BPFISelLowering.cpp 26.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
//===-- BPFISelLowering.cpp - BPF DAG Lowering Implementation  ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that BPF uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#include "BPFISelLowering.h"
#include "BPF.h"
#include "BPFSubtarget.h"
#include "BPFTargetMachine.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;

#define DEBUG_TYPE "bpf-lower"

static cl::opt<bool> BPFExpandMemcpyInOrder("bpf-expand-memcpy-in-order",
  cl::Hidden, cl::init(false),
  cl::desc("Expand memcpy into load/store pairs in order"));

static void fail(const SDLoc &DL, SelectionDAG &DAG, const Twine &Msg) {
  MachineFunction &MF = DAG.getMachineFunction();
  DAG.getContext()->diagnose(
      DiagnosticInfoUnsupported(MF.getFunction(), Msg, DL.getDebugLoc()));
}

static void fail(const SDLoc &DL, SelectionDAG &DAG, const char *Msg,
                 SDValue Val) {
  MachineFunction &MF = DAG.getMachineFunction();
  std::string Str;
  raw_string_ostream OS(Str);
  OS << Msg;
  Val->print(OS);
  OS.flush();
  DAG.getContext()->diagnose(
      DiagnosticInfoUnsupported(MF.getFunction(), Str, DL.getDebugLoc()));
}

BPFTargetLowering::BPFTargetLowering(const TargetMachine &TM,
                                     const BPFSubtarget &STI)
    : TargetLowering(TM) {

  // Set up the register classes.
  addRegisterClass(MVT::i64, &BPF::GPRRegClass);
  if (STI.getHasAlu32())
    addRegisterClass(MVT::i32, &BPF::GPR32RegClass);

  // Compute derived properties from the register classes
  computeRegisterProperties(STI.getRegisterInfo());

  setStackPointerRegisterToSaveRestore(BPF::R11);

  setOperationAction(ISD::BR_CC, MVT::i64, Custom);
  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
  setOperationAction(ISD::BRIND, MVT::Other, Expand);
  setOperationAction(ISD::BRCOND, MVT::Other, Expand);

  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);

  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom);
  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);

  for (auto VT : { MVT::i32, MVT::i64 }) {
    if (VT == MVT::i32 && !STI.getHasAlu32())
      continue;

    setOperationAction(ISD::SDIVREM, VT, Expand);
    setOperationAction(ISD::UDIVREM, VT, Expand);
    setOperationAction(ISD::SREM, VT, Expand);
    setOperationAction(ISD::UREM, VT, Expand);
    setOperationAction(ISD::MULHU, VT, Expand);
    setOperationAction(ISD::MULHS, VT, Expand);
    setOperationAction(ISD::UMUL_LOHI, VT, Expand);
    setOperationAction(ISD::SMUL_LOHI, VT, Expand);
    setOperationAction(ISD::ROTR, VT, Expand);
    setOperationAction(ISD::ROTL, VT, Expand);
    setOperationAction(ISD::SHL_PARTS, VT, Expand);
    setOperationAction(ISD::SRL_PARTS, VT, Expand);
    setOperationAction(ISD::SRA_PARTS, VT, Expand);
    setOperationAction(ISD::CTPOP, VT, Expand);

    setOperationAction(ISD::SETCC, VT, Expand);
    setOperationAction(ISD::SELECT, VT, Expand);
    setOperationAction(ISD::SELECT_CC, VT, Custom);
  }

  if (STI.getHasAlu32()) {
    setOperationAction(ISD::BSWAP, MVT::i32, Promote);
    setOperationAction(ISD::BR_CC, MVT::i32,
                       STI.getHasJmp32() ? Custom : Promote);
  }

  setOperationAction(ISD::CTTZ, MVT::i64, Custom);
  setOperationAction(ISD::CTLZ, MVT::i64, Custom);
  setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
  setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);

  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Expand);

