README.txt
18.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
//===- README.txt - Notes for improving PowerPC-specific code gen ---------===//
TODO:
* lmw/stmw pass a la arm load store optimizer for prolog/epilog
===-------------------------------------------------------------------------===
This code:
unsigned add32carry(unsigned sum, unsigned x) {
unsigned z = sum + x;
if (sum + x < x)
z++;
return z;
}
Should compile to something like:
addc r3,r3,r4
addze r3,r3
instead we get:
add r3, r4, r3
cmplw cr7, r3, r4
mfcr r4 ; 1
rlwinm r4, r4, 29, 31, 31
add r3, r3, r4
Ick.
===-------------------------------------------------------------------------===
We compile the hottest inner loop of viterbi to:
li r6, 0
b LBB1_84 ;bb432.i
LBB1_83: ;bb420.i
lbzx r8, r5, r7
addi r6, r7, 1
stbx r8, r4, r7
LBB1_84: ;bb432.i
mr r7, r6
cmplwi cr0, r7, 143
bne cr0, LBB1_83 ;bb420.i
The CBE manages to produce:
li r0, 143
mtctr r0
loop:
lbzx r2, r2, r11
stbx r0, r2, r9
addi r2, r2, 1
bdz later
b loop
This could be much better (bdnz instead of bdz) but it still beats us. If we
produced this with bdnz, the loop would be a single dispatch group.
===-------------------------------------------------------------------------===
Lump the constant pool for each function into ONE pic object, and reference
pieces of it as offsets from the start. For functions like this (contrived
to have lots of constants obviously):
double X(double Y) { return (Y*1.23 + 4.512)*2.34 + 14.38; }
We generate:
_X:
lis r2, ha16(.CPI_X_0)
lfd f0, lo16(.CPI_X_0)(r2)
lis r2, ha16(.CPI_X_1)
lfd f2, lo16(.CPI_X_1)(r2)
fmadd f0, f1, f0, f2
lis r2, ha16(.CPI_X_2)
lfd f1, lo16(.CPI_X_2)(r2)
lis r2, ha16(.CPI_X_3)
lfd f2, lo16(.CPI_X_3)(r2)
fmadd f1, f0, f1, f2
blr
It would be better to materialize .CPI_X into a register, then use immediates
off of the register to avoid the lis's. This is even more important in PIC
mode.
Note that this (and the static variable version) is discussed here for GCC:
http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html
Here's another example (the sgn function):
double testf(double a) {
return a == 0.0 ? 0.0 : (a > 0.0 ? 1.0 : -1.0);
}
it produces a BB like this:
LBB1_1: ; cond_true
lis r2, ha16(LCPI1_0)
lfs f0, lo16(LCPI1_0)(r2)
lis r2, ha16(LCPI1_1)
lis r3, ha16(LCPI1_2)
lfs f2, lo16(LCPI1_2)(r3)
lfs f3, lo16(LCPI1_1)(r2)
fsub f0, f0, f1
fsel f1, f0, f2, f3
blr
===-------------------------------------------------------------------------===
PIC Code Gen IPO optimization:
Squish small scalar globals together into a single global struct, allowing the
address of the struct to be CSE'd, avoiding PIC accesses (also reduces the size
of the GOT on targets with one).
Note that this is discussed here for GCC:
http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html
===-------------------------------------------------------------------------===
Darwin Stub removal:
We still generate calls to foo$stub, and stubs, on Darwin. This is not
necessary when building with the Leopard (10.5) or later linker, as stubs are
generated by ld when necessary. Parameterizing this based on the deployment
target (-mmacosx-version-min) is probably enough. x86-32 does this right, see
its logic.
Note: Since Darwin support has been removed, this item is no longer valid for
Darwin specfically.
===-------------------------------------------------------------------------===
Darwin Stub LICM optimization:
Loops like this:
for (...) bar();
Have to go through an indirect stub if bar is external or linkonce. It would
be better to compile it as:
fp = &bar;
for (...) fp();
which only computes the address of bar once (instead of each time through the
stub). This is Darwin specific and would have to be done in the code generator.
Probably not a win on x86.
===-------------------------------------------------------------------------===
Simple IPO for argument passing, change:
void foo(int X, double Y, int Z) -> void foo(int X, int Z, double Y)
the Darwin ABI specifies that any integer arguments in the first 32 bytes worth
of arguments get assigned to r3 through r10. That is, if you have a function
foo(int, double, int) you get r3, f1, r6, since the 64 bit double ate up the
argument bytes for r4 and r5. The trick then would be to shuffle the argument
order for functions we can internalize so that the maximum number of
integers/pointers get passed in regs before you see any of the fp arguments.
Instead of implementing this, it would actually probably be easier to just
implement a PPC fastcc, where we could do whatever we wanted to the CC,
including having this work sanely.
