MipsBranchExpansion.cpp 29.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
//===----------------------- MipsBranchExpansion.cpp ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This pass do two things:
/// - it expands a branch or jump instruction into a long branch if its offset
///   is too large to fit into its immediate field,
/// - it inserts nops to prevent forbidden slot hazards.
///
/// The reason why this pass combines these two tasks is that one of these two
/// tasks can break the result of the previous one.
///
/// Example of that is a situation where at first, no branch should be expanded,
/// but after adding at least one nop somewhere in the code to prevent a
/// forbidden slot hazard, offset of some branches may go out of range. In that
/// case it is necessary to check again if there is some branch that needs
/// expansion. On the other hand, expanding some branch may cause a control
/// transfer instruction to appear in the forbidden slot, which is a hazard that
/// should be fixed. This pass alternates between this two tasks untill no
/// changes are made. Only then we can be sure that all branches are expanded
/// properly, and no hazard situations exist.
///
/// Regarding branch expanding:
///
/// When branch instruction like beqzc or bnezc has offset that is too large
/// to fit into its immediate field, it has to be expanded to another
/// instruction or series of instructions.
///
/// FIXME: Fix pc-region jump instructions which cross 256MB segment boundaries.
/// TODO: Handle out of range bc, b (pseudo) instructions.
///
/// Regarding compact branch hazard prevention:
///
/// Hazards handled: forbidden slots for MIPSR6.
///
/// A forbidden slot hazard occurs when a compact branch instruction is executed
/// and the adjacent instruction in memory is a control transfer instruction
/// such as a branch or jump, ERET, ERETNC, DERET, WAIT and PAUSE.
///
/// For example:
///
/// 0x8004      bnec    a1,v0,<P+0x18>
/// 0x8008      beqc    a1,a2,<P+0x54>
///
/// In such cases, the processor is required to signal a Reserved Instruction
/// exception.
///
/// Here, if the instruction at 0x8004 is executed, the processor will raise an
/// exception as there is a control transfer instruction at 0x8008.
///
/// There are two sources of forbidden slot hazards:
///
/// A) A previous pass has created a compact branch directly.
/// B) Transforming a delay slot branch into compact branch. This case can be
///    difficult to process as lookahead for hazards is insufficient, as
///    backwards delay slot fillling can also produce hazards in previously
///    processed instuctions.
///
/// In future this pass can be extended (or new pass can be created) to handle
/// other pipeline hazards, such as various MIPS1 hazards, processor errata that
/// require instruction reorganization, etc.
///
/// This pass has to run after the delay slot filler as that pass can introduce
/// pipeline hazards such as compact branch hazard, hence the existing hazard
/// recognizer is not suitable.
///
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/MipsABIInfo.h"
#include "MCTargetDesc/MipsBaseInfo.h"
#include "MCTargetDesc/MipsMCNaCl.h"
#include "MCTargetDesc/MipsMCTargetDesc.h"
#include "Mips.h"
#include "MipsInstrInfo.h"
#include "MipsMachineFunction.h"
#include "MipsSubtarget.h"
#include "MipsTargetMachine.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "mips-branch-expansion"

STATISTIC(NumInsertedNops, "Number of nops inserted");
STATISTIC(LongBranches, "Number of long branches.");

static cl::opt<bool>
    SkipLongBranch("skip-mips-long-branch", cl::init(false),
                   cl::desc("MIPS: Skip branch expansion pass."), cl::Hidden);

static cl::opt<bool>
    ForceLongBranch("force-mips-long-branch", cl::init(false),
                    cl::desc("MIPS: Expand all branches to long format."),
                    cl::Hidden);

namespace {

using Iter = MachineBasicBlock::iterator;
using ReverseIter = MachineBasicBlock::reverse_iterator;

struct MBBInfo {
  uint64_t Size = 0;
  bool HasLongBranch = false;
  MachineInstr *Br = nullptr;
  uint64_t Offset = 0;
  MBBInfo() = default;
};

class MipsBranchExpansion : public MachineFunctionPass {
public:
  static char ID;

