MipsRegisterBankInfo.cpp
23.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
//===- MipsRegisterBankInfo.cpp ---------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the RegisterBankInfo class for Mips.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "MipsRegisterBankInfo.h"
#include "MipsInstrInfo.h"
#include "MipsTargetMachine.h"
#include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
#include "llvm/CodeGen/GlobalISel/LegalizationArtifactCombiner.h"
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#define GET_TARGET_REGBANK_IMPL
#include "MipsGenRegisterBank.inc"
namespace llvm {
namespace Mips {
enum PartialMappingIdx {
PMI_GPR,
PMI_SPR,
PMI_DPR,
PMI_MSA,
PMI_Min = PMI_GPR,
};
RegisterBankInfo::PartialMapping PartMappings[]{
{0, 32, GPRBRegBank},
{0, 32, FPRBRegBank},
{0, 64, FPRBRegBank},
{0, 128, FPRBRegBank}
};
enum ValueMappingIdx {
InvalidIdx = 0,
GPRIdx = 1,
SPRIdx = 4,
DPRIdx = 7,
MSAIdx = 10
};
RegisterBankInfo::ValueMapping ValueMappings[] = {
// invalid
{nullptr, 0},
// up to 3 operands in GPRs
{&PartMappings[PMI_GPR - PMI_Min], 1},
{&PartMappings[PMI_GPR - PMI_Min], 1},
{&PartMappings[PMI_GPR - PMI_Min], 1},
// up to 3 operands in FPRs - single precission
{&PartMappings[PMI_SPR - PMI_Min], 1},
{&PartMappings[PMI_SPR - PMI_Min], 1},
{&PartMappings[PMI_SPR - PMI_Min], 1},
// up to 3 operands in FPRs - double precission
{&PartMappings[PMI_DPR - PMI_Min], 1},
{&PartMappings[PMI_DPR - PMI_Min], 1},
{&PartMappings[PMI_DPR - PMI_Min], 1},
// up to 3 operands in FPRs - MSA
{&PartMappings[PMI_MSA - PMI_Min], 1},
{&PartMappings[PMI_MSA - PMI_Min], 1},
{&PartMappings[PMI_MSA - PMI_Min], 1}
};
} // end namespace Mips
} // end namespace llvm
using namespace llvm;
MipsRegisterBankInfo::MipsRegisterBankInfo(const TargetRegisterInfo &TRI)
: MipsGenRegisterBankInfo() {}
const RegisterBank &
MipsRegisterBankInfo::getRegBankFromRegClass(const TargetRegisterClass &RC,
LLT) const {
using namespace Mips;
switch (RC.getID()) {
case Mips::GPR32RegClassID:
case Mips::CPU16Regs_and_GPRMM16ZeroRegClassID:
case Mips::GPRMM16MovePPairFirstRegClassID:
case Mips::CPU16Regs_and_GPRMM16MovePPairSecondRegClassID:
case Mips::GPRMM16MoveP_and_CPU16Regs_and_GPRMM16ZeroRegClassID:
case Mips::GPRMM16MovePPairFirst_and_GPRMM16MovePPairSecondRegClassID:
case Mips::SP32RegClassID:
case Mips::GP32RegClassID:
return getRegBank(Mips::GPRBRegBankID);
case Mips::FGRCCRegClassID:
case Mips::FGR32RegClassID:
case Mips::FGR64RegClassID:
case Mips::AFGR64RegClassID:
case Mips::MSA128BRegClassID:
case Mips::MSA128HRegClassID:
case Mips::MSA128WRegClassID:
case Mips::MSA128DRegClassID:
return getRegBank(Mips::FPRBRegBankID);
default:
llvm_unreachable("Register class not supported");
}
}
// Instructions where all register operands are floating point.
static bool isFloatingPointOpcode(unsigned Opc) {
switch (Opc) {
case TargetOpcode::G_FCONSTANT:
case TargetOpcode::G_FADD:
case TargetOpcode::G_FSUB:
case TargetOpcode::G_FMUL:
case TargetOpcode::G_FDIV:
case TargetOpcode::G_FABS:
case TargetOpcode::G_FSQRT:
case TargetOpcode::G_FCEIL:
case TargetOpcode::G_FFLOOR:
case TargetOpcode::G_FPEXT:
case TargetOpcode::G_FPTRUNC:
return true;
default:
return false;
}
}
// Instructions where use operands are floating point registers.