  // Extended load operations for i1 types must be promoted
  for (MVT VT : MVT::integer_valuetypes()) {
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);

    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand);
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
  }

  setBooleanContents(ZeroOrOneBooleanContent);

  // Function alignments
  setMinFunctionAlignment(Align(8));
  setPrefFunctionAlignment(Align(8));

  if (BPFExpandMemcpyInOrder) {
    // LLVM generic code will try to expand memcpy into load/store pairs at this
    // stage which is before quite a few IR optimization passes, therefore the
    // loads and stores could potentially be moved apart from each other which
    // will cause trouble to memcpy pattern matcher inside kernel eBPF JIT
    // compilers.
    //
    // When -bpf-expand-memcpy-in-order specified, we want to defer the expand
    // of memcpy to later stage in IR optimization pipeline so those load/store
    // pairs won't be touched and could be kept in order. Hence, we set
    // MaxStoresPerMem* to zero to disable the generic getMemcpyLoadsAndStores
    // code path, and ask LLVM to use target expander EmitTargetCodeForMemcpy.
    MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 0;
    MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 0;
    MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = 0;
  } else {
    // inline memcpy() for kernel to see explicit copy
    unsigned CommonMaxStores =
      STI.getSelectionDAGInfo()->getCommonMaxStoresPerMemFunc();

    MaxStoresPerMemset = MaxStoresPerMemsetOptSize = CommonMaxStores;
    MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = CommonMaxStores;
    MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize = CommonMaxStores;
  }

  // CPU/Feature control
  HasAlu32 = STI.getHasAlu32();
  HasJmp32 = STI.getHasJmp32();
  HasJmpExt = STI.getHasJmpExt();
}

bool BPFTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
  return false;
}

std::pair<unsigned, const TargetRegisterClass *>
BPFTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
                                                StringRef Constraint,
                                                MVT VT) const {
  if (Constraint.size() == 1)
    // GCC Constraint Letters
    switch (Constraint[0]) {
    case 'r': // GENERAL_REGS
      return std::make_pair(0U, &BPF::GPRRegClass);
    default:
      break;
    }

  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}

SDValue BPFTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
  switch (Op.getOpcode()) {
  case ISD::BR_CC:
    return LowerBR_CC(Op, DAG);
  case ISD::GlobalAddress:
    return LowerGlobalAddress(Op, DAG);
  case ISD::SELECT_CC:
    return LowerSELECT_CC(Op, DAG);
  default:
    llvm_unreachable("unimplemented operand");
  }
}

// Calling Convention Implementation
#include "BPFGenCallingConv.inc"

SDValue BPFTargetLowering::LowerFormalArguments(
    SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
  switch (CallConv) {
  default:
    report_fatal_error("Unsupported calling convention");
  case CallingConv::C:
  case CallingConv::Fast:
    break;
  }

  MachineFunction &MF = DAG.getMachineFunction();
  MachineRegisterInfo &RegInfo = MF.getRegInfo();

  // Assign locations to all of the incoming arguments.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
  CCInfo.AnalyzeFormalArguments(Ins, getHasAlu32() ? CC_BPF32 : CC_BPF64);

  for (auto &VA : ArgLocs) {
    if (VA.isRegLoc()) {
      // Arguments passed in registers
      EVT RegVT = VA.getLocVT();
      MVT::SimpleValueType SimpleTy = RegVT.getSimpleVT().SimpleTy;
      switch (SimpleTy) {
      default: {
        errs() << "LowerFormalArguments Unhandled argument type: "
               << RegVT.getEVTString() << '\n';
        llvm_unreachable(0);
      }
      case MVT::i32:
      case MVT::i64:
        Register VReg = RegInfo.createVirtualRegister(
            SimpleTy == MVT::i64 ? &BPF::GPRRegClass : &BPF::GPR32RegClass);
        RegInfo.addLiveIn(VA.getLocReg(), VReg);
        SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT);