  MipsBranchExpansion() : MachineFunctionPass(ID), ABI(MipsABIInfo::Unknown()) {
    initializeMipsBranchExpansionPass(*PassRegistry::getPassRegistry());
  }

  StringRef getPassName() const override {
    return "Mips Branch Expansion Pass";
  }

  bool runOnMachineFunction(MachineFunction &F) override;

  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoVRegs);
  }

private:
  void splitMBB(MachineBasicBlock *MBB);
  void initMBBInfo();
  int64_t computeOffset(const MachineInstr *Br);
  uint64_t computeOffsetFromTheBeginning(int MBB);
  void replaceBranch(MachineBasicBlock &MBB, Iter Br, const DebugLoc &DL,
                     MachineBasicBlock *MBBOpnd);
  bool buildProperJumpMI(MachineBasicBlock *MBB,
                         MachineBasicBlock::iterator Pos, DebugLoc DL);
  void expandToLongBranch(MBBInfo &Info);
  bool handleForbiddenSlot();
  bool handlePossibleLongBranch();

  const MipsSubtarget *STI;
  const MipsInstrInfo *TII;

  MachineFunction *MFp;
  SmallVector<MBBInfo, 16> MBBInfos;
  bool IsPIC;
  MipsABIInfo ABI;
  bool ForceLongBranchFirstPass = false;
};

} // end of anonymous namespace

char MipsBranchExpansion::ID = 0;

INITIALIZE_PASS(MipsBranchExpansion, DEBUG_TYPE,
                "Expand out of range branch instructions and fix forbidden"
                " slot hazards",
                false, false)

/// Returns a pass that clears pipeline hazards.
FunctionPass *llvm::createMipsBranchExpansion() {
  return new MipsBranchExpansion();
}

// Find the next real instruction from the current position in current basic
// block.
static Iter getNextMachineInstrInBB(Iter Position) {
  Iter I = Position, E = Position->getParent()->end();
  I = std::find_if_not(I, E,
                       [](const Iter &Insn) { return Insn->isTransient(); });

  return I;
}

// Find the next real instruction from the current position, looking through
// basic block boundaries.
static std::pair<Iter, bool> getNextMachineInstr(Iter Position,
                                                 MachineBasicBlock *Parent) {
  if (Position == Parent->end()) {
    do {
      MachineBasicBlock *Succ = Parent->getNextNode();
      if (Succ != nullptr && Parent->isSuccessor(Succ)) {
        Position = Succ->begin();
        Parent = Succ;
      } else {
        return std::make_pair(Position, true);
      }
    } while (Parent->empty());
  }

  Iter Instr = getNextMachineInstrInBB(Position);
  if (Instr == Parent->end()) {
    return getNextMachineInstr(Instr, Parent);
  }
  return std::make_pair(Instr, false);
}

/// Iterate over list of Br's operands and search for a MachineBasicBlock
/// operand.
static MachineBasicBlock *getTargetMBB(const MachineInstr &Br) {
  for (unsigned I = 0, E = Br.getDesc().getNumOperands(); I < E; ++I) {
    const MachineOperand &MO = Br.getOperand(I);

    if (MO.isMBB())
      return MO.getMBB();
  }

  llvm_unreachable("This instruction does not have an MBB operand.");
}

// Traverse the list of instructions backwards until a non-debug instruction is
// found or it reaches E.
static ReverseIter getNonDebugInstr(ReverseIter B, const ReverseIter &E) {
  for (; B != E; ++B)
    if (!B->isDebugInstr())
      return B;

  return E;
}

// Split MBB if it has two direct jumps/branches.
void MipsBranchExpansion::splitMBB(MachineBasicBlock *MBB) {
  ReverseIter End = MBB->rend();
  ReverseIter LastBr = getNonDebugInstr(MBB->rbegin(), End);

  // Return if MBB has no branch instructions.
  if ((LastBr == End) ||
      (!LastBr->isConditionalBranch() && !LastBr->isUnconditionalBranch()))
    return;

  ReverseIter FirstBr = getNonDebugInstr(std::next(LastBr), End);

  // MBB has only one branch instruction if FirstBr is not a branch
  // instruction.
  if ((FirstBr == End) ||
      (!FirstBr->isConditionalBranch() && !FirstBr->isUnconditionalBranch()))
    return;

  assert(!FirstBr->isIndirectBranch() && "Unexpected indirect branch found.");

