SystemZInstrVector.td 82.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
//==- SystemZInstrVector.td - SystemZ Vector instructions ------*- tblgen-*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Move instructions
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  // Register move.
  def VLR : UnaryVRRa<"vlr", 0xE756, null_frag, v128any, v128any>;
  def VLR32 : UnaryAliasVRR<null_frag, v32sb, v32sb>;
  def VLR64 : UnaryAliasVRR<null_frag, v64db, v64db>;

  // Load GR from VR element.
  def VLGV  : BinaryVRScGeneric<"vlgv", 0xE721>;
  def VLGVB : BinaryVRSc<"vlgvb", 0xE721, null_frag, v128b, 0>;
  def VLGVH : BinaryVRSc<"vlgvh", 0xE721, null_frag, v128h, 1>;
  def VLGVF : BinaryVRSc<"vlgvf", 0xE721, null_frag, v128f, 2>;
  def VLGVG : BinaryVRSc<"vlgvg", 0xE721, z_vector_extract, v128g, 3>;

  // Load VR element from GR.
  def VLVG  : TernaryVRSbGeneric<"vlvg", 0xE722>;
  def VLVGB : TernaryVRSb<"vlvgb", 0xE722, z_vector_insert,
                          v128b, v128b, GR32, 0>;
  def VLVGH : TernaryVRSb<"vlvgh", 0xE722, z_vector_insert,
                          v128h, v128h, GR32, 1>;
  def VLVGF : TernaryVRSb<"vlvgf", 0xE722, z_vector_insert,
                          v128f, v128f, GR32, 2>;
  def VLVGG : TernaryVRSb<"vlvgg", 0xE722, z_vector_insert,
                          v128g, v128g, GR64, 3>;

  // Load VR from GRs disjoint.
  def VLVGP : BinaryVRRf<"vlvgp", 0xE762, z_join_dwords, v128g>;
  def VLVGP32 : BinaryAliasVRRf<GR32>;
}

// Extractions always assign to the full GR64, even if the element would
// fit in the lower 32 bits.  Sub-i64 extracts therefore need to take a
// subreg of the result.
class VectorExtractSubreg<ValueType type, Instruction insn>
  : Pat<(i32 (z_vector_extract (type VR128:$vec), shift12only:$index)),
        (EXTRACT_SUBREG (insn VR128:$vec, shift12only:$index), subreg_l32)>;

def : VectorExtractSubreg<v16i8, VLGVB>;
def : VectorExtractSubreg<v8i16, VLGVH>;
def : VectorExtractSubreg<v4i32, VLGVF>;

//===----------------------------------------------------------------------===//
// Immediate instructions
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {

    // Generate byte mask.
    def VZERO : InherentVRIa<"vzero", 0xE744, 0>;
    def VONE  : InherentVRIa<"vone", 0xE744, 0xffff>;
    def VGBM  : UnaryVRIa<"vgbm", 0xE744, z_byte_mask, v128b, imm32zx16_timm>;

    // Generate mask.
    def VGM  : BinaryVRIbGeneric<"vgm", 0xE746>;
    def VGMB : BinaryVRIb<"vgmb", 0xE746, z_rotate_mask, v128b, 0>;
    def VGMH : BinaryVRIb<"vgmh", 0xE746, z_rotate_mask, v128h, 1>;
    def VGMF : BinaryVRIb<"vgmf", 0xE746, z_rotate_mask, v128f, 2>;
    def VGMG : BinaryVRIb<"vgmg", 0xE746, z_rotate_mask, v128g, 3>;

    // Replicate immediate.
    def VREPI  : UnaryVRIaGeneric<"vrepi", 0xE745, imm32sx16>;
    def VREPIB : UnaryVRIa<"vrepib", 0xE745, z_replicate, v128b, imm32sx16_timm, 0>;
    def VREPIH : UnaryVRIa<"vrepih", 0xE745, z_replicate, v128h, imm32sx16_timm, 1>;
    def VREPIF : UnaryVRIa<"vrepif", 0xE745, z_replicate, v128f, imm32sx16_timm, 2>;
    def VREPIG : UnaryVRIa<"vrepig", 0xE745, z_replicate, v128g, imm32sx16_timm, 3>;
  }

  // Load element immediate.
  //
  // We want these instructions to be used ahead of VLVG* where possible.
  // However, VLVG* takes a variable BD-format index whereas VLEI takes
  // a plain immediate index.  This means that VLVG* has an extra "base"
  // register operand and is 3 units more complex.  Bumping the complexity
  // of the VLEI* instructions by 4 means that they are strictly better
  // than VLVG* in cases where both forms match.
  let AddedComplexity = 4 in {
    def VLEIB : TernaryVRIa<"vleib", 0xE740, z_vector_insert,
                            v128b, v128b, imm32sx16trunc, imm32zx4>;
    def VLEIH : TernaryVRIa<"vleih", 0xE741, z_vector_insert,
                            v128h, v128h, imm32sx16trunc, imm32zx3>;
    def VLEIF : TernaryVRIa<"vleif", 0xE743, z_vector_insert,
                            v128f, v128f, imm32sx16, imm32zx2>;
    def VLEIG : TernaryVRIa<"vleig", 0xE742, z_vector_insert,
                            v128g, v128g, imm64sx16, imm32zx1>;
  }
}

//===----------------------------------------------------------------------===//
// Loads
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  // Load.
  defm VL : UnaryVRXAlign<"vl", 0xE706>;

  // Load to block boundary.  The number of loaded bytes is only known
  // at run time.  The instruction is really polymorphic, but v128b matches
  // the return type of the associated intrinsic.
  def VLBB : BinaryVRX<"vlbb", 0xE707, int_s390_vlbb, v128b, 0>;

  // Load count to block boundary.
  let Defs = [CC] in
    def LCBB : InstRXE<0xE727, (outs GR32:$R1),
                               (ins bdxaddr12only:$XBD2, imm32zx4:$M3),
                       "lcbb\t$R1, $XBD2, $M3",
                       [(set GR32:$R1, (int_s390_lcbb bdxaddr12only:$XBD2,
                                                      imm32zx4_timm:$M3))]>;

  // Load with length.  The number of loaded bytes is only known at run time.
  def VLL : BinaryVRSb<"vll", 0xE737, int_s390_vll, 0>;

  // Load multiple.
  defm VLM : LoadMultipleVRSaAlign<"vlm", 0xE736>;

  // Load and replicate
  def VLREP  : UnaryVRXGeneric<"vlrep", 0xE705>;
  def VLREPB : UnaryVRX<"vlrepb", 0xE705, z_replicate_loadi8,  v128b, 1, 0>;
  def VLREPH : UnaryVRX<"vlreph", 0xE705, z_replicate_loadi16, v128h, 2, 1>;
  def VLREPF : UnaryVRX<"vlrepf", 0xE705, z_replicate_loadi32, v128f, 4, 2>;
  def VLREPG : UnaryVRX<"vlrepg", 0xE705, z_replicate_loadi64, v128g, 8, 3>;
  def : Pat<(v4f32 (z_replicate_loadf32 bdxaddr12only:$addr)),
            (VLREPF bdxaddr12only:$addr)>;
  def : Pat<(v2f64 (z_replicate_loadf64 bdxaddr12only:$addr)),
            (VLREPG bdxaddr12only:$addr)>;

  // Use VLREP to load subvectors.  These patterns use "12pair" because
  // LEY and LDY offer full 20-bit displacement fields.  It's often better
  // to use those instructions rather than force a 20-bit displacement
  // into a GPR temporary.
  let mayLoad = 1 in {
    def VL32 : UnaryAliasVRX<load, v32sb, bdxaddr12pair>;
    def VL64 : UnaryAliasVRX<load, v64db, bdxaddr12pair>;
  }

  // Load logical element and zero.
  def VLLEZ  : UnaryVRXGeneric<"vllez", 0xE704>;
  def VLLEZB : UnaryVRX<"vllezb", 0xE704, z_vllezi8,  v128b, 1, 0>;
  def VLLEZH : UnaryVRX<"vllezh", 0xE704, z_vllezi16, v128h, 2, 1>;
  def VLLEZF : UnaryVRX<"vllezf", 0xE704, z_vllezi32, v128f, 4, 2>;
  def VLLEZG : UnaryVRX<"vllezg", 0xE704, z_vllezi64, v128g, 8, 3>;
  def : Pat<(z_vllezf32 bdxaddr12only:$addr),
            (VLLEZF bdxaddr12only:$addr)>;
  def : Pat<(z_vllezf64 bdxaddr12only:$addr),
            (VLLEZG bdxaddr12only:$addr)>;
  let Predicates = [FeatureVectorEnhancements1] in {
    def VLLEZLF : UnaryVRX<"vllezlf", 0xE704, z_vllezli32, v128f, 4, 6>;
    def : Pat<(z_vllezlf32 bdxaddr12only:$addr),
              (VLLEZLF bdxaddr12only:$addr)>;
  }