===-------------------------------------------------------------------------===
Fix Darwin FP-In-Integer Registers ABI
Darwin passes doubles in structures in integer registers, which is very very
bad. Add something like a BITCAST to LLVM, then do an i-p transformation that
percolates these things out of functions.
Check out how horrible this is:
http://gcc.gnu.org/ml/gcc/2005-10/msg01036.html
This is an extension of "interprocedural CC unmunging" that can't be done with
just fastcc.
===-------------------------------------------------------------------------===
Fold add and sub with constant into non-extern, non-weak addresses so this:
static int a;
void bar(int b) { a = b; }
void foo(unsigned char *c) {
*c = a;
}
So that
_foo:
lis r2, ha16(_a)
la r2, lo16(_a)(r2)
lbz r2, 3(r2)
stb r2, 0(r3)
blr
Becomes
_foo:
lis r2, ha16(_a+3)
lbz r2, lo16(_a+3)(r2)
stb r2, 0(r3)
blr
===-------------------------------------------------------------------------===
We should compile these two functions to the same thing:
#include <stdlib.h>
void f(int a, int b, int *P) {
*P = (a-b)>=0?(a-b):(b-a);
}
void g(int a, int b, int *P) {
*P = abs(a-b);
}
Further, they should compile to something better than:
_g:
subf r2, r4, r3
subfic r3, r2, 0
cmpwi cr0, r2, -1
bgt cr0, LBB2_2 ; entry
LBB2_1: ; entry
mr r2, r3
LBB2_2: ; entry
stw r2, 0(r5)
blr
GCC produces:
_g:
subf r4,r4,r3
srawi r2,r4,31
xor r0,r2,r4
subf r0,r2,r0
stw r0,0(r5)
blr
... which is much nicer.
This theoretically may help improve twolf slightly (used in dimbox.c:142?).
===-------------------------------------------------------------------------===
PR5945: This:
define i32 @clamp0g(i32 %a) {
entry:
%cmp = icmp slt i32 %a, 0
%sel = select i1 %cmp, i32 0, i32 %a
ret i32 %sel
}
Is compile to this with the PowerPC (32-bit) backend:
_clamp0g:
cmpwi cr0, r3, 0
li r2, 0
blt cr0, LBB1_2
; %bb.1: ; %entry
mr r2, r3
LBB1_2: ; %entry
mr r3, r2
blr
This could be reduced to the much simpler:
_clamp0g:
srawi r2, r3, 31
andc r3, r3, r2
blr
===-------------------------------------------------------------------------===
int foo(int N, int ***W, int **TK, int X) {
int t, i;
for (t = 0; t < N; ++t)
for (i = 0; i < 4; ++i)
W[t / X][i][t % X] = TK[i][t];
return 5;
}
We generate relatively atrocious code for this loop compared to gcc.
We could also strength reduce the rem and the div:
http://www.lcs.mit.edu/pubs/pdf/MIT-LCS-TM-600.pdf
===-------------------------------------------------------------------------===
We generate ugly code for this:
void func(unsigned int *ret, float dx, float dy, float dz, float dw) {
unsigned code = 0;
if(dx < -dw) code |= 1;
if(dx > dw) code |= 2;
if(dy < -dw) code |= 4;
if(dy > dw) code |= 8;
if(dz < -dw) code |= 16;
if(dz > dw) code |= 32;
*ret = code;
}
===-------------------------------------------------------------------------===
%struct.B = type { i8, [3 x i8] }
define void @bar(%struct.B* %b) {
entry:
%tmp = bitcast %struct.B* %b to i32* ; <uint*> [#uses=1]
%tmp = load i32* %tmp ; <uint> [#uses=1]
%tmp3 = bitcast %struct.B* %b to i32* ; <uint*> [#uses=1]
%tmp4 = load i32* %tmp3 ; <uint> [#uses=1]
%tmp8 = bitcast %struct.B* %b to i32* ; <uint*> [#uses=2]
%tmp9 = load i32* %tmp8 ; <uint> [#uses=1]
%tmp4.mask17 = shl i32 %tmp4, i8 1 ; <uint> [#uses=1]
%tmp1415 = and i32 %tmp4.mask17, 2147483648 ; <uint> [#uses=1]
%tmp.masked = and i32 %tmp, 2147483648 ; <uint> [#uses=1]
%tmp11 = or i32 %tmp1415, %tmp.masked ; <uint> [#uses=1]
%tmp12 = and i32 %tmp9, 2147483647 ; <uint> [#uses=1]
%tmp13 = or i32 %tmp12, %tmp11 ; <uint> [#uses=1]
store i32 %tmp13, i32* %tmp8
ret void
}
We emit:
_foo:
lwz r2, 0(r3)
slwi r4, r2, 1
or r4, r4, r2
rlwimi r2, r4, 0, 0, 0
stw r2, 0(r3)
blr
We could collapse a bunch of those ORs and ANDs and generate the following
equivalent code:
_foo:
lwz r2, 0(r3)
rlwinm r4, r2, 1, 0, 0
or r2, r2, r4
stw r2, 0(r3)
blr
===-------------------------------------------------------------------------===
Consider a function like this:
float foo(float X) { return X + 1234.4123f; }
The FP constant ends up in the constant pool, so we need to get the LR register.