  // Create a new MBB. Move instructions in MBB to the newly created MBB.
  MachineBasicBlock *NewMBB =
      MFp->CreateMachineBasicBlock(MBB->getBasicBlock());

  // Insert NewMBB and fix control flow.
  MachineBasicBlock *Tgt = getTargetMBB(*FirstBr);
  NewMBB->transferSuccessors(MBB);
  if (Tgt != getTargetMBB(*LastBr))
    NewMBB->removeSuccessor(Tgt, true);
  MBB->addSuccessor(NewMBB);
  MBB->addSuccessor(Tgt);
  MFp->insert(std::next(MachineFunction::iterator(MBB)), NewMBB);

  NewMBB->splice(NewMBB->end(), MBB, LastBr.getReverse(), MBB->end());
}

// Fill MBBInfos.
void MipsBranchExpansion::initMBBInfo() {
  // Split the MBBs if they have two branches. Each basic block should have at
  // most one branch after this loop is executed.
  for (auto &MBB : *MFp)
    splitMBB(&MBB);

  MFp->RenumberBlocks();
  MBBInfos.clear();
  MBBInfos.resize(MFp->size());

  for (unsigned I = 0, E = MBBInfos.size(); I < E; ++I) {
    MachineBasicBlock *MBB = MFp->getBlockNumbered(I);

    // Compute size of MBB.
    for (MachineBasicBlock::instr_iterator MI = MBB->instr_begin();
         MI != MBB->instr_end(); ++MI)
      MBBInfos[I].Size += TII->getInstSizeInBytes(*MI);
  }
}

// Compute offset of branch in number of bytes.
int64_t MipsBranchExpansion::computeOffset(const MachineInstr *Br) {
  int64_t Offset = 0;
  int ThisMBB = Br->getParent()->getNumber();
  int TargetMBB = getTargetMBB(*Br)->getNumber();

  // Compute offset of a forward branch.
  if (ThisMBB < TargetMBB) {
    for (int N = ThisMBB + 1; N < TargetMBB; ++N)
      Offset += MBBInfos[N].Size;

    return Offset + 4;
  }

  // Compute offset of a backward branch.
  for (int N = ThisMBB; N >= TargetMBB; --N)
    Offset += MBBInfos[N].Size;

  return -Offset + 4;
}

// Returns the distance in bytes up until MBB
uint64_t MipsBranchExpansion::computeOffsetFromTheBeginning(int MBB) {
  uint64_t Offset = 0;
  for (int N = 0; N < MBB; ++N)
    Offset += MBBInfos[N].Size;
  return Offset;
}

// Replace Br with a branch which has the opposite condition code and a
// MachineBasicBlock operand MBBOpnd.
void MipsBranchExpansion::replaceBranch(MachineBasicBlock &MBB, Iter Br,
                                        const DebugLoc &DL,
                                        MachineBasicBlock *MBBOpnd) {
  unsigned NewOpc = TII->getOppositeBranchOpc(Br->getOpcode());
  const MCInstrDesc &NewDesc = TII->get(NewOpc);

  MachineInstrBuilder MIB = BuildMI(MBB, Br, DL, NewDesc);

  for (unsigned I = 0, E = Br->getDesc().getNumOperands(); I < E; ++I) {
    MachineOperand &MO = Br->getOperand(I);

    if (!MO.isReg()) {
      assert(MO.isMBB() && "MBB operand expected.");
      break;
    }