// Def operands are general purpose.
static bool isFloatingPointOpcodeUse(unsigned Opc) {
switch (Opc) {
case TargetOpcode::G_FPTOSI:
case TargetOpcode::G_FPTOUI:
case TargetOpcode::G_FCMP:
case Mips::MFC1:
case Mips::ExtractElementF64:
case Mips::ExtractElementF64_64:
return true;
default:
return isFloatingPointOpcode(Opc);
}
}
// Instructions where def operands are floating point registers.
// Use operands are general purpose.
static bool isFloatingPointOpcodeDef(unsigned Opc) {
switch (Opc) {
case TargetOpcode::G_SITOFP:
case TargetOpcode::G_UITOFP:
case Mips::MTC1:
case Mips::BuildPairF64:
case Mips::BuildPairF64_64:
return true;
default:
return isFloatingPointOpcode(Opc);
}
}
static bool isAmbiguous(unsigned Opc) {
switch (Opc) {
case TargetOpcode::G_LOAD:
case TargetOpcode::G_STORE:
case TargetOpcode::G_PHI:
case TargetOpcode::G_SELECT:
case TargetOpcode::G_IMPLICIT_DEF:
return true;
default:
return false;
}
}
void MipsRegisterBankInfo::AmbiguousRegDefUseContainer::addDefUses(
Register Reg, const MachineRegisterInfo &MRI) {
assert(!MRI.getType(Reg).isPointer() &&
"Pointers are gprb, they should not be considered as ambiguous.\n");
for (MachineInstr &UseMI : MRI.use_instructions(Reg)) {
MachineInstr *NonCopyInstr = skipCopiesOutgoing(&UseMI);
// Copy with many uses.
if (NonCopyInstr->getOpcode() == TargetOpcode::COPY &&
!Register::isPhysicalRegister(NonCopyInstr->getOperand(0).getReg()))
addDefUses(NonCopyInstr->getOperand(0).getReg(), MRI);
else
DefUses.push_back(skipCopiesOutgoing(&UseMI));
}
}
void MipsRegisterBankInfo::AmbiguousRegDefUseContainer::addUseDef(
Register Reg, const MachineRegisterInfo &MRI) {
assert(!MRI.getType(Reg).isPointer() &&
"Pointers are gprb, they should not be considered as ambiguous.\n");
MachineInstr *DefMI = MRI.getVRegDef(Reg);
UseDefs.push_back(skipCopiesIncoming(DefMI));
}
MachineInstr *
MipsRegisterBankInfo::AmbiguousRegDefUseContainer::skipCopiesOutgoing(
MachineInstr *MI) const {
const MachineFunction &MF = *MI->getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
MachineInstr *Ret = MI;
while (Ret->getOpcode() == TargetOpcode::COPY &&
!Register::isPhysicalRegister(Ret->getOperand(0).getReg()) &&
MRI.hasOneUse(Ret->getOperand(0).getReg())) {
Ret = &(*MRI.use_instr_begin(Ret->getOperand(0).getReg()));
}
return Ret;
}
MachineInstr *
MipsRegisterBankInfo::AmbiguousRegDefUseContainer::skipCopiesIncoming(
MachineInstr *MI) const {
const MachineFunction &MF = *MI->getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
MachineInstr *Ret = MI;
while (Ret->getOpcode() == TargetOpcode::COPY &&
!Register::isPhysicalRegister(Ret->getOperand(1).getReg()))
Ret = MRI.getVRegDef(Ret->getOperand(1).getReg());
return Ret;
}
MipsRegisterBankInfo::AmbiguousRegDefUseContainer::AmbiguousRegDefUseContainer(
const MachineInstr *MI) {
assert(isAmbiguous(MI->getOpcode()) &&