  // Load element.
  def VLEB : TernaryVRX<"vleb", 0xE700, z_vlei8,  v128b, v128b, 1, imm32zx4>;
  def VLEH : TernaryVRX<"vleh", 0xE701, z_vlei16, v128h, v128h, 2, imm32zx3>;
  def VLEF : TernaryVRX<"vlef", 0xE703, z_vlei32, v128f, v128f, 4, imm32zx2>;
  def VLEG : TernaryVRX<"vleg", 0xE702, z_vlei64, v128g, v128g, 8, imm32zx1>;
  def : Pat<(z_vlef32 (v4f32 VR128:$val), bdxaddr12only:$addr, imm32zx2:$index),
            (VLEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>;
  def : Pat<(z_vlef64 (v2f64 VR128:$val), bdxaddr12only:$addr, imm32zx1:$index),
            (VLEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>;

  // Gather element.
  def VGEF : TernaryVRV<"vgef", 0xE713, 4, imm32zx2>;
  def VGEG : TernaryVRV<"vgeg", 0xE712, 8, imm32zx1>;
}

let Predicates = [FeatureVectorPackedDecimal] in {
  // Load rightmost with length.  The number of loaded bytes is only known
  // at run time.
  def VLRL : BinaryVSI<"vlrl", 0xE635, int_s390_vlrl, 0>;
  def VLRLR : BinaryVRSd<"vlrlr", 0xE637, int_s390_vlrl, 0>;
}

// Use replicating loads if we're inserting a single element into an
// undefined vector.  This avoids a false dependency on the previous
// register contents.
multiclass ReplicatePeephole<Instruction vlrep, ValueType vectype,
                             SDPatternOperator load, ValueType scalartype> {
  def : Pat<(vectype (z_vector_insert
                      (undef), (scalartype (load bdxaddr12only:$addr)), 0)),
            (vlrep bdxaddr12only:$addr)>;
  def : Pat<(vectype (scalar_to_vector
                      (scalartype (load bdxaddr12only:$addr)))),
            (vlrep bdxaddr12only:$addr)>;
}
defm : ReplicatePeephole<VLREPB, v16i8, anyextloadi8, i32>;
defm : ReplicatePeephole<VLREPH, v8i16, anyextloadi16, i32>;
defm : ReplicatePeephole<VLREPF, v4i32, load, i32>;
defm : ReplicatePeephole<VLREPG, v2i64, load, i64>;
defm : ReplicatePeephole<VLREPF, v4f32, load, f32>;
defm : ReplicatePeephole<VLREPG, v2f64, load, f64>;

//===----------------------------------------------------------------------===//
// Stores
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  // Store.
  defm VST : StoreVRXAlign<"vst", 0xE70E>;

  // Store with length.  The number of stored bytes is only known at run time.
  def VSTL : StoreLengthVRSb<"vstl", 0xE73F, int_s390_vstl, 0>;

  // Store multiple.
  defm VSTM : StoreMultipleVRSaAlign<"vstm", 0xE73E>;

  // Store element.
  def VSTEB : StoreBinaryVRX<"vsteb", 0xE708, z_vstei8,  v128b, 1, imm32zx4>;
  def VSTEH : StoreBinaryVRX<"vsteh", 0xE709, z_vstei16, v128h, 2, imm32zx3>;
  def VSTEF : StoreBinaryVRX<"vstef", 0xE70B, z_vstei32, v128f, 4, imm32zx2>;
  def VSTEG : StoreBinaryVRX<"vsteg", 0xE70A, z_vstei64, v128g, 8, imm32zx1>;
  def : Pat<(z_vstef32 (v4f32 VR128:$val), bdxaddr12only:$addr,
                       imm32zx2:$index),
            (VSTEF VR128:$val, bdxaddr12only:$addr, imm32zx2:$index)>;
  def : Pat<(z_vstef64 (v2f64 VR128:$val), bdxaddr12only:$addr,
                       imm32zx1:$index),
            (VSTEG VR128:$val, bdxaddr12only:$addr, imm32zx1:$index)>;

  // Use VSTE to store subvectors.  These patterns use "12pair" because
  // STEY and STDY offer full 20-bit displacement fields.  It's often better
  // to use those instructions rather than force a 20-bit displacement
  // into a GPR temporary.
  let mayStore = 1 in {
    def VST32 : StoreAliasVRX<store, v32sb, bdxaddr12pair>;
    def VST64 : StoreAliasVRX<store, v64db, bdxaddr12pair>;
  }

  // Scatter element.
  def VSCEF : StoreBinaryVRV<"vscef", 0xE71B, 4, imm32zx2>;
  def VSCEG : StoreBinaryVRV<"vsceg", 0xE71A, 8, imm32zx1>;
}

let Predicates = [FeatureVectorPackedDecimal] in {
  // Store rightmost with length.  The number of stored bytes is only known
  // at run time.
  def VSTRL : StoreLengthVSI<"vstrl", 0xE63D, int_s390_vstrl, 0>;
  def VSTRLR : StoreLengthVRSd<"vstrlr", 0xE63F, int_s390_vstrl, 0>;
}

//===----------------------------------------------------------------------===//
// Byte swaps
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVectorEnhancements2] in {
  // Load byte-reversed elements.
  def VLBR  : UnaryVRXGeneric<"vlbr", 0xE606>;
  def VLBRH : UnaryVRX<"vlbrh", 0xE606, z_loadbswap, v128h, 16, 1>;
  def VLBRF : UnaryVRX<"vlbrf", 0xE606, z_loadbswap, v128f, 16, 2>;
  def VLBRG : UnaryVRX<"vlbrg", 0xE606, z_loadbswap, v128g, 16, 3>;
  def VLBRQ : UnaryVRX<"vlbrq", 0xE606, null_frag, v128q, 16, 4>;

  // Load elements reversed.
  def VLER  : UnaryVRXGeneric<"vler", 0xE607>;
  def VLERH : UnaryVRX<"vlerh", 0xE607, z_loadeswap, v128h, 16, 1>;
  def VLERF : UnaryVRX<"vlerf", 0xE607, z_loadeswap, v128f, 16, 2>;
  def VLERG : UnaryVRX<"vlerg", 0xE607, z_loadeswap, v128g, 16, 3>;
  def : Pat<(v4f32 (z_loadeswap bdxaddr12only:$addr)),
            (VLERF bdxaddr12only:$addr)>;
  def : Pat<(v2f64 (z_loadeswap bdxaddr12only:$addr)),
            (VLERG bdxaddr12only:$addr)>;
  def : Pat<(v16i8 (z_loadeswap bdxaddr12only:$addr)),
            (VLBRQ bdxaddr12only:$addr)>;

  // Load byte-reversed element.
  def VLEBRH : TernaryVRX<"vlebrh", 0xE601, z_vlebri16, v128h, v128h, 2, imm32zx3>;
  def VLEBRF : TernaryVRX<"vlebrf", 0xE603, z_vlebri32, v128f, v128f, 4, imm32zx2>;
  def VLEBRG : TernaryVRX<"vlebrg", 0xE602, z_vlebri64, v128g, v128g, 8, imm32zx1>;

  // Load byte-reversed element and zero.
  def VLLEBRZ  : UnaryVRXGeneric<"vllebrz", 0xE604>;
  def VLLEBRZH : UnaryVRX<"vllebrzh", 0xE604, z_vllebrzi16, v128h, 2, 1>;
  def VLLEBRZF : UnaryVRX<"vllebrzf", 0xE604, z_vllebrzi32, v128f, 4, 2>;
  def VLLEBRZG : UnaryVRX<"vllebrzg", 0xE604, z_vllebrzi64, v128g, 8, 3>;
  def VLLEBRZE : UnaryVRX<"vllebrze", 0xE604, z_vllebrzli32, v128f, 4, 6>;
  def : InstAlias<"lerv\t$V1, $XBD2",
                  (VLLEBRZE VR128:$V1, bdxaddr12only:$XBD2), 0>;
  def : InstAlias<"ldrv\t$V1, $XBD2",
                  (VLLEBRZG VR128:$V1, bdxaddr12only:$XBD2), 0>;