This ends up producing code like this:
_foo:
.LBB_foo_0: ; entry
mflr r11
*** stw r11, 8(r1)
bl "L00000$pb"
"L00000$pb":
mflr r2
addis r2, r2, ha16(.CPI_foo_0-"L00000$pb")
lfs f0, lo16(.CPI_foo_0-"L00000$pb")(r2)
fadds f1, f1, f0
*** lwz r11, 8(r1)
mtlr r11
blr
This is functional, but there is no reason to spill the LR register all the way
to the stack (the two marked instrs): spilling it to a GPR is quite enough.
Implementing this will require some codegen improvements. Nate writes:
"So basically what we need to support the "no stack frame save and restore" is a
generalization of the LR optimization to "callee-save regs".
Currently, we have LR marked as a callee-save reg. The register allocator sees
that it's callee save, and spills it directly to the stack.
Ideally, something like this would happen:
LR would be in a separate register class from the GPRs. The class of LR would be
marked "unspillable". When the register allocator came across an unspillable
reg, it would ask "what is the best class to copy this into that I *can* spill"
If it gets a class back, which it will in this case (the gprs), it grabs a free
register of that class. If it is then later necessary to spill that reg, so be
it.
===-------------------------------------------------------------------------===
We compile this:
int test(_Bool X) {
return X ? 524288 : 0;
}
to:
_test:
cmplwi cr0, r3, 0
lis r2, 8
li r3, 0
beq cr0, LBB1_2 ;entry
LBB1_1: ;entry
mr r3, r2
LBB1_2: ;entry
blr
instead of:
_test:
addic r2,r3,-1
subfe r0,r2,r3
slwi r3,r0,19
blr
This sort of thing occurs a lot due to globalopt.
===-------------------------------------------------------------------------===
We compile:
define i32 @bar(i32 %x) nounwind readnone ssp {
entry:
%0 = icmp eq i32 %x, 0 ; <i1> [#uses=1]
%neg = sext i1 %0 to i32 ; <i32> [#uses=1]
ret i32 %neg
}
to:
_bar:
cntlzw r2, r3
slwi r2, r2, 26
srawi r3, r2, 31
blr
it would be better to produce:
_bar:
addic r3,r3,-1
subfe r3,r3,r3
blr
===-------------------------------------------------------------------------===
We generate horrible ppc code for this:
#define N 2000000
double a[N],c[N];
void simpleloop() {
int j;
for (j=0; j<N; j++)
c[j] = a[j];
}
LBB1_1: ;bb
lfdx f0, r3, r4
addi r5, r5, 1 ;; Extra IV for the exit value compare.
stfdx f0, r2, r4
addi r4, r4, 8
xoris r6, r5, 30 ;; This is due to a large immediate.
cmplwi cr0, r6, 33920
bne cr0, LBB1_1
//===---------------------------------------------------------------------===//
This:
#include <algorithm>
inline std::pair<unsigned, bool> full_add(unsigned a, unsigned b)
{ return std::make_pair(a + b, a + b < a); }
bool no_overflow(unsigned a, unsigned b)
{ return !full_add(a, b).second; }
Should compile to:
__Z11no_overflowjj:
add r4,r3,r4
subfc r3,r3,r4
li r3,0
adde r3,r3,r3
blr
(or better) not:
__Z11no_overflowjj:
add r2, r4, r3
cmplw cr7, r2, r3
mfcr r2
rlwinm r2, r2, 29, 31, 31
xori r3, r2, 1
blr
//===---------------------------------------------------------------------===//
We compile some FP comparisons into an mfcr with two rlwinms and an or. For
example:
#include <math.h>
int test(double x, double y) { return islessequal(x, y);}
int test2(double x, double y) { return islessgreater(x, y);}
int test3(double x, double y) { return !islessequal(x, y);}
Compiles into (all three are similar, but the bits differ):
_test:
fcmpu cr7, f1, f2
mfcr r2
rlwinm r3, r2, 29, 31, 31
rlwinm r2, r2, 31, 31, 31
or r3, r2, r3
blr
GCC compiles this into:
_test:
fcmpu cr7,f1,f2
cror 30,28,30
mfcr r3
rlwinm r3,r3,31,1
blr
which is more efficient and can use mfocr. See PR642 for some more context.