"Not implemented for non Ambiguous opcode.\n");
const MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
if (MI->getOpcode() == TargetOpcode::G_LOAD)
addDefUses(MI->getOperand(0).getReg(), MRI);
if (MI->getOpcode() == TargetOpcode::G_STORE)
addUseDef(MI->getOperand(0).getReg(), MRI);
if (MI->getOpcode() == TargetOpcode::G_PHI) {
addDefUses(MI->getOperand(0).getReg(), MRI);
for (unsigned i = 1; i < MI->getNumOperands(); i += 2)
addUseDef(MI->getOperand(i).getReg(), MRI);
}
if (MI->getOpcode() == TargetOpcode::G_SELECT) {
addDefUses(MI->getOperand(0).getReg(), MRI);
addUseDef(MI->getOperand(2).getReg(), MRI);
addUseDef(MI->getOperand(3).getReg(), MRI);
}
if (MI->getOpcode() == TargetOpcode::G_IMPLICIT_DEF)
addDefUses(MI->getOperand(0).getReg(), MRI);
}
bool MipsRegisterBankInfo::TypeInfoForMF::visit(
const MachineInstr *MI, const MachineInstr *WaitingForTypeOfMI) {
assert(isAmbiguous(MI->getOpcode()) && "Visiting non-Ambiguous opcode.\n");
if (wasVisited(MI))
return true; // InstType has already been determined for MI.
startVisit(MI);
AmbiguousRegDefUseContainer DefUseContainer(MI);
// Visit instructions where MI's DEF operands are USED.
if (visitAdjacentInstrs(MI, DefUseContainer.getDefUses(), true))
return true;
// Visit instructions that DEFINE MI's USE operands.
if (visitAdjacentInstrs(MI, DefUseContainer.getUseDefs(), false))
return true;
// All MI's adjacent instructions, are ambiguous.
if (!WaitingForTypeOfMI) {
// This is chain of ambiguous instructions.
setTypes(MI, InstType::Ambiguous);
return true;
}
// Excluding WaitingForTypeOfMI, MI is either connected to chains of ambiguous
// instructions or has no other adjacent instructions. Anyway InstType could
// not be determined. There could be unexplored path from some of
// WaitingForTypeOfMI's adjacent instructions to an instruction with only one
// mapping available.
// We are done with this branch, add MI to WaitingForTypeOfMI's WaitingQueue,
// this way when WaitingForTypeOfMI figures out its InstType same InstType
// will be assigned to all instructions in this branch.
addToWaitingQueue(WaitingForTypeOfMI, MI);
return false;
}
bool MipsRegisterBankInfo::TypeInfoForMF::visitAdjacentInstrs(
const MachineInstr *MI, SmallVectorImpl<MachineInstr *> &AdjacentInstrs,
bool isDefUse) {
while (!AdjacentInstrs.empty()) {
MachineInstr *AdjMI = AdjacentInstrs.pop_back_val();
if (isDefUse ? isFloatingPointOpcodeUse(AdjMI->getOpcode())
: isFloatingPointOpcodeDef(AdjMI->getOpcode())) {
setTypes(MI, InstType::FloatingPoint);
return true;
}
// Determine InstType from register bank of phys register that is
// 'isDefUse ? def : use' of this copy.
if (AdjMI->getOpcode() == TargetOpcode::COPY) {
setTypesAccordingToPhysicalRegister(MI, AdjMI, isDefUse ? 0 : 1);
return true;
}
// Defaults to integer instruction. Includes G_MERGE_VALUES and
// G_UNMERGE_VALUES.