    MIB.addReg(MO.getReg());
  }

  MIB.addMBB(MBBOpnd);

  if (Br->hasDelaySlot()) {
    // Bundle the instruction in the delay slot to the newly created branch
    // and erase the original branch.
    assert(Br->isBundledWithSucc());
    MachineBasicBlock::instr_iterator II = Br.getInstrIterator();
    MIBundleBuilder(&*MIB).append((++II)->removeFromBundle());
  }
  Br->eraseFromParent();
}

bool MipsBranchExpansion::buildProperJumpMI(MachineBasicBlock *MBB,
                                            MachineBasicBlock::iterator Pos,
                                            DebugLoc DL) {
  bool HasR6 = ABI.IsN64() ? STI->hasMips64r6() : STI->hasMips32r6();
  bool AddImm = HasR6 && !STI->useIndirectJumpsHazard();

  unsigned JR = ABI.IsN64() ? Mips::JR64 : Mips::JR;
  unsigned JIC = ABI.IsN64() ? Mips::JIC64 : Mips::JIC;
  unsigned JR_HB = ABI.IsN64() ? Mips::JR_HB64 : Mips::JR_HB;
  unsigned JR_HB_R6 = ABI.IsN64() ? Mips::JR_HB64_R6 : Mips::JR_HB_R6;

  unsigned JumpOp;
  if (STI->useIndirectJumpsHazard())
    JumpOp = HasR6 ? JR_HB_R6 : JR_HB;
  else
    JumpOp = HasR6 ? JIC : JR;

  if (JumpOp == Mips::JIC && STI->inMicroMipsMode())
    JumpOp = Mips::JIC_MMR6;

  unsigned ATReg = ABI.IsN64() ? Mips::AT_64 : Mips::AT;
  MachineInstrBuilder Instr =
      BuildMI(*MBB, Pos, DL, TII->get(JumpOp)).addReg(ATReg);
  if (AddImm)
    Instr.addImm(0);

  return !AddImm;
}

// Expand branch instructions to long branches.
// TODO: This function has to be fixed for beqz16 and bnez16, because it
// currently assumes that all branches have 16-bit offsets, and will produce
// wrong code if branches whose allowed offsets are [-128, -126, ..., 126]
// are present.
void MipsBranchExpansion::expandToLongBranch(MBBInfo &I) {
  MachineBasicBlock::iterator Pos;
  MachineBasicBlock *MBB = I.Br->getParent(), *TgtMBB = getTargetMBB(*I.Br);
  DebugLoc DL = I.Br->getDebugLoc();
  const BasicBlock *BB = MBB->getBasicBlock();
  MachineFunction::iterator FallThroughMBB = ++MachineFunction::iterator(MBB);
  MachineBasicBlock *LongBrMBB = MFp->CreateMachineBasicBlock(BB);

  MFp->insert(FallThroughMBB, LongBrMBB);
  MBB->replaceSuccessor(TgtMBB, LongBrMBB);

  if (IsPIC) {
    MachineBasicBlock *BalTgtMBB = MFp->CreateMachineBasicBlock(BB);
    MFp->insert(FallThroughMBB, BalTgtMBB);
    LongBrMBB->addSuccessor(BalTgtMBB);
    BalTgtMBB->addSuccessor(TgtMBB);

    // We must select between the MIPS32r6/MIPS64r6 BALC (which is a normal
    // instruction) and the pre-MIPS32r6/MIPS64r6 definition (which is an
    // pseudo-instruction wrapping BGEZAL).
    const unsigned BalOp =
        STI->hasMips32r6()
            ? STI->inMicroMipsMode() ? Mips::BALC_MMR6 : Mips::BALC
            : STI->inMicroMipsMode() ? Mips::BAL_BR_MM : Mips::BAL_BR;

    if (!ABI.IsN64()) {
      // Pre R6:
      // $longbr:
      //  addiu $sp, $sp, -8
      //  sw $ra, 0($sp)
      //  lui $at, %hi($tgt - $baltgt)
      //  bal $baltgt
      //  addiu $at, $at, %lo($tgt - $baltgt)
      // $baltgt:
      //  addu $at, $ra, $at
      //  lw $ra, 0($sp)
      //  jr $at
      //  addiu $sp, $sp, 8
      // $fallthrough:
      //

      // R6:
      // $longbr:
      //  addiu $sp, $sp, -8
      //  sw $ra, 0($sp)
      //  lui $at, %hi($tgt - $baltgt)
      //  addiu $at, $at, %lo($tgt - $baltgt)
      //  balc $baltgt
      // $baltgt:
      //  addu $at, $ra, $at
      //  lw $ra, 0($sp)
      //  addiu $sp, $sp, 8
      //  jic $at, 0
      // $fallthrough:

      Pos = LongBrMBB->begin();

      BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::ADDiu), Mips::SP)
          .addReg(Mips::SP)
          .addImm(-8);
      BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::SW))
          .addReg(Mips::RA)
          .addReg(Mips::SP)
          .addImm(0);

      // LUi and ADDiu instructions create 32-bit offset of the target basic
      // block from the target of BAL(C) instruction.  We cannot use immediate
      // value for this offset because it cannot be determined accurately when
      // the program has inline assembly statements.  We therefore use the
      // relocation expressions %hi($tgt-$baltgt) and %lo($tgt-$baltgt) which
      // are resolved during the fixup, so the values will always be correct.
      //
      // Since we cannot create %hi($tgt-$baltgt) and %lo($tgt-$baltgt)
      // expressions at this point (it is possible only at the MC layer),
      // we replace LUi and ADDiu with pseudo instructions
      // LONG_BRANCH_LUi and LONG_BRANCH_ADDiu, and add both basic
      // blocks as operands to these instructions.  When lowering these pseudo
      // instructions to LUi and ADDiu in the MC layer, we will create
      // %hi($tgt-$baltgt) and %lo($tgt-$baltgt) expressions and add them as
      // operands to lowered instructions.

      BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_LUi), Mips::AT)
          .addMBB(TgtMBB, MipsII::MO_ABS_HI)
          .addMBB(BalTgtMBB);

      MachineInstrBuilder BalInstr =
          BuildMI(*MFp, DL, TII->get(BalOp)).addMBB(BalTgtMBB);
      MachineInstrBuilder ADDiuInstr =
          BuildMI(*MFp, DL, TII->get(Mips::LONG_BRANCH_ADDiu), Mips::AT)
              .addReg(Mips::AT)
              .addMBB(TgtMBB, MipsII::MO_ABS_LO)
              .addMBB(BalTgtMBB);
      if (STI->hasMips32r6()) {
        LongBrMBB->insert(Pos, ADDiuInstr);
        LongBrMBB->insert(Pos, BalInstr);
      } else {
        LongBrMBB->insert(Pos, BalInstr);
        LongBrMBB->insert(Pos, ADDiuInstr);
        LongBrMBB->rbegin()->bundleWithPred();
      }

      Pos = BalTgtMBB->begin();

      BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::ADDu), Mips::AT)
          .addReg(Mips::RA)
          .addReg(Mips::AT);
      BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::LW), Mips::RA)
          .addReg(Mips::SP)
          .addImm(0);
      if (STI->isTargetNaCl())
        // Bundle-align the target of indirect branch JR.
        TgtMBB->setAlignment(MIPS_NACL_BUNDLE_ALIGN);

      // In NaCl, modifying the sp is not allowed in branch delay slot.
      // For MIPS32R6, we can skip using a delay slot branch.
      bool hasDelaySlot = buildProperJumpMI(BalTgtMBB, Pos, DL);

      if (STI->isTargetNaCl() || !hasDelaySlot) {
        BuildMI(*BalTgtMBB, std::prev(Pos), DL, TII->get(Mips::ADDiu), Mips::SP)
            .addReg(Mips::SP)
            .addImm(8);
      }
      if (hasDelaySlot) {
        if (STI->isTargetNaCl()) {
          BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::NOP));
        } else {
          BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::ADDiu), Mips::SP)
              .addReg(Mips::SP)
              .addImm(8);
        }
        BalTgtMBB->rbegin()->bundleWithPred();
      }
    } else {
      // Pre R6:
      // $longbr:
      //  daddiu $sp, $sp, -16
      //  sd $ra, 0($sp)
      //  daddiu $at, $zero, %hi($tgt - $baltgt)
      //  dsll $at, $at, 16
      //  bal $baltgt
      //  daddiu $at, $at, %lo($tgt - $baltgt)
      // $baltgt:
      //  daddu $at, $ra, $at
      //  ld $ra, 0($sp)
      //  jr64 $at
      //  daddiu $sp, $sp, 16
      // $fallthrough:

      // R6:
      // $longbr:
      //  daddiu $sp, $sp, -16
      //  sd $ra, 0($sp)
      //  daddiu $at, $zero, %hi($tgt - $baltgt)
      //  dsll $at, $at, 16
      //  daddiu $at, $at, %lo($tgt - $baltgt)
      //  balc $baltgt
      // $baltgt:
      //  daddu $at, $ra, $at
      //  ld $ra, 0($sp)
      //  daddiu $sp, $sp, 16
      //  jic $at, 0
      // $fallthrough:

      // We assume the branch is within-function, and that offset is within
      // +/- 2GB.  High 32 bits will therefore always be zero.