//===---------------------------------------------------------------------===//
void foo(float *data, float d) {
long i;
for (i = 0; i < 8000; i++)
data[i] = d;
}
void foo2(float *data, float d) {
long i;
data--;
for (i = 0; i < 8000; i++) {
data[1] = d;
data++;
}
}
These compile to:
_foo:
li r2, 0
LBB1_1: ; bb
addi r4, r2, 4
stfsx f1, r3, r2
cmplwi cr0, r4, 32000
mr r2, r4
bne cr0, LBB1_1 ; bb
blr
_foo2:
li r2, 0
LBB2_1: ; bb
addi r4, r2, 4
stfsx f1, r3, r2
cmplwi cr0, r4, 32000
mr r2, r4
bne cr0, LBB2_1 ; bb
blr
The 'mr' could be eliminated to folding the add into the cmp better.
//===---------------------------------------------------------------------===//
Codegen for the following (low-probability) case deteriorated considerably
when the correctness fixes for unordered comparisons went in (PR 642, 58871).
It should be possible to recover the code quality described in the comments.
; RUN: llvm-as < %s | llc -march=ppc32 | grep or | count 3
; This should produce one 'or' or 'cror' instruction per function.
; RUN: llvm-as < %s | llc -march=ppc32 | grep mfcr | count 3
; PR2964
define i32 @test(double %x, double %y) nounwind {
entry:
%tmp3 = fcmp ole double %x, %y ; <i1> [#uses=1]
%tmp345 = zext i1 %tmp3 to i32 ; <i32> [#uses=1]
ret i32 %tmp345
}
define i32 @test2(double %x, double %y) nounwind {
entry:
%tmp3 = fcmp one double %x, %y ; <i1> [#uses=1]
%tmp345 = zext i1 %tmp3 to i32 ; <i32> [#uses=1]
ret i32 %tmp345
}
define i32 @test3(double %x, double %y) nounwind {
entry:
%tmp3 = fcmp ugt double %x, %y ; <i1> [#uses=1]
%tmp34 = zext i1 %tmp3 to i32 ; <i32> [#uses=1]
ret i32 %tmp34
}
//===---------------------------------------------------------------------===//
for the following code:
void foo (float *__restrict__ a, int *__restrict__ b, int n) {
a[n] = b[n] * 2.321;
}
we load b[n] to GPR, then move it VSX register and convert it float. We should
use vsx scalar integer load instructions to avoid direct moves
//===----------------------------------------------------------------------===//
; RUN: llvm-as < %s | llc -march=ppc32 | not grep fneg
; This could generate FSEL with appropriate flags (FSEL is not IEEE-safe, and
; should not be generated except with -enable-finite-only-fp-math or the like).
; With the correctness fixes for PR642 (58871) LowerSELECT_CC would need to
; recognize a more elaborate tree than a simple SETxx.
define double @test_FNEG_sel(double %A, double %B, double %C) {
%D = fsub double -0.000000e+00, %A ; <double> [#uses=1]
%Cond = fcmp ugt double %D, -0.000000e+00 ; <i1> [#uses=1]
%E = select i1 %Cond, double %B, double %C ; <double> [#uses=1]
ret double %E
}
//===----------------------------------------------------------------------===//
The save/restore sequence for CR in prolog/epilog is terrible:
- Each CR subreg is saved individually, rather than doing one save as a unit.
- On Darwin, the save is done after the decrement of SP, which means the offset
from SP of the save slot can be too big for a store instruction, which means we
need an additional register (currently hacked in 96015+96020; the solution there
is correct, but poor).
- On SVR4 the same thing can happen, and I don't think saving before the SP
decrement is safe on that target, as there is no red zone. This is currently
broken AFAIK, although it's not a target I can exercise.
The following demonstrates the problem:
extern void bar(char *p);
void foo() {
char x[100000];
bar(x);
__asm__("" ::: "cr2");
}
//===-------------------------------------------------------------------------===
Naming convention for instruction formats is very haphazard.
We have agreed on a naming scheme as follows:
<INST_form>{_<OP_type><OP_len>}+
Where:
INST_form is the instruction format (X-form, etc.)
OP_type is the operand type - one of OPC (opcode), RD (register destination),
RS (register source),
RDp (destination register pair),
RSp (source register pair), IM (immediate),
XO (extended opcode)
OP_len is the length of the operand in bits
VSX register operands would be of length 6 (split across two fields),
condition register fields of length 3.
We would not need denote reserved fields in names of instruction formats.
//===----------------------------------------------------------------------===//
Instruction fusion was introduced in ISA 2.06 and more opportunities added in
ISA 2.07. LLVM needs to add infrastructure to recognize fusion opportunities
and force instruction pairs to be scheduled together.
-----------------------------------------------------------------------------
More general handling of any_extend and zero_extend:
See https://reviews.llvm.org/D24924#555306