if (!isAmbiguous(AdjMI->getOpcode())) {
setTypes(MI, InstType::Integer);
return true;
}
// When AdjMI was visited first, MI has to continue to explore remaining
// adjacent instructions and determine InstType without visiting AdjMI.
if (!wasVisited(AdjMI) ||
getRecordedTypeForInstr(AdjMI) != InstType::NotDetermined) {
if (visit(AdjMI, MI)) {
// InstType is successfully determined and is same as for AdjMI.
setTypes(MI, getRecordedTypeForInstr(AdjMI));
return true;
}
}
}
return false;
}
void MipsRegisterBankInfo::TypeInfoForMF::setTypes(const MachineInstr *MI,
InstType InstTy) {
changeRecordedTypeForInstr(MI, InstTy);
for (const MachineInstr *WaitingInstr : getWaitingQueueFor(MI)) {
setTypes(WaitingInstr, InstTy);
}
}
void MipsRegisterBankInfo::TypeInfoForMF::setTypesAccordingToPhysicalRegister(
const MachineInstr *MI, const MachineInstr *CopyInst, unsigned Op) {
assert((Register::isPhysicalRegister(CopyInst->getOperand(Op).getReg())) &&
"Copies of non physical registers should not be considered here.\n");
const MachineFunction &MF = *CopyInst->getMF();
const MachineRegisterInfo &MRI = MF.getRegInfo();
const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
const RegisterBankInfo &RBI =
*CopyInst->getMF()->getSubtarget().getRegBankInfo();
const RegisterBank *Bank =
RBI.getRegBank(CopyInst->getOperand(Op).getReg(), MRI, TRI);
if (Bank == &Mips::FPRBRegBank)
setTypes(MI, InstType::FloatingPoint);
else if (Bank == &Mips::GPRBRegBank)
setTypes(MI, InstType::Integer);
else
llvm_unreachable("Unsupported register bank.\n");
}
MipsRegisterBankInfo::InstType
MipsRegisterBankInfo::TypeInfoForMF::determineInstType(const MachineInstr *MI) {
visit(MI, nullptr);
return getRecordedTypeForInstr(MI);
}
void MipsRegisterBankInfo::TypeInfoForMF::cleanupIfNewFunction(
llvm::StringRef FunctionName) {
if (MFName != FunctionName) {
MFName = FunctionName;
WaitingQueues.clear();
Types.clear();
}
}
static const MipsRegisterBankInfo::ValueMapping *
getMSAMapping(const MachineFunction &MF) {
assert(static_cast<const MipsSubtarget &>(MF.getSubtarget()).hasMSA() &&
"MSA mapping not available on target without MSA.");
return &Mips::ValueMappings[Mips::MSAIdx];
}
static const MipsRegisterBankInfo::ValueMapping *getFprbMapping(unsigned Size) {
return Size == 32 ? &Mips::ValueMappings[Mips::SPRIdx]
: &Mips::ValueMappings[Mips::DPRIdx];
}
static const unsigned CustomMappingID = 1;
// Only 64 bit mapping is available in fprb and will be marked as custom, i.e.
// will be split into two 32 bit registers in gprb.
static const MipsRegisterBankInfo::ValueMapping *
getGprbOrCustomMapping(unsigned Size, unsigned &MappingID) {
if (Size == 32)
return &Mips::ValueMappings[Mips::GPRIdx];
MappingID = CustomMappingID;
return &Mips::ValueMappings[Mips::DPRIdx];
}
const RegisterBankInfo::InstructionMapping &
MipsRegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
static TypeInfoForMF TI;
// Reset TI internal data when MF changes.