        // If this is an value that has been promoted to wider types, insert an
        // assert[sz]ext to capture this, then truncate to the right size.
        if (VA.getLocInfo() == CCValAssign::SExt)
          ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue,
                                 DAG.getValueType(VA.getValVT()));
        else if (VA.getLocInfo() == CCValAssign::ZExt)
          ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue,
                                 DAG.getValueType(VA.getValVT()));

        if (VA.getLocInfo() != CCValAssign::Full)
          ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);

        InVals.push_back(ArgValue);

	break;
      }
    } else {
      fail(DL, DAG, "defined with too many args");
      InVals.push_back(DAG.getConstant(0, DL, VA.getLocVT()));
    }
  }

  if (IsVarArg || MF.getFunction().hasStructRetAttr()) {
    fail(DL, DAG, "functions with VarArgs or StructRet are not supported");
  }

  return Chain;
}

const unsigned BPFTargetLowering::MaxArgs = 5;

SDValue BPFTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
                                     SmallVectorImpl<SDValue> &InVals) const {
  SelectionDAG &DAG = CLI.DAG;
  auto &Outs = CLI.Outs;
  auto &OutVals = CLI.OutVals;
  auto &Ins = CLI.Ins;
  SDValue Chain = CLI.Chain;
  SDValue Callee = CLI.Callee;
  bool &IsTailCall = CLI.IsTailCall;
  CallingConv::ID CallConv = CLI.CallConv;
  bool IsVarArg = CLI.IsVarArg;
  MachineFunction &MF = DAG.getMachineFunction();

  // BPF target does not support tail call optimization.
  IsTailCall = false;

  switch (CallConv) {
  default:
    report_fatal_error("Unsupported calling convention");
  case CallingConv::Fast:
  case CallingConv::C:
    break;
  }

  // Analyze operands of the call, assigning locations to each operand.
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());

  CCInfo.AnalyzeCallOperands(Outs, getHasAlu32() ? CC_BPF32 : CC_BPF64);

  unsigned NumBytes = CCInfo.getNextStackOffset();

  if (Outs.size() > MaxArgs)
    fail(CLI.DL, DAG, "too many args to ", Callee);

  for (auto &Arg : Outs) {
    ISD::ArgFlagsTy Flags = Arg.Flags;
    if (!Flags.isByVal())
      continue;

    fail(CLI.DL, DAG, "pass by value not supported ", Callee);
  }

  auto PtrVT = getPointerTy(MF.getDataLayout());
  Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);

  SmallVector<std::pair<unsigned, SDValue>, MaxArgs> RegsToPass;

  // Walk arg assignments
  for (unsigned i = 0,
                e = std::min(static_cast<unsigned>(ArgLocs.size()), MaxArgs);
       i != e; ++i) {
    CCValAssign &VA = ArgLocs[i];
    SDValue Arg = OutVals[i];

    // Promote the value if needed.
    switch (VA.getLocInfo()) {
    default:
      llvm_unreachable("Unknown loc info");
    case CCValAssign::Full:
      break;
    case CCValAssign::SExt:
      Arg = DAG.getNode(ISD::SIGN_EXTEND, CLI.DL, VA.getLocVT(), Arg);
      break;
    case CCValAssign::ZExt:
      Arg = DAG.getNode(ISD::ZERO_EXTEND, CLI.DL, VA.getLocVT(), Arg);
      break;
    case CCValAssign::AExt:
      Arg = DAG.getNode(ISD::ANY_EXTEND, CLI.DL, VA.getLocVT(), Arg);
      break;
    }

    // Push arguments into RegsToPass vector
    if (VA.isRegLoc())
      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
    else
      llvm_unreachable("call arg pass bug");
  }

  SDValue InFlag;

