$ptrreg, DREGS:$trh, i8imm:$offs),
                          "stw\t$ptrreg+, $trh",
                          [(set PTRREGS:$base_wb,
                           (post_store DREGS:$trh, PTRREGS:$ptrreg, imm:$offs))]>,
                   Requires<[HasSRAM]>;

  // ST -P, Rr
  // Stores the value of Rr into the location addressed by pointer P.
  // Pre decrements P.
  def STPtrPdRr : FSTLD<1,
                        0b10,
                        (outs LDSTPtrReg:$base_wb),
                        (ins LDSTPtrReg:$ptrreg, GPR8:$reg, i8imm:$offs),
                        "st\t-$ptrreg, $reg",
                        [(set i16:$base_wb,
                         (pre_store GPR8:$reg, i16:$ptrreg, imm:$offs))]>,
                  Requires<[HasSRAM]>;

  // STW -P, Rr+1:Rr
  // Stores the value of Rr into the location addressed by pointer P.
  // Pre decrements P.
  //
  // Expands to:
  // st -P, Rr+1
  // st -P, Rr
  def STWPtrPdRr : Pseudo<(outs PTRREGS:$base_wb),
                          (ins PTRREGS:$ptrreg, DREGS:$reg, i8imm:$offs),
                          "stw\t-$ptrreg, $reg",
                          [(set PTRREGS:$base_wb,
                           (pre_store i16:$reg, i16:$ptrreg, imm:$offs))]>,
                   Requires<[HasSRAM]>;
}

// Store indirect with displacement operations.
// STD P+q, Rr
// Stores the value of Rr into the location addressed by pointer P with a
// displacement of q. Does not modify P.
def STDPtrQRr : FSTDLDD<1,
                        (outs),
                        (ins memri:$memri, GPR8:$reg),
                        "std\t$memri, $reg",
                        [(store i8:$reg, addr:$memri)]>,
                Requires<[HasSRAM]>;

// STDW P+q, Rr+1:Rr
// Stores the value of Rr into the location addressed by pointer P with a
// displacement of q. Does not modify P.
//
// Expands to:
// std P+q,   Rr
// std P+q+1, Rr+1
def STDWPtrQRr : Pseudo<(outs),
                        (ins memri:$memri, DREGS:$src),
                        "stdw\t$memri, $src",
                        [(store i16:$src, addr:$memri)]>,
                 Requires<[HasSRAM]>;


// Load program memory operations.
let canFoldAsLoad = 1,
isReMaterializable = 1,
mayLoad = 1,
hasSideEffects = 0 in
{
  let Defs = [R0],
      Uses = [R31R30] in
  def LPM : F16<0b1001010111001000,
                (outs),
                (ins),
                "lpm",
                []>,
            Requires<[HasLPM]>;

  def LPMRdZ : FLPMX<0,
                     0,
                     (outs GPR8:$dst),
                     (ins ZREG:$z),
                     "lpm\t$dst, $z",
                     []>,
               Requires<[HasLPMX]>;

  // Load program memory, while postincrementing the Z register.
  let Defs = [R31R30] in
  {
    def LPMRdZPi : FLPMX<0,
                         1,
                         (outs GPR8:$dst),
                         (ins ZREG:$z),
                         "lpm\t$dst, $z+",
                         []>,
                   Requires<[HasLPMX]>;

    def LPMWRdZ : Pseudo<(outs DREGS:$dst),
                         (ins ZREG:$z),
                         "lpmw\t$dst, $z",
                         []>,
                  Requires<[HasLPMX]>;

    def LPMWRdZPi : Pseudo<(outs DREGS:$dst),
                           (ins ZREG:$z),
                           "lpmw\t$dst, $z+",
                           []>,
                    Requires<[HasLPMX]>;
  }
}

// Extended load program memory operations.
let mayLoad = 1,
hasSideEffects = 0 in
{
  let Defs = [R0],
      Uses = [R31R30] in
  def ELPM : F16<0b1001010111011000,
                 (outs),
                 (ins),
                 "elpm",
                 []>,
             Requires<[HasELPM]>;

  def ELPMRdZ : FLPMX<1,
                      0,
                      (outs GPR8:$dst),
                      (ins ZREG:$z),
                      "elpm\t$dst, $z",
                      []>,
                Requires<[HasELPMX]>;

  let Defs = [R31R30] in
  def ELPMRdZPi : FLPMX<1,
                        1,
                        (outs GPR8:$dst),
                        (ins ZREG: $z),
                        "elpm\t$dst, $z+",
                        []>,
                  Requires<[HasELPMX]>;
}