TI.cleanupIfNewFunction(MI.getMF()->getName());
unsigned Opc = MI.getOpcode();
const MachineFunction &MF = *MI.getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
if (MI.getOpcode() != TargetOpcode::G_PHI) {
const RegisterBankInfo::InstructionMapping &Mapping =
getInstrMappingImpl(MI);
if (Mapping.isValid())
return Mapping;
}
using namespace TargetOpcode;
unsigned NumOperands = MI.getNumOperands();
const ValueMapping *OperandsMapping = &Mips::ValueMappings[Mips::GPRIdx];
unsigned MappingID = DefaultMappingID;
// Check if LLT sizes match sizes of available register banks.
for (const MachineOperand &Op : MI.operands()) {
if (Op.isReg()) {
LLT RegTy = MRI.getType(Op.getReg());
if (RegTy.isScalar() &&
(RegTy.getSizeInBits() != 32 && RegTy.getSizeInBits() != 64))
return getInvalidInstructionMapping();
if (RegTy.isVector() && RegTy.getSizeInBits() != 128)
return getInvalidInstructionMapping();
}
}
const LLT Op0Ty = MRI.getType(MI.getOperand(0).getReg());
unsigned Op0Size = Op0Ty.getSizeInBits();
InstType InstTy = InstType::Integer;
switch (Opc) {
case G_TRUNC:
case G_UMULH:
case G_ZEXTLOAD:
case G_SEXTLOAD:
case G_PTR_ADD:
case G_INTTOPTR:
case G_PTRTOINT:
case G_AND:
case G_OR:
case G_XOR:
case G_SHL:
case G_ASHR:
case G_LSHR:
case G_BRINDIRECT:
case G_VASTART:
case G_BSWAP:
OperandsMapping = &Mips::ValueMappings[Mips::GPRIdx];
break;
case G_ADD:
case G_SUB:
case G_MUL:
case G_SDIV:
case G_SREM:
case G_UDIV:
case G_UREM:
OperandsMapping = &Mips::ValueMappings[Mips::GPRIdx];
if (Op0Size == 128)
OperandsMapping = getMSAMapping(MF);
break;
case G_STORE:
case G_LOAD:
if (Op0Size == 128) {
OperandsMapping = getOperandsMapping(
{getMSAMapping(MF), &Mips::ValueMappings[Mips::GPRIdx]});
break;
}
if (!Op0Ty.isPointer())
InstTy = TI.determineInstType(&MI);
if (InstTy == InstType::FloatingPoint ||
(Op0Size == 64 && InstTy == InstType::Ambiguous))
OperandsMapping = getOperandsMapping(
{getFprbMapping(Op0Size), &Mips::ValueMappings[Mips::GPRIdx]});
else
OperandsMapping =
getOperandsMapping({getGprbOrCustomMapping(Op0Size, MappingID),
&Mips::ValueMappings[Mips::GPRIdx]});
break;
case G_PHI:
if (!Op0Ty.isPointer())
InstTy = TI.determineInstType(&MI);
// PHI is copylike and should have one regbank in mapping for def register.
if (InstTy == InstType::Integer && Op0Size == 64) {
OperandsMapping =
getOperandsMapping({&Mips::ValueMappings[Mips::DPRIdx]});
return getInstructionMapping(CustomMappingID, /*Cost=*/1, OperandsMapping,
/*NumOperands=*/1);
}
// Use default handling for PHI, i.e. set reg bank of def operand to match
// register banks of use operands.