  // Build a sequence of copy-to-reg nodes chained together with token chain and
  // flag operands which copy the outgoing args into registers.  The InFlag in
  // necessary since all emitted instructions must be stuck together.
  for (auto &Reg : RegsToPass) {
    Chain = DAG.getCopyToReg(Chain, CLI.DL, Reg.first, Reg.second, InFlag);
    InFlag = Chain.getValue(1);
  }

  // If the callee is a GlobalAddress node (quite common, every direct call is)
  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
  // Likewise ExternalSymbol -> TargetExternalSymbol.
  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), CLI.DL, PtrVT,
                                        G->getOffset(), 0);
  } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
    Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT, 0);
    fail(CLI.DL, DAG, Twine("A call to built-in function '"
                            + StringRef(E->getSymbol())
                            + "' is not supported."));
  }

  // Returns a chain & a flag for retval copy to use.
  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
  SmallVector<SDValue, 8> Ops;
  Ops.push_back(Chain);
  Ops.push_back(Callee);

  // Add argument registers to the end of the list so that they are
  // known live into the call.
  for (auto &Reg : RegsToPass)
    Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));

  if (InFlag.getNode())
    Ops.push_back(InFlag);

  Chain = DAG.getNode(BPFISD::CALL, CLI.DL, NodeTys, Ops);
  InFlag = Chain.getValue(1);

  // Create the CALLSEQ_END node.
  Chain = DAG.getCALLSEQ_END(
      Chain, DAG.getConstant(NumBytes, CLI.DL, PtrVT, true),
      DAG.getConstant(0, CLI.DL, PtrVT, true), InFlag, CLI.DL);
  InFlag = Chain.getValue(1);

  // Handle result values, copying them out of physregs into vregs that we
  // return.
  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, CLI.DL, DAG,
                         InVals);
}

SDValue
BPFTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
                               bool IsVarArg,
                               const SmallVectorImpl<ISD::OutputArg> &Outs,
                               const SmallVectorImpl<SDValue> &OutVals,
                               const SDLoc &DL, SelectionDAG &DAG) const {
  unsigned Opc = BPFISD::RET_FLAG;

  // CCValAssign - represent the assignment of the return value to a location
  SmallVector<CCValAssign, 16> RVLocs;
  MachineFunction &MF = DAG.getMachineFunction();

  // CCState - Info about the registers and stack slot.
  CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());

  if (MF.getFunction().getReturnType()->isAggregateType()) {
    fail(DL, DAG, "only integer returns supported");
    return DAG.getNode(Opc, DL, MVT::Other, Chain);
  }

  // Analize return values.
  CCInfo.AnalyzeReturn(Outs, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64);

  SDValue Flag;
  SmallVector<SDValue, 4> RetOps(1, Chain);

  // Copy the result values into the output registers.
  for (unsigned i = 0; i != RVLocs.size(); ++i) {
    CCValAssign &VA = RVLocs[i];
    assert(VA.isRegLoc() && "Can only return in registers!");

    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag);

    // Guarantee that all emitted copies are stuck together,
    // avoiding something bad.
    Flag = Chain.getValue(1);
    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
  }

  RetOps[0] = Chain; // Update chain.

  // Add the flag if we have it.
  if (Flag.getNode())
    RetOps.push_back(Flag);

  return DAG.getNode(Opc, DL, MVT::Other, RetOps);
}

SDValue BPFTargetLowering::LowerCallResult(
    SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {

  MachineFunction &MF = DAG.getMachineFunction();
  // Assign locations to each value returned by this call.
  SmallVector<CCValAssign, 16> RVLocs;
  CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());

  if (Ins.size() >= 2) {
    fail(DL, DAG, "only small returns supported");
    for (unsigned i = 0, e = Ins.size(); i != e; ++i)
      InVals.push_back(DAG.getConstant(0, DL, Ins[i].VT));
    return DAG.getCopyFromReg(Chain, DL, 1, Ins[0].VT, InFlag).getValue(1);
  }

  CCInfo.AnalyzeCallResult(Ins, getHasAlu32() ? RetCC_BPF32 : RetCC_BPF64);