      // Note that this will work even if the offset is negative, because
      // of the +1 modification that's added in that case.  For example, if the
      // offset is -1MB (0xFFFFFFFFFFF00000), the computation for %higher is
      //
      // 0xFFFFFFFFFFF00000 + 0x80008000 = 0x000000007FF08000
      //
      // and the bits [47:32] are zero.  For %highest
      //
      // 0xFFFFFFFFFFF00000 + 0x800080008000 = 0x000080007FF08000
      //
      // and the bits [63:48] are zero.

      Pos = LongBrMBB->begin();

      BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::DADDiu), Mips::SP_64)
          .addReg(Mips::SP_64)
          .addImm(-16);
      BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::SD))
          .addReg(Mips::RA_64)
          .addReg(Mips::SP_64)
          .addImm(0);
      BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_DADDiu),
              Mips::AT_64)
          .addReg(Mips::ZERO_64)
          .addMBB(TgtMBB, MipsII::MO_ABS_HI)
          .addMBB(BalTgtMBB);
      BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::DSLL), Mips::AT_64)
          .addReg(Mips::AT_64)
          .addImm(16);

      MachineInstrBuilder BalInstr =
          BuildMI(*MFp, DL, TII->get(BalOp)).addMBB(BalTgtMBB);
      MachineInstrBuilder DADDiuInstr =
          BuildMI(*MFp, DL, TII->get(Mips::LONG_BRANCH_DADDiu), Mips::AT_64)
              .addReg(Mips::AT_64)
              .addMBB(TgtMBB, MipsII::MO_ABS_LO)
              .addMBB(BalTgtMBB);
      if (STI->hasMips32r6()) {
        LongBrMBB->insert(Pos, DADDiuInstr);
        LongBrMBB->insert(Pos, BalInstr);
      } else {
        LongBrMBB->insert(Pos, BalInstr);
        LongBrMBB->insert(Pos, DADDiuInstr);
        LongBrMBB->rbegin()->bundleWithPred();
      }

      Pos = BalTgtMBB->begin();

      BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::DADDu), Mips::AT_64)
          .addReg(Mips::RA_64)
          .addReg(Mips::AT_64);
      BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::LD), Mips::RA_64)
          .addReg(Mips::SP_64)
          .addImm(0);

      bool hasDelaySlot = buildProperJumpMI(BalTgtMBB, Pos, DL);
      // If there is no delay slot, Insert stack adjustment before
      if (!hasDelaySlot) {
        BuildMI(*BalTgtMBB, std::prev(Pos), DL, TII->get(Mips::DADDiu),
                Mips::SP_64)
            .addReg(Mips::SP_64)
            .addImm(16);
      } else {
        BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::DADDiu), Mips::SP_64)
            .addReg(Mips::SP_64)
            .addImm(16);
        BalTgtMBB->rbegin()->bundleWithPred();
      }
    }
  } else { // Not PIC
    Pos = LongBrMBB->begin();
    LongBrMBB->addSuccessor(TgtMBB);