  // Load byte-reversed element and replicate.
  def VLBRREP  : UnaryVRXGeneric<"vlbrrep", 0xE605>;
  def VLBRREPH : UnaryVRX<"vlbrreph", 0xE605, z_replicate_loadbswapi16, v128h, 2, 1>;
  def VLBRREPF : UnaryVRX<"vlbrrepf", 0xE605, z_replicate_loadbswapi32, v128f, 4, 2>;
  def VLBRREPG : UnaryVRX<"vlbrrepg", 0xE605, z_replicate_loadbswapi64, v128g, 8, 3>;

  // Store byte-reversed elements.
  def VSTBR  : StoreVRXGeneric<"vstbr", 0xE60E>;
  def VSTBRH : StoreVRX<"vstbrh", 0xE60E, z_storebswap, v128h, 16, 1>;
  def VSTBRF : StoreVRX<"vstbrf", 0xE60E, z_storebswap, v128f, 16, 2>;
  def VSTBRG : StoreVRX<"vstbrg", 0xE60E, z_storebswap, v128g, 16, 3>;
  def VSTBRQ : StoreVRX<"vstbrq", 0xE60E, null_frag, v128q, 16, 4>;

  // Store elements reversed.
  def VSTER  : StoreVRXGeneric<"vster", 0xE60F>;
  def VSTERH : StoreVRX<"vsterh", 0xE60F, z_storeeswap, v128h, 16, 1>;
  def VSTERF : StoreVRX<"vsterf", 0xE60F, z_storeeswap, v128f, 16, 2>;
  def VSTERG : StoreVRX<"vsterg", 0xE60F, z_storeeswap, v128g, 16, 3>;
  def : Pat<(z_storeeswap (v4f32 VR128:$val), bdxaddr12only:$addr),
            (VSTERF VR128:$val, bdxaddr12only:$addr)>;
  def : Pat<(z_storeeswap (v2f64 VR128:$val), bdxaddr12only:$addr),
            (VSTERG VR128:$val, bdxaddr12only:$addr)>;
  def : Pat<(z_storeeswap (v16i8 VR128:$val), bdxaddr12only:$addr),
            (VSTBRQ VR128:$val, bdxaddr12only:$addr)>;

  // Store byte-reversed element.
  def VSTEBRH : StoreBinaryVRX<"vstebrh", 0xE609, z_vstebri16, v128h, 2, imm32zx3>;
  def VSTEBRF : StoreBinaryVRX<"vstebrf", 0xE60B, z_vstebri32, v128f, 4, imm32zx2>;
  def VSTEBRG : StoreBinaryVRX<"vstebrg", 0xE60A, z_vstebri64, v128g, 8, imm32zx1>;
  def : InstAlias<"sterv\t$V1, $XBD2",
                  (VSTEBRF VR128:$V1, bdxaddr12only:$XBD2, 0), 0>;
  def : InstAlias<"stdrv\t$V1, $XBD2",
                  (VSTEBRG VR128:$V1, bdxaddr12only:$XBD2, 0), 0>;
}

//===----------------------------------------------------------------------===//
// Selects and permutes
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  // Merge high.
  def VMRH:   BinaryVRRcGeneric<"vmrh", 0xE761>;
  def VMRHB : BinaryVRRc<"vmrhb", 0xE761, z_merge_high, v128b, v128b, 0>;
  def VMRHH : BinaryVRRc<"vmrhh", 0xE761, z_merge_high, v128h, v128h, 1>;
  def VMRHF : BinaryVRRc<"vmrhf", 0xE761, z_merge_high, v128f, v128f, 2>;
  def VMRHG : BinaryVRRc<"vmrhg", 0xE761, z_merge_high, v128g, v128g, 3>;
  def : BinaryRRWithType<VMRHF, VR128, z_merge_high, v4f32>;
  def : BinaryRRWithType<VMRHG, VR128, z_merge_high, v2f64>;

  // Merge low.
  def VMRL:   BinaryVRRcGeneric<"vmrl", 0xE760>;
  def VMRLB : BinaryVRRc<"vmrlb", 0xE760, z_merge_low, v128b, v128b, 0>;
  def VMRLH : BinaryVRRc<"vmrlh", 0xE760, z_merge_low, v128h, v128h, 1>;
  def VMRLF : BinaryVRRc<"vmrlf", 0xE760, z_merge_low, v128f, v128f, 2>;
  def VMRLG : BinaryVRRc<"vmrlg", 0xE760, z_merge_low, v128g, v128g, 3>;
  def : BinaryRRWithType<VMRLF, VR128, z_merge_low, v4f32>;
  def : BinaryRRWithType<VMRLG, VR128, z_merge_low, v2f64>;

  // Permute.
  def VPERM : TernaryVRRe<"vperm", 0xE78C, z_permute, v128b, v128b>;

  // Permute doubleword immediate.
  def VPDI : TernaryVRRc<"vpdi", 0xE784, z_permute_dwords, v128g, v128g>;

  // Bit Permute.
  let Predicates = [FeatureVectorEnhancements1] in
    def VBPERM : BinaryVRRc<"vbperm", 0xE785, int_s390_vbperm, v128g, v128b>;

  // Replicate.
  def VREP:   BinaryVRIcGeneric<"vrep", 0xE74D>;
  def VREPB : BinaryVRIc<"vrepb", 0xE74D, z_splat, v128b, v128b, 0>;
  def VREPH : BinaryVRIc<"vreph", 0xE74D, z_splat, v128h, v128h, 1>;
  def VREPF : BinaryVRIc<"vrepf", 0xE74D, z_splat, v128f, v128f, 2>;
  def VREPG : BinaryVRIc<"vrepg", 0xE74D, z_splat, v128g, v128g, 3>;
  def : Pat<(v4f32 (z_splat VR128:$vec, imm32zx16_timm:$index)),
            (VREPF VR128:$vec, imm32zx16:$index)>;
  def : Pat<(v2f64 (z_splat VR128:$vec, imm32zx16_timm:$index)),
            (VREPG VR128:$vec, imm32zx16:$index)>;

  // Select.
  def VSEL : TernaryVRRe<"vsel", 0xE78D, null_frag, v128any, v128any>;
}

//===----------------------------------------------------------------------===//
// Widening and narrowing
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  // Pack
  def VPK  : BinaryVRRcGeneric<"vpk", 0xE794>;
  def VPKH : BinaryVRRc<"vpkh", 0xE794, z_pack, v128b, v128h, 1>;
  def VPKF : BinaryVRRc<"vpkf", 0xE794, z_pack, v128h, v128f, 2>;
  def VPKG : BinaryVRRc<"vpkg", 0xE794, z_pack, v128f, v128g, 3>;

  // Pack saturate.
  def  VPKS  : BinaryVRRbSPairGeneric<"vpks", 0xE797>;
  defm VPKSH : BinaryVRRbSPair<"vpksh", 0xE797, int_s390_vpksh, z_packs_cc,
                               v128b, v128h, 1>;
  defm VPKSF : BinaryVRRbSPair<"vpksf", 0xE797, int_s390_vpksf, z_packs_cc,
                               v128h, v128f, 2>;
  defm VPKSG : BinaryVRRbSPair<"vpksg", 0xE797, int_s390_vpksg, z_packs_cc,
                               v128f, v128g, 3>;

  // Pack saturate logical.
  def  VPKLS  : BinaryVRRbSPairGeneric<"vpkls", 0xE795>;
  defm VPKLSH : BinaryVRRbSPair<"vpklsh", 0xE795, int_s390_vpklsh, z_packls_cc,
                                v128b, v128h, 1>;
  defm VPKLSF : BinaryVRRbSPair<"vpklsf", 0xE795, int_s390_vpklsf, z_packls_cc,
                                v128h, v128f, 2>;
  defm VPKLSG : BinaryVRRbSPair<"vpklsg", 0xE795, int_s390_vpklsg, z_packls_cc,
                                v128f, v128g, 3>;