  // Copy all of the result registers out of their specified physreg.
  for (auto &Val : RVLocs) {
    Chain = DAG.getCopyFromReg(Chain, DL, Val.getLocReg(),
                               Val.getValVT(), InFlag).getValue(1);
    InFlag = Chain.getValue(2);
    InVals.push_back(Chain.getValue(0));
  }

  return Chain;
}

static void NegateCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
  switch (CC) {
  default:
    break;
  case ISD::SETULT:
  case ISD::SETULE:
  case ISD::SETLT:
  case ISD::SETLE:
    CC = ISD::getSetCCSwappedOperands(CC);
    std::swap(LHS, RHS);
    break;
  }
}

SDValue BPFTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
  SDValue Chain = Op.getOperand(0);
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
  SDValue LHS = Op.getOperand(2);
  SDValue RHS = Op.getOperand(3);
  SDValue Dest = Op.getOperand(4);
  SDLoc DL(Op);

  if (!getHasJmpExt())
    NegateCC(LHS, RHS, CC);

  return DAG.getNode(BPFISD::BR_CC, DL, Op.getValueType(), Chain, LHS, RHS,
                     DAG.getConstant(CC, DL, LHS.getValueType()), Dest);
}

SDValue BPFTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
  SDValue LHS = Op.getOperand(0);
  SDValue RHS = Op.getOperand(1);
  SDValue TrueV = Op.getOperand(2);
  SDValue FalseV = Op.getOperand(3);
  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
  SDLoc DL(Op);

  if (!getHasJmpExt())
    NegateCC(LHS, RHS, CC);

  SDValue TargetCC = DAG.getConstant(CC, DL, LHS.getValueType());
  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
  SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};

  return DAG.getNode(BPFISD::SELECT_CC, DL, VTs, Ops);
}

const char *BPFTargetLowering::getTargetNodeName(unsigned Opcode) const {
  switch ((BPFISD::NodeType)Opcode) {
  case BPFISD::FIRST_NUMBER:
    break;
  case BPFISD::RET_FLAG:
    return "BPFISD::RET_FLAG";
  case BPFISD::CALL:
    return "BPFISD::CALL";
  case BPFISD::SELECT_CC:
    return "BPFISD::SELECT_CC";
  case BPFISD::BR_CC:
    return "BPFISD::BR_CC";
  case BPFISD::Wrapper:
    return "BPFISD::Wrapper";
  case BPFISD::MEMCPY:
    return "BPFISD::MEMCPY";
  }
  return nullptr;
}

SDValue BPFTargetLowering::LowerGlobalAddress(SDValue Op,
                                              SelectionDAG &DAG) const {
  auto N = cast<GlobalAddressSDNode>(Op);
  assert(N->getOffset() == 0 && "Invalid offset for global address");

  SDLoc DL(Op);
  const GlobalValue *GV = N->getGlobal();
  SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i64);

  return DAG.getNode(BPFISD::Wrapper, DL, MVT::i64, GA);
}

unsigned
BPFTargetLowering::EmitSubregExt(MachineInstr &MI, MachineBasicBlock *BB,
                                 unsigned Reg, bool isSigned) const {
  const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
  const TargetRegisterClass *RC = getRegClassFor(MVT::i64);
  int RShiftOp = isSigned ? BPF::SRA_ri : BPF::SRL_ri;
  MachineFunction *F = BB->getParent();
  DebugLoc DL = MI.getDebugLoc();