    // Compute the position of the potentiall jump instruction (basic blocks
    // before + 4 for the instruction)
    uint64_t JOffset = computeOffsetFromTheBeginning(MBB->getNumber()) +
                       MBBInfos[MBB->getNumber()].Size + 4;
    uint64_t TgtMBBOffset = computeOffsetFromTheBeginning(TgtMBB->getNumber());
    // If it's a forward jump, then TgtMBBOffset will be shifted by two
    // instructions
    if (JOffset < TgtMBBOffset)
      TgtMBBOffset += 2 * 4;
    // Compare 4 upper bits to check if it's the same segment
    bool SameSegmentJump = JOffset >> 28 == TgtMBBOffset >> 28;

    if (STI->hasMips32r6() && TII->isBranchOffsetInRange(Mips::BC, I.Offset)) {
      // R6:
      // $longbr:
      //  bc $tgt
      // $fallthrough:
      //
      BuildMI(*LongBrMBB, Pos, DL,
              TII->get(STI->inMicroMipsMode() ? Mips::BC_MMR6 : Mips::BC))
          .addMBB(TgtMBB);
    } else if (SameSegmentJump) {
      // Pre R6:
      // $longbr:
      //  j $tgt
      //  nop
      // $fallthrough:
      //
      MIBundleBuilder(*LongBrMBB, Pos)
          .append(BuildMI(*MFp, DL, TII->get(Mips::J)).addMBB(TgtMBB))
          .append(BuildMI(*MFp, DL, TII->get(Mips::NOP)));
    } else {
      // At this point, offset where we need to branch does not fit into
      // immediate field of the branch instruction and is not in the same
      // segment as jump instruction. Therefore we will break it into couple
      // instructions, where we first load the offset into register, and then we
      // do branch register.
      if (ABI.IsN64()) {
        BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_LUi2Op_64),
                Mips::AT_64)
            .addMBB(TgtMBB, MipsII::MO_HIGHEST);
        BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_DADDiu2Op),
                Mips::AT_64)
            .addReg(Mips::AT_64)
            .addMBB(TgtMBB, MipsII::MO_HIGHER);
        BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::DSLL), Mips::AT_64)
            .addReg(Mips::AT_64)
            .addImm(16);
        BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_DADDiu2Op),
                Mips::AT_64)
            .addReg(Mips::AT_64)
            .addMBB(TgtMBB, MipsII::MO_ABS_HI);
        BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::DSLL), Mips::AT_64)
            .addReg(Mips::AT_64)
            .addImm(16);
        BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_DADDiu2Op),
                Mips::AT_64)
            .addReg(Mips::AT_64)
            .addMBB(TgtMBB, MipsII::MO_ABS_LO);
      } else {
        BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_LUi2Op),
                Mips::AT)
            .addMBB(TgtMBB, MipsII::MO_ABS_HI);
        BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_ADDiu2Op),
                Mips::AT)
            .addReg(Mips::AT)
            .addMBB(TgtMBB, MipsII::MO_ABS_LO);
      }
      buildProperJumpMI(LongBrMBB, Pos, DL);
    }
  }

  if (I.Br->isUnconditionalBranch()) {
    // Change branch destination.
    assert(I.Br->getDesc().getNumOperands() == 1);
    I.Br->RemoveOperand(0);
    I.Br->addOperand(MachineOperand::CreateMBB(LongBrMBB));
  } else
    // Change branch destination and reverse condition.
    replaceBranch(*MBB, I.Br, DL, &*FallThroughMBB);
}

static void emitGPDisp(MachineFunction &F, const MipsInstrInfo *TII) {
  MachineBasicBlock &MBB = F.front();
  MachineBasicBlock::iterator I = MBB.begin();
  DebugLoc DL = MBB.findDebugLoc(MBB.begin());
  BuildMI(MBB, I, DL, TII->get(Mips::LUi), Mips::V0)
      .addExternalSymbol("_gp_disp", MipsII::MO_ABS_HI);
  BuildMI(MBB, I, DL, TII->get(Mips::ADDiu), Mips::V0)
      .addReg(Mips::V0)
      .addExternalSymbol("_gp_disp", MipsII::MO_ABS_LO);
  MBB.removeLiveIn(Mips::V0);
}

bool MipsBranchExpansion::handleForbiddenSlot() {
  // Forbidden slot hazards are only defined for MIPSR6 but not microMIPSR6.
  if (!STI->hasMips32r6() || STI->inMicroMipsMode())
    return false;

  bool Changed = false;

  for (MachineFunction::iterator FI = MFp->begin(); FI != MFp->end(); ++FI) {
    for (Iter I = FI->begin(); I != FI->end(); ++I) {