return getInstrMappingImpl(MI);
case G_SELECT: {
if (!Op0Ty.isPointer())
InstTy = TI.determineInstType(&MI);
if (InstTy == InstType::FloatingPoint ||
(Op0Size == 64 && InstTy == InstType::Ambiguous)) {
const RegisterBankInfo::ValueMapping *Bank = getFprbMapping(Op0Size);
OperandsMapping = getOperandsMapping(
{Bank, &Mips::ValueMappings[Mips::GPRIdx], Bank, Bank});
break;
} else {
const RegisterBankInfo::ValueMapping *Bank =
getGprbOrCustomMapping(Op0Size, MappingID);
OperandsMapping = getOperandsMapping(
{Bank, &Mips::ValueMappings[Mips::GPRIdx], Bank, Bank});
}
break;
}
case G_IMPLICIT_DEF:
if (!Op0Ty.isPointer())
InstTy = TI.determineInstType(&MI);
if (InstTy == InstType::FloatingPoint)
OperandsMapping = getFprbMapping(Op0Size);
else
OperandsMapping = getGprbOrCustomMapping(Op0Size, MappingID);
break;
case G_UNMERGE_VALUES:
OperandsMapping = getOperandsMapping({&Mips::ValueMappings[Mips::GPRIdx],
&Mips::ValueMappings[Mips::GPRIdx],
&Mips::ValueMappings[Mips::DPRIdx]});
MappingID = CustomMappingID;
break;
case G_MERGE_VALUES:
OperandsMapping = getOperandsMapping({&Mips::ValueMappings[Mips::DPRIdx],
&Mips::ValueMappings[Mips::GPRIdx],
&Mips::ValueMappings[Mips::GPRIdx]});
MappingID = CustomMappingID;
break;
case G_FADD:
case G_FSUB:
case G_FMUL:
case G_FDIV:
case G_FABS:
case G_FSQRT:
OperandsMapping = getFprbMapping(Op0Size);
if (Op0Size == 128)
OperandsMapping = getMSAMapping(MF);
break;
case G_FCONSTANT:
OperandsMapping = getOperandsMapping({getFprbMapping(Op0Size), nullptr});
break;
case G_FCMP: {
unsigned Op2Size = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
OperandsMapping =
getOperandsMapping({&Mips::ValueMappings[Mips::GPRIdx], nullptr,
getFprbMapping(Op2Size), getFprbMapping(Op2Size)});
break;
}
case G_FPEXT:
OperandsMapping = getOperandsMapping({&Mips::ValueMappings[Mips::DPRIdx],
&Mips::ValueMappings[Mips::SPRIdx]});
break;
case G_FPTRUNC:
OperandsMapping = getOperandsMapping({&Mips::ValueMappings[Mips::SPRIdx],
&Mips::ValueMappings[Mips::DPRIdx]});
break;
case G_FPTOSI: {
assert((Op0Size == 32) && "Unsupported integer size");
unsigned SizeFP = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
OperandsMapping = getOperandsMapping(
{&Mips::ValueMappings[Mips::GPRIdx], getFprbMapping(SizeFP)});
break;
}
case G_SITOFP:
assert((MRI.getType(MI.getOperand(1).getReg()).getSizeInBits() == 32) &&
"Unsupported integer size");
OperandsMapping = getOperandsMapping(
{getFprbMapping(Op0Size), &Mips::ValueMappings[Mips::GPRIdx]});
break;
case G_CONSTANT:
case G_FRAME_INDEX:
case G_GLOBAL_VALUE:
case G_JUMP_TABLE:
case G_BRCOND:
OperandsMapping =
getOperandsMapping({&Mips::ValueMappings[Mips::GPRIdx], nullptr});
break;
case G_BRJT:
OperandsMapping =
getOperandsMapping({&Mips::ValueMappings[Mips::GPRIdx], nullptr,
&Mips::ValueMappings[Mips::GPRIdx]});
break;
case G_ICMP:
OperandsMapping =
getOperandsMapping({&Mips::ValueMappings[Mips::GPRIdx], nullptr,
&Mips::ValueMappings[Mips::GPRIdx],
&Mips::ValueMappings[Mips::GPRIdx]});
break;
default:
return getInvalidInstructionMapping();
}
return getInstructionMapping(MappingID, /*Cost=*/1, OperandsMapping,
NumOperands);
}
using InstListTy = GISelWorkList<4>;
namespace {
class InstManager : public GISelChangeObserver {
InstListTy &InstList;
public:
InstManager(InstListTy &Insts) : InstList(Insts) {}
void createdInstr(MachineInstr &MI) override { InstList.insert(&MI); }
void erasingInstr(MachineInstr &MI) override {}
void changingInstr(MachineInstr &MI) override {}
void changedInstr(MachineInstr &MI) override {}
};
} // end anonymous namespace
void MipsRegisterBankInfo::setRegBank(MachineInstr &MI,
MachineRegisterInfo &MRI) const {
Register Dest = MI.getOperand(0).getReg();
switch (MI.getOpcode()) {
case TargetOpcode::G_STORE:
// No def operands, skip this instruction.