  // Sign-extend to doubleword.
  def VSEG  : UnaryVRRaGeneric<"vseg", 0xE75F>;
  def VSEGB : UnaryVRRa<"vsegb", 0xE75F, z_vsei8,  v128g, v128g, 0>;
  def VSEGH : UnaryVRRa<"vsegh", 0xE75F, z_vsei16, v128g, v128g, 1>;
  def VSEGF : UnaryVRRa<"vsegf", 0xE75F, z_vsei32, v128g, v128g, 2>;
  def : Pat<(z_vsei8_by_parts  (v16i8 VR128:$src)), (VSEGB VR128:$src)>;
  def : Pat<(z_vsei16_by_parts (v8i16 VR128:$src)), (VSEGH VR128:$src)>;
  def : Pat<(z_vsei32_by_parts (v4i32 VR128:$src)), (VSEGF VR128:$src)>;

  // Unpack high.
  def VUPH  : UnaryVRRaGeneric<"vuph", 0xE7D7>;
  def VUPHB : UnaryVRRa<"vuphb", 0xE7D7, z_unpack_high, v128h, v128b, 0>;
  def VUPHH : UnaryVRRa<"vuphh", 0xE7D7, z_unpack_high, v128f, v128h, 1>;
  def VUPHF : UnaryVRRa<"vuphf", 0xE7D7, z_unpack_high, v128g, v128f, 2>;

  // Unpack logical high.
  def VUPLH  : UnaryVRRaGeneric<"vuplh", 0xE7D5>;
  def VUPLHB : UnaryVRRa<"vuplhb", 0xE7D5, z_unpackl_high, v128h, v128b, 0>;
  def VUPLHH : UnaryVRRa<"vuplhh", 0xE7D5, z_unpackl_high, v128f, v128h, 1>;
  def VUPLHF : UnaryVRRa<"vuplhf", 0xE7D5, z_unpackl_high, v128g, v128f, 2>;

  // Unpack low.
  def VUPL   : UnaryVRRaGeneric<"vupl", 0xE7D6>;
  def VUPLB  : UnaryVRRa<"vuplb",  0xE7D6, z_unpack_low, v128h, v128b, 0>;
  def VUPLHW : UnaryVRRa<"vuplhw", 0xE7D6, z_unpack_low, v128f, v128h, 1>;
  def VUPLF  : UnaryVRRa<"vuplf",  0xE7D6, z_unpack_low, v128g, v128f, 2>;

  // Unpack logical low.
  def VUPLL  : UnaryVRRaGeneric<"vupll", 0xE7D4>;
  def VUPLLB : UnaryVRRa<"vupllb", 0xE7D4, z_unpackl_low, v128h, v128b, 0>;
  def VUPLLH : UnaryVRRa<"vupllh", 0xE7D4, z_unpackl_low, v128f, v128h, 1>;
  def VUPLLF : UnaryVRRa<"vupllf", 0xE7D4, z_unpackl_low, v128g, v128f, 2>;
}

//===----------------------------------------------------------------------===//
// Instantiating generic operations for specific types.
//===----------------------------------------------------------------------===//

multiclass GenericVectorOps<ValueType type, ValueType inttype> {
  let Predicates = [FeatureVector] in {
    def : Pat<(type (load bdxaddr12only:$addr)),
              (VL bdxaddr12only:$addr)>;
    def : Pat<(store (type VR128:$src), bdxaddr12only:$addr),
              (VST VR128:$src, bdxaddr12only:$addr)>;
    def : Pat<(type (vselect (inttype VR128:$x), VR128:$y, VR128:$z)),
              (VSEL VR128:$y, VR128:$z, VR128:$x)>;
    def : Pat<(type (vselect (inttype (z_vnot VR128:$x)), VR128:$y, VR128:$z)),
              (VSEL VR128:$z, VR128:$y, VR128:$x)>;
  }
}

defm : GenericVectorOps<v16i8, v16i8>;
defm : GenericVectorOps<v8i16, v8i16>;
defm : GenericVectorOps<v4i32, v4i32>;
defm : GenericVectorOps<v2i64, v2i64>;
defm : GenericVectorOps<v4f32, v4i32>;
defm : GenericVectorOps<v2f64, v2i64>;

//===----------------------------------------------------------------------===//
// Integer arithmetic
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  // Add.
  def VA  : BinaryVRRcGeneric<"va", 0xE7F3>;
  def VAB : BinaryVRRc<"vab", 0xE7F3, add, v128b, v128b, 0>;
  def VAH : BinaryVRRc<"vah", 0xE7F3, add, v128h, v128h, 1>;
  def VAF : BinaryVRRc<"vaf", 0xE7F3, add, v128f, v128f, 2>;
  def VAG : BinaryVRRc<"vag", 0xE7F3, add, v128g, v128g, 3>;
  def VAQ : BinaryVRRc<"vaq", 0xE7F3, int_s390_vaq, v128q, v128q, 4>;

  // Add compute carry.
  def VACC  : BinaryVRRcGeneric<"vacc", 0xE7F1>;
  def VACCB : BinaryVRRc<"vaccb", 0xE7F1, int_s390_vaccb, v128b, v128b, 0>;
  def VACCH : BinaryVRRc<"vacch", 0xE7F1, int_s390_vacch, v128h, v128h, 1>;
  def VACCF : BinaryVRRc<"vaccf", 0xE7F1, int_s390_vaccf, v128f, v128f, 2>;
  def VACCG : BinaryVRRc<"vaccg", 0xE7F1, int_s390_vaccg, v128g, v128g, 3>;
  def VACCQ : BinaryVRRc<"vaccq", 0xE7F1, int_s390_vaccq, v128q, v128q, 4>;

  // Add with carry.
  def VAC  : TernaryVRRdGeneric<"vac", 0xE7BB>;
  def VACQ : TernaryVRRd<"vacq", 0xE7BB, int_s390_vacq, v128q, v128q, 4>;

  // Add with carry compute carry.
  def VACCC  : TernaryVRRdGeneric<"vaccc", 0xE7B9>;
  def VACCCQ : TernaryVRRd<"vacccq", 0xE7B9, int_s390_vacccq, v128q, v128q, 4>;

  // And.
  def VN : BinaryVRRc<"vn", 0xE768, null_frag, v128any, v128any>;

  // And with complement.
  def VNC : BinaryVRRc<"vnc", 0xE769, null_frag, v128any, v128any>;

  // Average.
  def VAVG  : BinaryVRRcGeneric<"vavg", 0xE7F2>;
  def VAVGB : BinaryVRRc<"vavgb", 0xE7F2, int_s390_vavgb, v128b, v128b, 0>;
  def VAVGH : BinaryVRRc<"vavgh", 0xE7F2, int_s390_vavgh, v128h, v128h, 1>;
  def VAVGF : BinaryVRRc<"vavgf", 0xE7F2, int_s390_vavgf, v128f, v128f, 2>;
  def VAVGG : BinaryVRRc<"vavgg", 0xE7F2, int_s390_vavgg, v128g, v128g, 3>;

  // Average logical.
  def VAVGL  : BinaryVRRcGeneric<"vavgl", 0xE7F0>;
  def VAVGLB : BinaryVRRc<"vavglb", 0xE7F0, int_s390_vavglb, v128b, v128b, 0>;
  def VAVGLH : BinaryVRRc<"vavglh", 0xE7F0, int_s390_vavglh, v128h, v128h, 1>;
  def VAVGLF : BinaryVRRc<"vavglf", 0xE7F0, int_s390_vavglf, v128f, v128f, 2>;
  def VAVGLG : BinaryVRRc<"vavglg", 0xE7F0, int_s390_vavglg, v128g, v128g, 3>;

  // Checksum.
  def VCKSM : BinaryVRRc<"vcksm", 0xE766, int_s390_vcksm, v128f, v128f>;

  // Count leading zeros.
  def VCLZ  : UnaryVRRaGeneric<"vclz", 0xE753>;
  def VCLZB : UnaryVRRa<"vclzb", 0xE753, ctlz, v128b, v128b, 0>;
  def VCLZH : UnaryVRRa<"vclzh", 0xE753, ctlz, v128h, v128h, 1>;
  def VCLZF : UnaryVRRa<"vclzf", 0xE753, ctlz, v128f, v128f, 2>;
  def VCLZG : UnaryVRRa<"vclzg", 0xE753, ctlz, v128g, v128g, 3>;

  // Count trailing zeros.
  def VCTZ  : UnaryVRRaGeneric<"vctz", 0xE752>;
  def VCTZB : UnaryVRRa<"vctzb", 0xE752, cttz, v128b, v128b, 0>;
  def VCTZH : UnaryVRRa<"vctzh", 0xE752, cttz, v128h, v128h, 1>;
  def VCTZF : UnaryVRRa<"vctzf", 0xE752, cttz, v128f, v128f, 2>;
  def VCTZG : UnaryVRRa<"vctzg", 0xE752, cttz, v128g, v128g, 3>;