  MachineRegisterInfo &RegInfo = F->getRegInfo();
  Register PromotedReg0 = RegInfo.createVirtualRegister(RC);
  Register PromotedReg1 = RegInfo.createVirtualRegister(RC);
  Register PromotedReg2 = RegInfo.createVirtualRegister(RC);
  BuildMI(BB, DL, TII.get(BPF::MOV_32_64), PromotedReg0).addReg(Reg);
  BuildMI(BB, DL, TII.get(BPF::SLL_ri), PromotedReg1)
    .addReg(PromotedReg0).addImm(32);
  BuildMI(BB, DL, TII.get(RShiftOp), PromotedReg2)
    .addReg(PromotedReg1).addImm(32);

  return PromotedReg2;
}

MachineBasicBlock *
BPFTargetLowering::EmitInstrWithCustomInserterMemcpy(MachineInstr &MI,
                                                     MachineBasicBlock *BB)
                                                     const {
  MachineFunction *MF = MI.getParent()->getParent();
  MachineRegisterInfo &MRI = MF->getRegInfo();
  MachineInstrBuilder MIB(*MF, MI);
  unsigned ScratchReg;

  // This function does custom insertion during lowering BPFISD::MEMCPY which
  // only has two register operands from memcpy semantics, the copy source
  // address and the copy destination address.
  //
  // Because we will expand BPFISD::MEMCPY into load/store pairs, we will need
  // a third scratch register to serve as the destination register of load and
  // source register of store.
  //
  // The scratch register here is with the Define | Dead | EarlyClobber flags.
  // The EarlyClobber flag has the semantic property that the operand it is
  // attached to is clobbered before the rest of the inputs are read. Hence it
  // must be unique among the operands to the instruction. The Define flag is
  // needed to coerce the machine verifier that an Undef value isn't a problem
  // as we anyway is loading memory into it. The Dead flag is needed as the
  // value in scratch isn't supposed to be used by any other instruction.
  ScratchReg = MRI.createVirtualRegister(&BPF::GPRRegClass);
  MIB.addReg(ScratchReg,
             RegState::Define | RegState::Dead | RegState::EarlyClobber);

  return BB;
}

MachineBasicBlock *
BPFTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
                                               MachineBasicBlock *BB) const {
  const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
  DebugLoc DL = MI.getDebugLoc();
  unsigned Opc = MI.getOpcode();
  bool isSelectRROp = (Opc == BPF::Select ||
                       Opc == BPF::Select_64_32 ||
                       Opc == BPF::Select_32 ||
                       Opc == BPF::Select_32_64);

  bool isMemcpyOp = Opc == BPF::MEMCPY;

#ifndef NDEBUG
  bool isSelectRIOp = (Opc == BPF::Select_Ri ||
                       Opc == BPF::Select_Ri_64_32 ||
                       Opc == BPF::Select_Ri_32 ||
                       Opc == BPF::Select_Ri_32_64);


  assert((isSelectRROp || isSelectRIOp || isMemcpyOp) &&
         "Unexpected instr type to insert");
#endif

  if (isMemcpyOp)
    return EmitInstrWithCustomInserterMemcpy(MI, BB);

  bool is32BitCmp = (Opc == BPF::Select_32 ||
                     Opc == BPF::Select_32_64 ||
                     Opc == BPF::Select_Ri_32 ||
                     Opc == BPF::Select_Ri_32_64);

  // To "insert" a SELECT instruction, we actually have to insert the diamond
  // control-flow pattern.  The incoming instruction knows the destination vreg
  // to set, the condition code register to branch on, the true/false values to
  // select between, and a branch opcode to use.
  const BasicBlock *LLVM_BB = BB->getBasicBlock();
  MachineFunction::iterator I = ++BB->getIterator();

  // ThisMBB:
  // ...
  //  TrueVal = ...
  //  jmp_XX r1, r2 goto Copy1MBB
  //  fallthrough --> Copy0MBB
  MachineBasicBlock *ThisMBB = BB;
  MachineFunction *F = BB->getParent();
  MachineBasicBlock *Copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
  MachineBasicBlock *Copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);