// Store program memory operations.
let Uses = [R1, R0] in
{
  let Uses = [R31R30, R1, R0] in
  def SPM : F16<0b1001010111101000,
                (outs),
                (ins),
                "spm",
                []>,
            Requires<[HasSPM]>;

  let Defs = [R31R30] in
  def SPMZPi : F16<0b1001010111111000,
                   (outs),
                   (ins ZREG:$z),
                   "spm $z+",
                   []>,
               Requires<[HasSPMX]>;
}

// Read data from IO location operations.
let canFoldAsLoad = 1,
isReMaterializable = 1 in
{
  def INRdA : FIORdA<(outs GPR8:$dst),
                     (ins imm_port6:$src),
                     "in\t$dst, $src",
                     [(set i8:$dst, (load ioaddr8:$src))]>;

  def INWRdA : Pseudo<(outs DREGS:$dst),
                      (ins imm_port6:$src),
                      "inw\t$dst, $src",
                      [(set i16:$dst, (load ioaddr16:$src))]>;
}

// Write data to IO location operations.
def OUTARr : FIOARr<(outs),
                    (ins imm_port6:$dst, GPR8:$src),
                    "out\t$dst, $src",
                    [(store i8:$src, ioaddr8:$dst)]>;

def OUTWARr : Pseudo<(outs),
                     (ins imm_port6:$dst, DREGS:$src),
                     "outw\t$dst, $src",
                     [(store i16:$src, ioaddr16:$dst)]>;

// Stack push/pop operations.
let Defs = [SP],
Uses = [SP],
hasSideEffects = 0 in
{
  // Stack push operations.
  let mayStore = 1 in
  {
    def PUSHRr : FRd<0b1001,
                     0b0011111,
                     (outs),
                     (ins GPR8:$reg),
                     "push\t$reg",
                     []>,
                 Requires<[HasSRAM]>;

    def PUSHWRr : Pseudo<(outs),
                         (ins DREGS:$reg),
                         "pushw\t$reg",
                         []>,
                  Requires<[HasSRAM]>;
  }

  // Stack pop operations.
  let mayLoad = 1 in
  {
    def POPRd : FRd<0b1001,
                    0b0001111,
                    (outs GPR8:$reg),
                    (ins),
                    "pop\t$reg",
                    []>,
                Requires<[HasSRAM]>;

    def POPWRd : Pseudo<(outs DREGS:$reg),
                        (ins),
                        "popw\t$reg",
                        []>,
                 Requires<[HasSRAM]>;
  }
}

// Read-Write-Modify (RMW) instructions.
def XCHZRd : FZRd<0b100,
                  (outs GPR8:$rd),
                  (ins ZREG:$z),
                  "xch\t$z, $rd",
                  []>,
             Requires<[SupportsRMW]>;

def LASZRd : FZRd<0b101,
                  (outs GPR8:$rd),
                  (ins ZREG:$z),
                  "las\t$z, $rd",
                  []>,
             Requires<[SupportsRMW]>;

def LACZRd : FZRd<0b110,
                  (outs GPR8:$rd),
                  (ins ZREG:$z),
                  "lac\t$z, $rd",
                  []>,
             Requires<[SupportsRMW]>;

def LATZRd : FZRd<0b111,
                  (outs GPR8:$rd),
                  (ins ZREG:$z),
                  "lat\t$z, $rd",
                  []>,
             Requires<[SupportsRMW]>;

//===----------------------------------------------------------------------===//
// Bit and bit-test instructions
//===----------------------------------------------------------------------===//

// Bit shift/rotate operations.
let Constraints = "$src = $rd",
Defs = [SREG] in
{
  // 8-bit LSL is an alias of ADD Rd, Rd

  def LSLWRd : Pseudo<(outs DREGS:$rd),
                      (ins DREGS:$src),
                      "lslw\t$rd",
                      [(set i16:$rd, (AVRlsl i16:$src)), (implicit SREG)]>;

  def LSRRd : FRd<0b1001,
                  0b0100110,
                  (outs GPR8:$rd),
                  (ins GPR8:$src),
                  "lsr\t$rd",
                  [(set i8:$rd, (AVRlsr i8:$src)), (implicit SREG)]>;

  def LSRWRd : Pseudo<(outs DREGS:$rd),
                      (ins DREGS:$src),
                      "lsrw\t$rd",
                      [(set i16:$rd, (AVRlsr i16:$src)), (implicit SREG)]>;

  def ASRRd : FRd<0b1001,
                  0b0100101,
                  (outs GPR8:$rd),
                  (ins GPR8:$src),
                  "asr\t$rd",
                  [(set i8:$rd, (AVRasr i8:$src)), (implicit SREG)]>;

  def ASRWRd : Pseudo<(outs DREGS:$rd),
                      (ins DREGS:$src),
                      "asrw\t$rd",
                      [(set i16:$rd, (AVRasr i16:$src)), (implicit SREG)]>;