  // Not exclusive or.
  let Predicates = [FeatureVectorEnhancements1] in
    def VNX : BinaryVRRc<"vnx", 0xE76C, null_frag, v128any, v128any>;

  // Exclusive or.
  def VX : BinaryVRRc<"vx", 0xE76D, null_frag, v128any, v128any>;

  // Galois field multiply sum.
  def VGFM  : BinaryVRRcGeneric<"vgfm", 0xE7B4>;
  def VGFMB : BinaryVRRc<"vgfmb", 0xE7B4, int_s390_vgfmb, v128h, v128b, 0>;
  def VGFMH : BinaryVRRc<"vgfmh", 0xE7B4, int_s390_vgfmh, v128f, v128h, 1>;
  def VGFMF : BinaryVRRc<"vgfmf", 0xE7B4, int_s390_vgfmf, v128g, v128f, 2>;
  def VGFMG : BinaryVRRc<"vgfmg", 0xE7B4, int_s390_vgfmg, v128q, v128g, 3>;

  // Galois field multiply sum and accumulate.
  def VGFMA  : TernaryVRRdGeneric<"vgfma", 0xE7BC>;
  def VGFMAB : TernaryVRRd<"vgfmab", 0xE7BC, int_s390_vgfmab, v128h, v128b, 0>;
  def VGFMAH : TernaryVRRd<"vgfmah", 0xE7BC, int_s390_vgfmah, v128f, v128h, 1>;
  def VGFMAF : TernaryVRRd<"vgfmaf", 0xE7BC, int_s390_vgfmaf, v128g, v128f, 2>;
  def VGFMAG : TernaryVRRd<"vgfmag", 0xE7BC, int_s390_vgfmag, v128q, v128g, 3>;

  // Load complement.
  def VLC  : UnaryVRRaGeneric<"vlc", 0xE7DE>;
  def VLCB : UnaryVRRa<"vlcb", 0xE7DE, z_vneg, v128b, v128b, 0>;
  def VLCH : UnaryVRRa<"vlch", 0xE7DE, z_vneg, v128h, v128h, 1>;
  def VLCF : UnaryVRRa<"vlcf", 0xE7DE, z_vneg, v128f, v128f, 2>;
  def VLCG : UnaryVRRa<"vlcg", 0xE7DE, z_vneg, v128g, v128g, 3>;

  // Load positive.
  def VLP  : UnaryVRRaGeneric<"vlp", 0xE7DF>;
  def VLPB : UnaryVRRa<"vlpb", 0xE7DF, z_viabs8,  v128b, v128b, 0>;
  def VLPH : UnaryVRRa<"vlph", 0xE7DF, z_viabs16, v128h, v128h, 1>;
  def VLPF : UnaryVRRa<"vlpf", 0xE7DF, z_viabs32, v128f, v128f, 2>;
  def VLPG : UnaryVRRa<"vlpg", 0xE7DF, z_viabs64, v128g, v128g, 3>;

  // Maximum.
  def VMX  : BinaryVRRcGeneric<"vmx", 0xE7FF>;
  def VMXB : BinaryVRRc<"vmxb", 0xE7FF, null_frag, v128b, v128b, 0>;
  def VMXH : BinaryVRRc<"vmxh", 0xE7FF, null_frag, v128h, v128h, 1>;
  def VMXF : BinaryVRRc<"vmxf", 0xE7FF, null_frag, v128f, v128f, 2>;
  def VMXG : BinaryVRRc<"vmxg", 0xE7FF, null_frag, v128g, v128g, 3>;

  // Maximum logical.
  def VMXL  : BinaryVRRcGeneric<"vmxl", 0xE7FD>;
  def VMXLB : BinaryVRRc<"vmxlb", 0xE7FD, null_frag, v128b, v128b, 0>;
  def VMXLH : BinaryVRRc<"vmxlh", 0xE7FD, null_frag, v128h, v128h, 1>;
  def VMXLF : BinaryVRRc<"vmxlf", 0xE7FD, null_frag, v128f, v128f, 2>;
  def VMXLG : BinaryVRRc<"vmxlg", 0xE7FD, null_frag, v128g, v128g, 3>;

  // Minimum.
  def VMN  : BinaryVRRcGeneric<"vmn", 0xE7FE>;
  def VMNB : BinaryVRRc<"vmnb", 0xE7FE, null_frag, v128b, v128b, 0>;
  def VMNH : BinaryVRRc<"vmnh", 0xE7FE, null_frag, v128h, v128h, 1>;
  def VMNF : BinaryVRRc<"vmnf", 0xE7FE, null_frag, v128f, v128f, 2>;
  def VMNG : BinaryVRRc<"vmng", 0xE7FE, null_frag, v128g, v128g, 3>;

  // Minimum logical.
  def VMNL  : BinaryVRRcGeneric<"vmnl", 0xE7FC>;
  def VMNLB : BinaryVRRc<"vmnlb", 0xE7FC, null_frag, v128b, v128b, 0>;
  def VMNLH : BinaryVRRc<"vmnlh", 0xE7FC, null_frag, v128h, v128h, 1>;
  def VMNLF : BinaryVRRc<"vmnlf", 0xE7FC, null_frag, v128f, v128f, 2>;
  def VMNLG : BinaryVRRc<"vmnlg", 0xE7FC, null_frag, v128g, v128g, 3>;

  // Multiply and add low.
  def VMAL   : TernaryVRRdGeneric<"vmal", 0xE7AA>;
  def VMALB  : TernaryVRRd<"vmalb",  0xE7AA, z_muladd, v128b, v128b, 0>;
  def VMALHW : TernaryVRRd<"vmalhw", 0xE7AA, z_muladd, v128h, v128h, 1>;
  def VMALF  : TernaryVRRd<"vmalf",  0xE7AA, z_muladd, v128f, v128f, 2>;

  // Multiply and add high.
  def VMAH  : TernaryVRRdGeneric<"vmah", 0xE7AB>;
  def VMAHB : TernaryVRRd<"vmahb", 0xE7AB, int_s390_vmahb, v128b, v128b, 0>;
  def VMAHH : TernaryVRRd<"vmahh", 0xE7AB, int_s390_vmahh, v128h, v128h, 1>;
  def VMAHF : TernaryVRRd<"vmahf", 0xE7AB, int_s390_vmahf, v128f, v128f, 2>;

  // Multiply and add logical high.
  def VMALH  : TernaryVRRdGeneric<"vmalh", 0xE7A9>;
  def VMALHB : TernaryVRRd<"vmalhb", 0xE7A9, int_s390_vmalhb, v128b, v128b, 0>;
  def VMALHH : TernaryVRRd<"vmalhh", 0xE7A9, int_s390_vmalhh, v128h, v128h, 1>;
  def VMALHF : TernaryVRRd<"vmalhf", 0xE7A9, int_s390_vmalhf, v128f, v128f, 2>;

  // Multiply and add even.
  def VMAE  : TernaryVRRdGeneric<"vmae", 0xE7AE>;
  def VMAEB : TernaryVRRd<"vmaeb", 0xE7AE, int_s390_vmaeb, v128h, v128b, 0>;
  def VMAEH : TernaryVRRd<"vmaeh", 0xE7AE, int_s390_vmaeh, v128f, v128h, 1>;
  def VMAEF : TernaryVRRd<"vmaef", 0xE7AE, int_s390_vmaef, v128g, v128f, 2>;

  // Multiply and add logical even.
  def VMALE  : TernaryVRRdGeneric<"vmale", 0xE7AC>;
  def VMALEB : TernaryVRRd<"vmaleb", 0xE7AC, int_s390_vmaleb, v128h, v128b, 0>;
  def VMALEH : TernaryVRRd<"vmaleh", 0xE7AC, int_s390_vmaleh, v128f, v128h, 1>;
  def VMALEF : TernaryVRRd<"vmalef", 0xE7AC, int_s390_vmalef, v128g, v128f, 2>;

  // Multiply and add odd.
  def VMAO  : TernaryVRRdGeneric<"vmao", 0xE7AF>;
  def VMAOB : TernaryVRRd<"vmaob", 0xE7AF, int_s390_vmaob, v128h, v128b, 0>;
  def VMAOH : TernaryVRRd<"vmaoh", 0xE7AF, int_s390_vmaoh, v128f, v128h, 1>;
  def VMAOF : TernaryVRRd<"vmaof", 0xE7AF, int_s390_vmaof, v128g, v128f, 2>;