  F->insert(I, Copy0MBB);
  F->insert(I, Copy1MBB);
  // Update machine-CFG edges by transferring all successors of the current
  // block to the new block which will contain the Phi node for the select.
  Copy1MBB->splice(Copy1MBB->begin(), BB,
                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
  Copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
  // Next, add the true and fallthrough blocks as its successors.
  BB->addSuccessor(Copy0MBB);
  BB->addSuccessor(Copy1MBB);

  // Insert Branch if Flag
  int CC = MI.getOperand(3).getImm();
  int NewCC;
  switch (CC) {
#define SET_NEWCC(X, Y) \
  case ISD::X: \
    if (is32BitCmp && HasJmp32) \
      NewCC = isSelectRROp ? BPF::Y##_rr_32 : BPF::Y##_ri_32; \
    else \
      NewCC = isSelectRROp ? BPF::Y##_rr : BPF::Y##_ri; \
    break
  SET_NEWCC(SETGT, JSGT);
  SET_NEWCC(SETUGT, JUGT);
  SET_NEWCC(SETGE, JSGE);
  SET_NEWCC(SETUGE, JUGE);
  SET_NEWCC(SETEQ, JEQ);
  SET_NEWCC(SETNE, JNE);
  SET_NEWCC(SETLT, JSLT);
  SET_NEWCC(SETULT, JULT);
  SET_NEWCC(SETLE, JSLE);
  SET_NEWCC(SETULE, JULE);
  default:
    report_fatal_error("unimplemented select CondCode " + Twine(CC));
  }

  Register LHS = MI.getOperand(1).getReg();
  bool isSignedCmp = (CC == ISD::SETGT ||
                      CC == ISD::SETGE ||
                      CC == ISD::SETLT ||
                      CC == ISD::SETLE);

  // eBPF at the moment only has 64-bit comparison. Any 32-bit comparison need
  // to be promoted, however if the 32-bit comparison operands are destination
  // registers then they are implicitly zero-extended already, there is no
  // need of explicit zero-extend sequence for them.
  //
  // We simply do extension for all situations in this method, but we will
  // try to remove those unnecessary in BPFMIPeephole pass.
  if (is32BitCmp && !HasJmp32)
    LHS = EmitSubregExt(MI, BB, LHS, isSignedCmp);

  if (isSelectRROp) {
    Register RHS = MI.getOperand(2).getReg();

    if (is32BitCmp && !HasJmp32)
      RHS = EmitSubregExt(MI, BB, RHS, isSignedCmp);

    BuildMI(BB, DL, TII.get(NewCC)).addReg(LHS).addReg(RHS).addMBB(Copy1MBB);
  } else {
    int64_t imm32 = MI.getOperand(2).getImm();
    // sanity check before we build J*_ri instruction.
    assert (isInt<32>(imm32));
    BuildMI(BB, DL, TII.get(NewCC))
        .addReg(LHS).addImm(imm32).addMBB(Copy1MBB);
  }

  // Copy0MBB:
  //  %FalseValue = ...
  //  # fallthrough to Copy1MBB
  BB = Copy0MBB;

  // Update machine-CFG edges
  BB->addSuccessor(Copy1MBB);

  // Copy1MBB:
  //  %Result = phi [ %FalseValue, Copy0MBB ], [ %TrueValue, ThisMBB ]
  // ...
  BB = Copy1MBB;
  BuildMI(*BB, BB->begin(), DL, TII.get(BPF::PHI), MI.getOperand(0).getReg())
      .addReg(MI.getOperand(5).getReg())
      .addMBB(Copy0MBB)
      .addReg(MI.getOperand(4).getReg())
      .addMBB(ThisMBB);

  MI.eraseFromParent(); // The pseudo instruction is gone now.
  return BB;
}

EVT BPFTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
                                          EVT VT) const {
  return getHasAlu32() ? MVT::i32 : MVT::i64;
}

MVT BPFTargetLowering::getScalarShiftAmountTy(const DataLayout &DL,
                                              EVT VT) const {
  return (getHasAlu32() && VT == MVT::i32) ? MVT::i32 : MVT::i64;
}