  // Bit rotate operations.
  let Uses = [SREG] in
  {
    // 8-bit ROL is an alias of ADC Rd, Rd

    def ROLBRd : Pseudo<(outs GPR8:$rd),
                        (ins GPR8:$src),
                        "rolb\t$rd",
                        [(set i8:$rd, (AVRrol i8:$src)), (implicit SREG)]>;

    def RORBRd : Pseudo<(outs GPR8:$rd),
                        (ins GPR8:$src),
                        "rorb\t$rd",
                        [(set i8:$rd, (AVRror i8:$src)), (implicit SREG)]>;

    def ROLWRd : Pseudo<(outs DREGS:$rd),
                        (ins DREGS:$src),
                        "rolw\t$rd",
                        [(set i16:$rd, (AVRrol i16:$src)), (implicit SREG)]>;

    def RORRd : FRd<0b1001,
                    0b0100111,
                    (outs GPR8:$rd),
                    (ins GPR8:$src),
                    "ror\t$rd",
                    []>;

    def RORWRd : Pseudo<(outs DREGS:$rd),
                        (ins DREGS:$src),
                        "rorw\t$rd",
                        [(set i16:$rd, (AVRror i16:$src)), (implicit SREG)]>;
  }
}

// SWAP Rd
// Swaps the high and low nibbles in a register.
let Constraints = "$src = $rd" in
def SWAPRd : FRd<0b1001,
                 0b0100010,
                 (outs GPR8:$rd),
                 (ins GPR8:$src),
                 "swap\t$rd",
                 [(set i8:$rd, (bswap i8:$src))]>;

// IO register bit set/clear operations.
//:TODO: add patterns when popcount(imm)==2 to be expanded with 2 sbi/cbi
// instead of in+ori+out which requires one more instr.
def SBIAb : FIOBIT<0b10,
                   (outs),
                   (ins imm_port5:$addr, i8imm:$bit),
                   "sbi\t$addr, $bit",
                   [(store (or (i8 (load lowioaddr8:$addr)), iobitpos8:$bit),
                     lowioaddr8:$addr)]>;

def CBIAb : FIOBIT<0b00,
                   (outs),
                   (ins imm_port5:$addr, i8imm:$bit),
                   "cbi\t$addr, $bit",
                   [(store (and (i8 (load lowioaddr8:$addr)), iobitposn8:$bit),
                     lowioaddr8:$addr)]>;

// Status register bit load/store operations.
let Defs = [SREG] in
def BST : FRdB<0b01,
               (outs),
               (ins GPR8:$rd, i8imm:$b),
               "bst\t$rd, $b",
               []>;

let Uses = [SREG] in
def BLD : FRdB<0b00,
               (outs),
               (ins GPR8:$rd, i8imm:$b),
               "bld\t$rd, $b",
               []>;

def CBR : InstAlias<"cbr\t$rd, $k", (ANDIRdK LD8:$rd, imm_com8:$k), 0>;

// CLR Rd
// Alias for EOR Rd, Rd
// -------------
// Clears all bits in a register.
def CLR : InstAlias<"clr\t$rd", (EORRdRr GPR8:$rd, GPR8:$rd)>;

// LSL Rd
// Alias for ADD Rd, Rd
// --------------
// Logical shift left one bit.
def LSL : InstAlias<"lsl\t$rd", (ADDRdRr GPR8:$rd, GPR8:$rd)>;

def ROL : InstAlias<"rol\t$rd", (ADCRdRr GPR8:$rd, GPR8:$rd)>;

// SER Rd
// Alias for LDI Rd, 0xff
// ---------
// Sets all bits in a register.
def : InstAlias<"ser\t$rd", (LDIRdK LD8:$rd, 0xff), 0>;

let Defs = [SREG] in
def BSETs : FS<0,
               (outs),
               (ins i8imm:$s),
               "bset\t$s",
               []>;

let Defs = [SREG] in
def BCLRs : FS<1,
               (outs),
               (ins i8imm:$s),
               "bclr\t$s",
               []>;