  // Multiply and add logical odd.
  def VMALO  : TernaryVRRdGeneric<"vmalo", 0xE7AD>;
  def VMALOB : TernaryVRRd<"vmalob", 0xE7AD, int_s390_vmalob, v128h, v128b, 0>;
  def VMALOH : TernaryVRRd<"vmaloh", 0xE7AD, int_s390_vmaloh, v128f, v128h, 1>;
  def VMALOF : TernaryVRRd<"vmalof", 0xE7AD, int_s390_vmalof, v128g, v128f, 2>;

  // Multiply high.
  def VMH  : BinaryVRRcGeneric<"vmh", 0xE7A3>;
  def VMHB : BinaryVRRc<"vmhb", 0xE7A3, int_s390_vmhb, v128b, v128b, 0>;
  def VMHH : BinaryVRRc<"vmhh", 0xE7A3, int_s390_vmhh, v128h, v128h, 1>;
  def VMHF : BinaryVRRc<"vmhf", 0xE7A3, int_s390_vmhf, v128f, v128f, 2>;

  // Multiply logical high.
  def VMLH  : BinaryVRRcGeneric<"vmlh", 0xE7A1>;
  def VMLHB : BinaryVRRc<"vmlhb", 0xE7A1, int_s390_vmlhb, v128b, v128b, 0>;
  def VMLHH : BinaryVRRc<"vmlhh", 0xE7A1, int_s390_vmlhh, v128h, v128h, 1>;
  def VMLHF : BinaryVRRc<"vmlhf", 0xE7A1, int_s390_vmlhf, v128f, v128f, 2>;

  // Multiply low.
  def VML   : BinaryVRRcGeneric<"vml", 0xE7A2>;
  def VMLB  : BinaryVRRc<"vmlb",  0xE7A2, mul, v128b, v128b, 0>;
  def VMLHW : BinaryVRRc<"vmlhw", 0xE7A2, mul, v128h, v128h, 1>;
  def VMLF  : BinaryVRRc<"vmlf",  0xE7A2, mul, v128f, v128f, 2>;

  // Multiply even.
  def VME  : BinaryVRRcGeneric<"vme", 0xE7A6>;
  def VMEB : BinaryVRRc<"vmeb", 0xE7A6, int_s390_vmeb, v128h, v128b, 0>;
  def VMEH : BinaryVRRc<"vmeh", 0xE7A6, int_s390_vmeh, v128f, v128h, 1>;
  def VMEF : BinaryVRRc<"vmef", 0xE7A6, int_s390_vmef, v128g, v128f, 2>;

  // Multiply logical even.
  def VMLE  : BinaryVRRcGeneric<"vmle", 0xE7A4>;
  def VMLEB : BinaryVRRc<"vmleb", 0xE7A4, int_s390_vmleb, v128h, v128b, 0>;
  def VMLEH : BinaryVRRc<"vmleh", 0xE7A4, int_s390_vmleh, v128f, v128h, 1>;
  def VMLEF : BinaryVRRc<"vmlef", 0xE7A4, int_s390_vmlef, v128g, v128f, 2>;

  // Multiply odd.
  def VMO  : BinaryVRRcGeneric<"vmo", 0xE7A7>;
  def VMOB : BinaryVRRc<"vmob", 0xE7A7, int_s390_vmob, v128h, v128b, 0>;
  def VMOH : BinaryVRRc<"vmoh", 0xE7A7, int_s390_vmoh, v128f, v128h, 1>;
  def VMOF : BinaryVRRc<"vmof", 0xE7A7, int_s390_vmof, v128g, v128f, 2>;

  // Multiply logical odd.
  def VMLO  : BinaryVRRcGeneric<"vmlo", 0xE7A5>;
  def VMLOB : BinaryVRRc<"vmlob", 0xE7A5, int_s390_vmlob, v128h, v128b, 0>;
  def VMLOH : BinaryVRRc<"vmloh", 0xE7A5, int_s390_vmloh, v128f, v128h, 1>;
  def VMLOF : BinaryVRRc<"vmlof", 0xE7A5, int_s390_vmlof, v128g, v128f, 2>;

  // Multiply sum logical.
  let Predicates = [FeatureVectorEnhancements1] in {
    def VMSL  : QuaternaryVRRdGeneric<"vmsl", 0xE7B8>;
    def VMSLG : QuaternaryVRRd<"vmslg", 0xE7B8, int_s390_vmslg,
                               v128q, v128g, v128g, v128q, 3>;
  }

  // Nand.
  let Predicates = [FeatureVectorEnhancements1] in
    def VNN : BinaryVRRc<"vnn", 0xE76E, null_frag, v128any, v128any>;

  // Nor.
  def VNO : BinaryVRRc<"vno", 0xE76B, null_frag, v128any, v128any>;
  def : InstAlias<"vnot\t$V1, $V2", (VNO VR128:$V1, VR128:$V2, VR128:$V2), 0>;

  // Or.
  def VO : BinaryVRRc<"vo", 0xE76A, null_frag, v128any, v128any>;

  // Or with complement.
  let Predicates = [FeatureVectorEnhancements1] in
    def VOC : BinaryVRRc<"voc", 0xE76F, null_frag, v128any, v128any>;

  // Population count.
  def VPOPCT : UnaryVRRaGeneric<"vpopct", 0xE750>;
  def : Pat<(v16i8 (z_popcnt VR128:$x)), (VPOPCT VR128:$x, 0)>;
  let Predicates = [FeatureVectorEnhancements1] in {
    def VPOPCTB : UnaryVRRa<"vpopctb", 0xE750, ctpop, v128b, v128b, 0>;
    def VPOPCTH : UnaryVRRa<"vpopcth", 0xE750, ctpop, v128h, v128h, 1>;
    def VPOPCTF : UnaryVRRa<"vpopctf", 0xE750, ctpop, v128f, v128f, 2>;
    def VPOPCTG : UnaryVRRa<"vpopctg", 0xE750, ctpop, v128g, v128g, 3>;
  }

  // Element rotate left logical (with vector shift amount).
  def VERLLV  : BinaryVRRcGeneric<"verllv", 0xE773>;
  def VERLLVB : BinaryVRRc<"verllvb", 0xE773, int_s390_verllvb,
                           v128b, v128b, 0>;
  def VERLLVH : BinaryVRRc<"verllvh", 0xE773, int_s390_verllvh,
                           v128h, v128h, 1>;
  def VERLLVF : BinaryVRRc<"verllvf", 0xE773, int_s390_verllvf,
                           v128f, v128f, 2>;
  def VERLLVG : BinaryVRRc<"verllvg", 0xE773, int_s390_verllvg,
                           v128g, v128g, 3>;

  // Element rotate left logical (with scalar shift amount).
  def VERLL  : BinaryVRSaGeneric<"verll", 0xE733>;
  def VERLLB : BinaryVRSa<"verllb", 0xE733, int_s390_verllb, v128b, v128b, 0>;
  def VERLLH : BinaryVRSa<"verllh", 0xE733, int_s390_verllh, v128h, v128h, 1>;
  def VERLLF : BinaryVRSa<"verllf", 0xE733, int_s390_verllf, v128f, v128f, 2>;
  def VERLLG : BinaryVRSa<"verllg", 0xE733, int_s390_verllg, v128g, v128g, 3>;

  // Element rotate and insert under mask.
  def VERIM  : QuaternaryVRIdGeneric<"verim", 0xE772>;
  def VERIMB : QuaternaryVRId<"verimb", 0xE772, int_s390_verimb, v128b, v128b, 0>;
  def VERIMH : QuaternaryVRId<"verimh", 0xE772, int_s390_verimh, v128h, v128h, 1>;
  def VERIMF : QuaternaryVRId<"verimf", 0xE772, int_s390_verimf, v128f, v128f, 2>;
  def VERIMG : QuaternaryVRId<"verimg", 0xE772, int_s390_verimg, v128g, v128g, 3>;

  // Element shift left (with vector shift amount).
  def VESLV  : BinaryVRRcGeneric<"veslv", 0xE770>;
  def VESLVB : BinaryVRRc<"veslvb", 0xE770, z_vshl, v128b, v128b, 0>;
  def VESLVH : BinaryVRRc<"veslvh", 0xE770, z_vshl, v128h, v128h, 1>;
  def VESLVF : BinaryVRRc<"veslvf", 0xE770, z_vshl, v128f, v128f, 2>;
  def VESLVG : BinaryVRRc<"veslvg", 0xE770, z_vshl, v128g, v128g, 3>;