      // Forbidden slot hazard handling. Use lookahead over state.
      if (!TII->HasForbiddenSlot(*I))
        continue;

      Iter Inst;
      bool LastInstInFunction =
          std::next(I) == FI->end() && std::next(FI) == MFp->end();
      if (!LastInstInFunction) {
        std::pair<Iter, bool> Res = getNextMachineInstr(std::next(I), &*FI);
        LastInstInFunction |= Res.second;
        Inst = Res.first;
      }

      if (LastInstInFunction || !TII->SafeInForbiddenSlot(*Inst)) {

        MachineBasicBlock::instr_iterator Iit = I->getIterator();
        if (std::next(Iit) == FI->end() ||
            std::next(Iit)->getOpcode() != Mips::NOP) {
          Changed = true;
          MIBundleBuilder(&*I).append(
              BuildMI(*MFp, I->getDebugLoc(), TII->get(Mips::NOP)));
          NumInsertedNops++;
        }
      }
    }
  }

  return Changed;
}

bool MipsBranchExpansion::handlePossibleLongBranch() {
  if (STI->inMips16Mode() || !STI->enableLongBranchPass())
    return false;

  if (SkipLongBranch)
    return false;

  bool EverMadeChange = false, MadeChange = true;

  while (MadeChange) {
    MadeChange = false;

    initMBBInfo();

    for (unsigned I = 0, E = MBBInfos.size(); I < E; ++I) {
      MachineBasicBlock *MBB = MFp->getBlockNumbered(I);
      // Search for MBB's branch instruction.
      ReverseIter End = MBB->rend();
      ReverseIter Br = getNonDebugInstr(MBB->rbegin(), End);

      if ((Br != End) && Br->isBranch() && !Br->isIndirectBranch() &&
          (Br->isConditionalBranch() ||
           (Br->isUnconditionalBranch() && IsPIC))) {
        int64_t Offset = computeOffset(&*Br);

        if (STI->isTargetNaCl()) {
          // The offset calculation does not include sandboxing instructions
          // that will be added later in the MC layer.  Since at this point we
          // don't know the exact amount of code that "sandboxing" will add, we
          // conservatively estimate that code will not grow more than 100%.
          Offset *= 2;
        }

        if (ForceLongBranchFirstPass ||
            !TII->isBranchOffsetInRange(Br->getOpcode(), Offset)) {
          MBBInfos[I].Offset = Offset;
          MBBInfos[I].Br = &*Br;
        }
      }
    } // End for

    ForceLongBranchFirstPass = false;

    SmallVectorImpl<MBBInfo>::iterator I, E = MBBInfos.end();

    for (I = MBBInfos.begin(); I != E; ++I) {
      // Skip if this MBB doesn't have a branch or the branch has already been
      // converted to a long branch.
      if (!I->Br)
        continue;

      expandToLongBranch(*I);
      ++LongBranches;
      EverMadeChange = MadeChange = true;
    }

    MFp->RenumberBlocks();
  }

  return EverMadeChange;
}

bool MipsBranchExpansion::runOnMachineFunction(MachineFunction &MF) {
  const TargetMachine &TM = MF.getTarget();
  IsPIC = TM.isPositionIndependent();
  ABI = static_cast<const MipsTargetMachine &>(TM).getABI();
  STI = &static_cast<const MipsSubtarget &>(MF.getSubtarget());
  TII = static_cast<const MipsInstrInfo *>(STI->getInstrInfo());

  if (IsPIC && ABI.IsO32() &&
      MF.getInfo<MipsFunctionInfo>()->globalBaseRegSet())
    emitGPDisp(MF, TII);

  MFp = &MF;

  ForceLongBranchFirstPass = ForceLongBranch;
  // Run these two at least once
  bool longBranchChanged = handlePossibleLongBranch();
  bool forbiddenSlotChanged = handleForbiddenSlot();

  bool Changed = longBranchChanged || forbiddenSlotChanged;

  // Then run them alternatively while there are changes
  while (forbiddenSlotChanged) {
    longBranchChanged = handlePossibleLongBranch();
    if (!longBranchChanged)
      break;
    forbiddenSlotChanged = handleForbiddenSlot();
  }

  return Changed;
}