break;
case TargetOpcode::G_CONSTANT:
case TargetOpcode::G_LOAD:
case TargetOpcode::G_SELECT:
case TargetOpcode::G_PHI:
case TargetOpcode::G_IMPLICIT_DEF: {
assert(MRI.getType(Dest) == LLT::scalar(32) && "Unexpected operand type.");
MRI.setRegBank(Dest, getRegBank(Mips::GPRBRegBankID));
break;
}
case TargetOpcode::G_PTR_ADD: {
assert(MRI.getType(Dest).isPointer() && "Unexpected operand type.");
MRI.setRegBank(Dest, getRegBank(Mips::GPRBRegBankID));
break;
}
default:
llvm_unreachable("Unexpected opcode.");
}
}
static void
combineAwayG_UNMERGE_VALUES(LegalizationArtifactCombiner &ArtCombiner,
MachineInstr &MI) {
SmallVector<Register, 4> UpdatedDefs;
SmallVector<MachineInstr *, 2> DeadInstrs;
ArtCombiner.tryCombineMerges(MI, DeadInstrs, UpdatedDefs);
for (MachineInstr *DeadMI : DeadInstrs)
DeadMI->eraseFromParent();
}
void MipsRegisterBankInfo::applyMappingImpl(
const OperandsMapper &OpdMapper) const {
MachineInstr &MI = OpdMapper.getMI();
InstListTy NewInstrs;
MachineIRBuilder B(MI);
MachineFunction *MF = MI.getMF();
MachineRegisterInfo &MRI = OpdMapper.getMRI();
const LegalizerInfo &LegInfo = *MF->getSubtarget().getLegalizerInfo();
InstManager NewInstrObserver(NewInstrs);
GISelObserverWrapper WrapperObserver(&NewInstrObserver);
LegalizerHelper Helper(*MF, WrapperObserver, B);
LegalizationArtifactCombiner ArtCombiner(B, MF->getRegInfo(), LegInfo);
switch (MI.getOpcode()) {
case TargetOpcode::G_LOAD:
case TargetOpcode::G_STORE:
case TargetOpcode::G_PHI:
case TargetOpcode::G_SELECT:
case TargetOpcode::G_IMPLICIT_DEF: {
Helper.narrowScalar(MI, 0, LLT::scalar(32));
// Handle new instructions.
while (!NewInstrs.empty()) {
MachineInstr *NewMI = NewInstrs.pop_back_val();
// This is new G_UNMERGE that was created during narrowScalar and will
// not be considered for regbank selection. RegBankSelect for mips
// visits/makes corresponding G_MERGE first. Combine them here.
if (NewMI->getOpcode() == TargetOpcode::G_UNMERGE_VALUES)
combineAwayG_UNMERGE_VALUES(ArtCombiner, *NewMI);
// This G_MERGE will be combined away when its corresponding G_UNMERGE
// gets regBankSelected.
else if (NewMI->getOpcode() == TargetOpcode::G_MERGE_VALUES)
continue;
else
// Manually set register banks for def operands to 32 bit gprb.
setRegBank(*NewMI, MRI);
}
return;
}
case TargetOpcode::G_UNMERGE_VALUES:
combineAwayG_UNMERGE_VALUES(ArtCombiner, MI);
return;
default:
break;
}
return applyDefaultMapping(OpdMapper);
}