  // Element shift left (with scalar shift amount).
  def VESL  : BinaryVRSaGeneric<"vesl", 0xE730>;
  def VESLB : BinaryVRSa<"veslb", 0xE730, z_vshl_by_scalar, v128b, v128b, 0>;
  def VESLH : BinaryVRSa<"veslh", 0xE730, z_vshl_by_scalar, v128h, v128h, 1>;
  def VESLF : BinaryVRSa<"veslf", 0xE730, z_vshl_by_scalar, v128f, v128f, 2>;
  def VESLG : BinaryVRSa<"veslg", 0xE730, z_vshl_by_scalar, v128g, v128g, 3>;

  // Element shift right arithmetic (with vector shift amount).
  def VESRAV  : BinaryVRRcGeneric<"vesrav", 0xE77A>;
  def VESRAVB : BinaryVRRc<"vesravb", 0xE77A, z_vsra, v128b, v128b, 0>;
  def VESRAVH : BinaryVRRc<"vesravh", 0xE77A, z_vsra, v128h, v128h, 1>;
  def VESRAVF : BinaryVRRc<"vesravf", 0xE77A, z_vsra, v128f, v128f, 2>;
  def VESRAVG : BinaryVRRc<"vesravg", 0xE77A, z_vsra, v128g, v128g, 3>;

  // Element shift right arithmetic (with scalar shift amount).
  def VESRA  : BinaryVRSaGeneric<"vesra", 0xE73A>;
  def VESRAB : BinaryVRSa<"vesrab", 0xE73A, z_vsra_by_scalar, v128b, v128b, 0>;
  def VESRAH : BinaryVRSa<"vesrah", 0xE73A, z_vsra_by_scalar, v128h, v128h, 1>;
  def VESRAF : BinaryVRSa<"vesraf", 0xE73A, z_vsra_by_scalar, v128f, v128f, 2>;
  def VESRAG : BinaryVRSa<"vesrag", 0xE73A, z_vsra_by_scalar, v128g, v128g, 3>;

  // Element shift right logical (with vector shift amount).
  def VESRLV  : BinaryVRRcGeneric<"vesrlv", 0xE778>;
  def VESRLVB : BinaryVRRc<"vesrlvb", 0xE778, z_vsrl, v128b, v128b, 0>;
  def VESRLVH : BinaryVRRc<"vesrlvh", 0xE778, z_vsrl, v128h, v128h, 1>;
  def VESRLVF : BinaryVRRc<"vesrlvf", 0xE778, z_vsrl, v128f, v128f, 2>;
  def VESRLVG : BinaryVRRc<"vesrlvg", 0xE778, z_vsrl, v128g, v128g, 3>;

  // Element shift right logical (with scalar shift amount).
  def VESRL  : BinaryVRSaGeneric<"vesrl", 0xE738>;
  def VESRLB : BinaryVRSa<"vesrlb", 0xE738, z_vsrl_by_scalar, v128b, v128b, 0>;
  def VESRLH : BinaryVRSa<"vesrlh", 0xE738, z_vsrl_by_scalar, v128h, v128h, 1>;
  def VESRLF : BinaryVRSa<"vesrlf", 0xE738, z_vsrl_by_scalar, v128f, v128f, 2>;
  def VESRLG : BinaryVRSa<"vesrlg", 0xE738, z_vsrl_by_scalar, v128g, v128g, 3>;

  // Shift left.
  def VSL : BinaryVRRc<"vsl", 0xE774, int_s390_vsl, v128b, v128b>;

  // Shift left by byte.
  def VSLB : BinaryVRRc<"vslb", 0xE775, int_s390_vslb, v128b, v128b>;

  // Shift left double by byte.
  def VSLDB : TernaryVRId<"vsldb", 0xE777, z_shl_double, v128b, v128b, 0>;
  def : Pat<(int_s390_vsldb VR128:$x, VR128:$y, imm32zx8_timm:$z),
            (VSLDB VR128:$x, VR128:$y, imm32zx8:$z)>;

  // Shift left double by bit.
  let Predicates = [FeatureVectorEnhancements2] in
    def VSLD : TernaryVRId<"vsld", 0xE786, int_s390_vsld, v128b, v128b, 0>;

  // Shift right arithmetic.
  def VSRA : BinaryVRRc<"vsra", 0xE77E, int_s390_vsra, v128b, v128b>;

  // Shift right arithmetic by byte.
  def VSRAB : BinaryVRRc<"vsrab", 0xE77F, int_s390_vsrab, v128b, v128b>;

  // Shift right logical.
  def VSRL : BinaryVRRc<"vsrl", 0xE77C, int_s390_vsrl, v128b, v128b>;

  // Shift right logical by byte.
  def VSRLB : BinaryVRRc<"vsrlb", 0xE77D, int_s390_vsrlb, v128b, v128b>;

  // Shift right double by bit.
  let Predicates = [FeatureVectorEnhancements2] in
    def VSRD : TernaryVRId<"vsrd", 0xE787, int_s390_vsrd, v128b, v128b, 0>;

  // Subtract.
  def VS  : BinaryVRRcGeneric<"vs", 0xE7F7>;
  def VSB : BinaryVRRc<"vsb", 0xE7F7, sub, v128b, v128b, 0>;
  def VSH : BinaryVRRc<"vsh", 0xE7F7, sub, v128h, v128h, 1>;
  def VSF : BinaryVRRc<"vsf", 0xE7F7, sub, v128f, v128f, 2>;
  def VSG : BinaryVRRc<"vsg", 0xE7F7, sub, v128g, v128g, 3>;
  def VSQ : BinaryVRRc<"vsq", 0xE7F7, int_s390_vsq, v128q, v128q, 4>;

  // Subtract compute borrow indication.
  def VSCBI  : BinaryVRRcGeneric<"vscbi", 0xE7F5>;
  def VSCBIB : BinaryVRRc<"vscbib", 0xE7F5, int_s390_vscbib, v128b, v128b, 0>;
  def VSCBIH : BinaryVRRc<"vscbih", 0xE7F5, int_s390_vscbih, v128h, v128h, 1>;
  def VSCBIF : BinaryVRRc<"vscbif", 0xE7F5, int_s390_vscbif, v128f, v128f, 2>;
  def VSCBIG : BinaryVRRc<"vscbig", 0xE7F5, int_s390_vscbig, v128g, v128g, 3>;
  def VSCBIQ : BinaryVRRc<"vscbiq", 0xE7F5, int_s390_vscbiq, v128q, v128q, 4>;

  // Subtract with borrow indication.
  def VSBI  : TernaryVRRdGeneric<"vsbi", 0xE7BF>;
  def VSBIQ : TernaryVRRd<"vsbiq", 0xE7BF, int_s390_vsbiq, v128q, v128q, 4>;

  // Subtract with borrow compute borrow indication.
  def VSBCBI  : TernaryVRRdGeneric<"vsbcbi", 0xE7BD>;
  def VSBCBIQ : TernaryVRRd<"vsbcbiq", 0xE7BD, int_s390_vsbcbiq,
                            v128q, v128q, 4>;

  // Sum across doubleword.
  def VSUMG  : BinaryVRRcGeneric<"vsumg", 0xE765>;
  def VSUMGH : BinaryVRRc<"vsumgh", 0xE765, z_vsum, v128g, v128h, 1>;
  def VSUMGF : BinaryVRRc<"vsumgf", 0xE765, z_vsum, v128g, v128f, 2>;

  // Sum across quadword.
  def VSUMQ  : BinaryVRRcGeneric<"vsumq", 0xE767>;
  def VSUMQF : BinaryVRRc<"vsumqf", 0xE767, z_vsum, v128q, v128f, 2>;
  def VSUMQG : BinaryVRRc<"vsumqg", 0xE767, z_vsum, v128q, v128g, 3>;

  // Sum across word.
  def VSUM  : BinaryVRRcGeneric<"vsum", 0xE764>;
  def VSUMB : BinaryVRRc<"vsumb", 0xE764, z_vsum, v128f, v128b, 0>;
  def VSUMH : BinaryVRRc<"vsumh", 0xE764, z_vsum, v128f, v128h, 1>;
}