// Set/clear aliases for the carry (C) status flag (bit 0).
def : InstAlias<"sec", (BSETs 0)>;
def : InstAlias<"clc", (BCLRs 0)>;

// Set/clear aliases for the zero (Z) status flag (bit 1).
def : InstAlias<"sez", (BSETs 1)>;
def : InstAlias<"clz", (BCLRs 1)>;

// Set/clear aliases for the negative (N) status flag (bit 2).
def : InstAlias<"sen", (BSETs 2)>;
def : InstAlias<"cln", (BCLRs 2)>;

// Set/clear aliases for the overflow (V) status flag (bit 3).
def : InstAlias<"sev", (BSETs 3)>;
def : InstAlias<"clv", (BCLRs 3)>;

// Set/clear aliases for the signed (S) status flag (bit 4).
def : InstAlias<"ses", (BSETs 4)>;
def : InstAlias<"cls", (BCLRs 4)>;

// Set/clear aliases for the half-carry (H) status flag (bit 5).
def : InstAlias<"seh", (BSETs 5)>;
def : InstAlias<"clh", (BCLRs 5)>;

// Set/clear aliases for the T status flag (bit 6).
def : InstAlias<"set", (BSETs 6)>;
def : InstAlias<"clt", (BCLRs 6)>;

// Set/clear aliases for the interrupt (I) status flag (bit 7).
def : InstAlias<"sei", (BSETs 7)>;
def : InstAlias<"cli", (BCLRs 7)>;

//===----------------------------------------------------------------------===//
// Special/Control instructions
//===----------------------------------------------------------------------===//

// BREAK
// Breakpoint instruction
// ---------
// <|1001|0101|1001|1000>
def BREAK : F16<0b1001010110011000,
                (outs),
                (ins),
                "break",
                []>,
            Requires<[HasBREAK]>;

// NOP
// No-operation instruction
// ---------
// <|0000|0000|0000|0000>
def NOP : F16<0b0000000000000000,
              (outs),
              (ins),
              "nop",
              []>;

// SLEEP
// Sleep instruction
// ---------
// <|1001|0101|1000|1000>
def SLEEP : F16<0b1001010110001000,
                (outs),
                (ins),
                "sleep",
                []>;

// WDR
// Watchdog reset
// ---------
// <|1001|0101|1010|1000>
def WDR : F16<0b1001010110101000,
              (outs),
              (ins),
              "wdr",
              []>;

//===----------------------------------------------------------------------===//
// Pseudo instructions for later expansion
//===----------------------------------------------------------------------===//

//:TODO: Optimize this for wider types AND optimize the following code
//       compile int foo(char a, char b, char c, char d) {return d+b;}
//       looks like a missed sext_inreg opportunity.
def SEXT : ExtensionPseudo<
  (outs DREGS:$dst),
  (ins GPR8:$src),
  "sext\t$dst, $src",
  [(set i16:$dst, (sext i8:$src)), (implicit SREG)]
>;

def ZEXT : ExtensionPseudo<
  (outs DREGS:$dst),
  (ins GPR8:$src),
  "zext\t$dst, $src",
  [(set i16:$dst, (zext i8:$src)), (implicit SREG)]
>;

// This pseudo gets expanded into a movw+adiw thus it clobbers SREG.
let Defs = [SREG],
    hasSideEffects = 0 in
def FRMIDX : Pseudo<(outs DLDREGS:$dst),
                    (ins DLDREGS:$src, i16imm:$src2),
                    "frmidx\t$dst, $src, $src2",
                    []>;

// This pseudo is either converted to a regular store or a push which clobbers
// SP.
def STDSPQRr : StorePseudo<
  (outs),
  (ins memspi:$dst, GPR8:$src),
  "stdstk\t$dst, $src",
  [(store i8:$src, addr:$dst)]
>;

// This pseudo is either converted to a regular store or a push which clobbers
// SP.
def STDWSPQRr : StorePseudo<
  (outs),
  (ins memspi:$dst, DREGS:$src),
  "stdwstk\t$dst, $src",
  [(store i16:$src, addr:$dst)]
>;

// SP read/write pseudos.
let hasSideEffects = 0 in
{
  let Uses = [SP] in
  def SPREAD : Pseudo<
    (outs DREGS:$dst),
    (ins GPRSP:$src),
    "spread\t$dst, $src",
    []
  >;

  let Defs = [SP] in
  def SPWRITE : Pseudo<
    (outs GPRSP:$dst),
    (ins DREGS:$src),
    "spwrite\t$dst, $src",
    []>;
}

def Select8 : SelectPseudo<
  (outs GPR8:$dst),
  (ins GPR8:$src, GPR8:$src2, i8imm:$cc),
  "# Select8 PSEUDO",
  [(set i8:$dst, (AVRselectcc i8:$src, i8:$src2, imm:$cc))]
>;

def Select16 : SelectPseudo<
  (outs DREGS:$dst),
  (ins DREGS:$src, DREGS:$src2, i8imm:$cc),
  "# Select16 PSEUDO",
  [(set i16:$dst, (AVRselectcc i16:$src, i16:$src2, imm:$cc))]
>;

def Lsl8 : ShiftPseudo<
  (outs GPR8:$dst),
  (ins GPR8:$src, GPR8:$cnt),
  "# Lsl8 PSEUDO",
  [(set i8:$dst, (AVRlslLoop i8:$src, i8:$cnt))]
>;

def Lsl16 : ShiftPseudo<
  (outs DREGS:$dst),
  (ins DREGS:$src, GPR8:$cnt),
  "# Lsl16 PSEUDO",
  [(set i16:$dst, (AVRlslLoop i16:$src, i8:$cnt))]
>;

def Lsr8 : ShiftPseudo<
  (outs GPR8:$dst),
  (ins GPR8:$src, GPR8:$cnt),
  "# Lsr8 PSEUDO",
  [(set i8:$dst, (AVRlsrLoop i8:$src, i8:$cnt))]
>;

def Lsr16 : ShiftPseudo<
  (outs DREGS:$dst),
   (ins DREGS:$src, GPR8:$cnt),
   "# Lsr16 PSEUDO",
   [(set i16:$dst, (AVRlsrLoop i16:$src, i8:$cnt))]
>;

def Rol8 : ShiftPseudo<
  (outs GPR8:$dst),
  (ins GPR8:$src, GPR8:$cnt),
  "# Rol8 PSEUDO",
  [(set i8:$dst, (AVRrolLoop i8:$src, i8:$cnt))]
>;

def Rol16 : ShiftPseudo<
  (outs DREGS:$dst),
  (ins DREGS:$src, GPR8:$cnt),
  "# Rol16 PSEUDO",
  [(set i16:$dst, (AVRrolLoop i16:$src, i8:$cnt))]
>;

def Ror8 : ShiftPseudo<
  (outs GPR8:$dst),
  (ins GPR8:$src, GPR8:$cnt),
  "# Ror8 PSEUDO",
  [(set i8:$dst, (AVRrorLoop i8:$src, i8:$cnt))]
>;

def Ror16 : ShiftPseudo<
  (outs DREGS:$dst),
  (ins DREGS:$src, GPR8:$cnt),
  "# Ror16 PSEUDO",
  [(set i16:$dst, (AVRrorLoop i16:$src, i8:$cnt))]
>;

def Asr8 : ShiftPseudo<
  (outs GPR8:$dst),
  (ins GPR8:$src, GPR8:$cnt),
  "# Asr8 PSEUDO",
  [(set i8:$dst, (AVRasrLoop i8:$src, i8:$cnt))]
>;

def Asr16 : ShiftPseudo<
  (outs DREGS:$dst),
   (ins DREGS:$src, GPR8:$cnt),
   "# Asr16 PSEUDO",
   [(set i16:$dst, (AVRasrLoop i16:$src, i8:$cnt))]
>;


//===----------------------------------------------------------------------===//
// Non-Instruction Patterns
//===----------------------------------------------------------------------===//

//:TODO: look in x86InstrCompiler.td for odd encoding trick related to
// add x, 128 -> sub x, -128. Clang is emitting an eor for this (ldi+eor)

// the add instruction always writes the carry flag
def : Pat<(addc i8:$src, i8:$src2),
          (ADDRdRr i8:$src, i8:$src2)>;
def : Pat<(addc DREGS:$src, DREGS:$src2),
          (ADDWRdRr DREGS:$src, DREGS:$src2)>;

// all sub instruction variants always writes the carry flag
def : Pat<(subc i8:$src, i8:$src2),
          (SUBRdRr i8:$src, i8:$src2)>;
def : Pat<(subc i16:$src, i16:$src2),
          (SUBWRdRr i16:$src, i16:$src2)>;
def : Pat<(subc i8:$src, imm:$src2),
          (SUBIRdK i8:$src, imm:$src2)>;
def : Pat<(subc i16:$src, imm:$src2),
          (SUBIWRdK i16:$src, imm:$src2)>;

// These patterns convert add (x, -imm) to sub (x, imm) since we dont have
// any add with imm instructions. Also take care of the adiw/sbiw instructions.
def : Pat<(add i16:$src1, imm0_63_neg:$src2),
          (SBIWRdK i16:$src1, (imm0_63_neg:$src2))>;
def : Pat<(add i16:$src1, imm:$src2),
          (SUBIWRdK i16:$src1, (imm16_neg_XFORM imm:$src2))>;
def : Pat<(addc i16:$src1, imm:$src2),
          (SUBIWRdK i16:$src1, (imm16_neg_XFORM imm:$src2))>;
def : Pat<(adde i16:$src1, imm:$src2),
          (SBCIWRdK i16:$src1, (imm16_neg_XFORM imm:$src2))>;

def : Pat<(add i8:$src1, imm:$src2),
          (SUBIRdK i8:$src1, (imm8_neg_XFORM imm:$src2))>;
def : Pat<(addc i8:$src1, imm:$src2),
          (SUBIRdK i8:$src1, (imm8_neg_XFORM imm:$src2))>;
def : Pat<(adde i8:$src1, imm:$src2),
          (SBCIRdK i8:$src1, (imm8_neg_XFORM imm:$src2))>;

// Calls.
def : Pat<(AVRcall (i16 tglobaladdr:$dst)),
          (CALLk tglobaladdr:$dst)>;
def : Pat<(AVRcall (i16 texternalsym:$dst)),
          (CALLk texternalsym:$dst)>;

// `anyext`
def : Pat<(i16 (anyext i8:$src)),
          (INSERT_SUBREG (i16 (IMPLICIT_DEF)), i8:$src, sub_lo)>;

// `trunc`
def : Pat<(i8 (trunc i16:$src)),
          (EXTRACT_SUBREG i16:$src, sub_lo)>;

// sext_inreg
def : Pat<(sext_inreg i16:$src, i8),
          (SEXT (i8 (EXTRACT_SUBREG i16:$src, sub_lo)))>;

// GlobalAddress
def : Pat<(i16 (AVRWrapper tglobaladdr:$dst)),
          (LDIWRdK tglobaladdr:$dst)>;
def : Pat<(add i16:$src, (AVRWrapper tglobaladdr:$src2)),
          (SUBIWRdK i16:$src, tglobaladdr:$src2)>;
def : Pat<(i8 (load (AVRWrapper tglobaladdr:$dst))),
          (LDSRdK tglobaladdr:$dst)>;
def : Pat<(i16 (load (AVRWrapper tglobaladdr:$dst))),
          (LDSWRdK tglobaladdr:$dst)>;
def : Pat<(store i8:$src, (i16 (AVRWrapper tglobaladdr:$dst))),
          (STSKRr tglobaladdr:$dst, i8:$src)>;
def : Pat<(store i16:$src, (i16 (AVRWrapper tglobaladdr:$dst))),
          (STSWKRr tglobaladdr:$dst, i16:$src)>;

// BlockAddress
def : Pat<(i16 (AVRWrapper tblockaddress:$dst)),
          (LDIWRdK tblockaddress:$dst)>;

// hi-reg truncation : trunc(int16 >> 8)
//:FIXME: i think it's better to emit an extract subreg node in the DAG than
// all this mess once we get optimal shift code
// lol... I think so, too. [@agnat]
def : Pat<(i8 (trunc (AVRlsr (AVRlsr (AVRlsr (AVRlsr (AVRlsr (AVRlsr (AVRlsr
                     (AVRlsr DREGS:$src)))))))))),
          (EXTRACT_SUBREG DREGS:$src, sub_hi)>;

// :FIXME: DAGCombiner produces an shl node after legalization from these seq:
// BR_JT -> (mul x, 2) -> (shl x, 1)
def : Pat<(shl i16:$src1, (i8 1)),
          (LSLWRd i16:$src1)>;

// Lowering of 'tst' node to 'TST' instruction.
// TST is an alias of AND Rd, Rd.
def : Pat<(AVRtst i8:$rd),
          (ANDRdRr GPR8:$rd, GPR8:$rd)>;

// Lowering of 'lsl' node to 'LSL' instruction.
// LSL is an alias of 'ADD Rd, Rd'
def : Pat<(AVRlsl i8:$rd),
          (ADDRdRr GPR8:$rd, GPR8:$rd)>;