// Instantiate the bitwise ops for type TYPE.
multiclass BitwiseVectorOps<ValueType type> {
  let Predicates = [FeatureVector] in {
    def : Pat<(type (and VR128:$x, VR128:$y)), (VN VR128:$x, VR128:$y)>;
    def : Pat<(type (and VR128:$x, (z_vnot VR128:$y))),
              (VNC VR128:$x, VR128:$y)>;
    def : Pat<(type (or VR128:$x, VR128:$y)), (VO VR128:$x, VR128:$y)>;
    def : Pat<(type (xor VR128:$x, VR128:$y)), (VX VR128:$x, VR128:$y)>;
    def : Pat<(type (or (and VR128:$x, VR128:$z),
                        (and VR128:$y, (z_vnot VR128:$z)))),
              (VSEL VR128:$x, VR128:$y, VR128:$z)>;
    def : Pat<(type (z_vnot (or VR128:$x, VR128:$y))),
              (VNO VR128:$x, VR128:$y)>;
    def : Pat<(type (z_vnot VR128:$x)), (VNO VR128:$x, VR128:$x)>;
  }
  let Predicates = [FeatureVectorEnhancements1] in {
    def : Pat<(type (z_vnot (xor VR128:$x, VR128:$y))),
              (VNX VR128:$x, VR128:$y)>;
    def : Pat<(type (z_vnot (and VR128:$x, VR128:$y))),
              (VNN VR128:$x, VR128:$y)>;
    def : Pat<(type (or VR128:$x, (z_vnot VR128:$y))),
              (VOC VR128:$x, VR128:$y)>;
  }
}

defm : BitwiseVectorOps<v16i8>;
defm : BitwiseVectorOps<v8i16>;
defm : BitwiseVectorOps<v4i32>;
defm : BitwiseVectorOps<v2i64>;

// Instantiate additional patterns for absolute-related expressions on
// type TYPE.  LC is the negate instruction for TYPE and LP is the absolute
// instruction.
multiclass IntegerAbsoluteVectorOps<ValueType type, Instruction lc,
                                    Instruction lp, int shift> {
  let Predicates = [FeatureVector] in {
    def : Pat<(type (vselect (type (z_vicmph_zero VR128:$x)),
                             (z_vneg VR128:$x), VR128:$x)),
              (lc (lp VR128:$x))>;
    def : Pat<(type (vselect (type (z_vnot (z_vicmph_zero VR128:$x))),
                             VR128:$x, (z_vneg VR128:$x))),
              (lc (lp VR128:$x))>;
    def : Pat<(type (vselect (type (z_vicmpl_zero VR128:$x)),
                             VR128:$x, (z_vneg VR128:$x))),
              (lc (lp VR128:$x))>;
    def : Pat<(type (vselect (type (z_vnot (z_vicmpl_zero VR128:$x))),
                             (z_vneg VR128:$x), VR128:$x)),
              (lc (lp VR128:$x))>;
    def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)),
                             (z_vneg VR128:$x)),
                        (and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))),
                             VR128:$x))),
              (lp VR128:$x)>;
    def : Pat<(type (or (and (z_vsra_by_scalar VR128:$x, (i32 shift)),
                             VR128:$x),
                        (and (z_vnot (z_vsra_by_scalar VR128:$x, (i32 shift))),
                             (z_vneg VR128:$x)))),
              (lc (lp VR128:$x))>;
  }
}

defm : IntegerAbsoluteVectorOps<v16i8, VLCB, VLPB, 7>;
defm : IntegerAbsoluteVectorOps<v8i16, VLCH, VLPH, 15>;
defm : IntegerAbsoluteVectorOps<v4i32, VLCF, VLPF, 31>;
defm : IntegerAbsoluteVectorOps<v2i64, VLCG, VLPG, 63>;

// Instantiate minimum- and maximum-related patterns for TYPE.  CMPH is the
// signed or unsigned "set if greater than" comparison instruction and
// MIN and MAX are the associated minimum and maximum instructions.
multiclass IntegerMinMaxVectorOps<ValueType type, SDPatternOperator cmph,
                                  Instruction min, Instruction max> {
  let Predicates = [FeatureVector] in {
    def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$x, VR128:$y)),
              (max VR128:$x, VR128:$y)>;
    def : Pat<(type (vselect (cmph VR128:$x, VR128:$y), VR128:$y, VR128:$x)),
              (min VR128:$x, VR128:$y)>;
    def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)),
                             VR128:$x, VR128:$y)),
              (min VR128:$x, VR128:$y)>;
    def : Pat<(type (vselect (z_vnot (cmph VR128:$x, VR128:$y)),
                             VR128:$y, VR128:$x)),
              (max VR128:$x, VR128:$y)>;
  }
}

// Signed min/max.
defm : IntegerMinMaxVectorOps<v16i8, z_vicmph, VMNB, VMXB>;
defm : IntegerMinMaxVectorOps<v8i16, z_vicmph, VMNH, VMXH>;
defm : IntegerMinMaxVectorOps<v4i32, z_vicmph, VMNF, VMXF>;
defm : IntegerMinMaxVectorOps<v2i64, z_vicmph, VMNG, VMXG>;

// Unsigned min/max.
defm : IntegerMinMaxVectorOps<v16i8, z_vicmphl, VMNLB, VMXLB>;
defm : IntegerMinMaxVectorOps<v8i16, z_vicmphl, VMNLH, VMXLH>;
defm : IntegerMinMaxVectorOps<v4i32, z_vicmphl, VMNLF, VMXLF>;
defm : IntegerMinMaxVectorOps<v2i64, z_vicmphl, VMNLG, VMXLG>;

//===----------------------------------------------------------------------===//
// Integer comparison
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  // Element compare.
  let Defs = [CC] in {
    def VEC  : CompareVRRaGeneric<"vec", 0xE7DB>;
    def VECB : CompareVRRa<"vecb", 0xE7DB, null_frag, v128b, 0>;
    def VECH : CompareVRRa<"vech", 0xE7DB, null_frag, v128h, 1>;
    def VECF : CompareVRRa<"vecf", 0xE7DB, null_frag, v128f, 2>;
    def VECG : CompareVRRa<"vecg", 0xE7DB, null_frag, v128g, 3>;
  }

  // Element compare logical.
  let Defs = [CC] in {
    def VECL  : CompareVRRaGeneric<"vecl", 0xE7D9>;
    def VECLB : CompareVRRa<"veclb", 0xE7D9, null_frag, v128b, 0>;
    def VECLH : CompareVRRa<"veclh", 0xE7D9, null_frag, v128h, 1>;
    def VECLF : CompareVRRa<"veclf", 0xE7D9, null_frag, v128f, 2>;
    def VECLG : CompareVRRa<"veclg", 0xE7D9, null_frag, v128g, 3>;
  }

  // Compare equal.
  def  VCEQ  : BinaryVRRbSPairGeneric<"vceq", 0xE7F8>;
  defm VCEQB : BinaryVRRbSPair<"vceqb", 0xE7F8, z_vicmpe, z_vicmpes,
                               v128b, v128b, 0>;
  defm VCEQH : BinaryVRRbSPair<"vceqh", 0xE7F8, z_vicmpe, z_vicmpes,
                               v128h, v128h, 1>;
  defm VCEQF : BinaryVRRbSPair<"vceqf", 0xE7F8, z_vicmpe, z_vicmpes,
                               v128f, v128f, 2>;
  defm VCEQG : BinaryVRRbSPair<"vceqg", 0xE7F8, z_vicmpe, z_vicmpes,
                               v128g, v128g, 3>;

  // Compare high.
  def  VCH  : BinaryVRRbSPairGeneric<"vch", 0xE7FB>;
  defm VCHB : BinaryVRRbSPair<"vchb", 0xE7FB, z_vicmph, z_vicmphs,
                              v128b, v128b, 0>;
  defm VCHH : BinaryVRRbSPair<"vchh", 0xE7FB, z_vicmph, z_vicmphs,
                              v128h, v128h, 1>;
  defm VCHF : BinaryVRRbSPair<"vchf", 0xE7FB, z_vicmph, z_vicmphs,
                              v128f, v128f, 2>;
  defm VCHG : BinaryVRRbSPair<"vchg", 0xE7FB, z_vicmph, z_vicmphs,
                              v128g, v128g, 3>;

  // Compare high logical.
  def  VCHL  : BinaryVRRbSPairGeneric<"vchl", 0xE7F9>;
  defm VCHLB : BinaryVRRbSPair<"vchlb", 0xE7F9, z_vicmphl, z_vicmphls,
                               v128b, v128b, 0>;
  defm VCHLH : BinaryVRRbSPair<"vchlh", 0xE7F9, z_vicmphl, z_vicmphls,
                               v128h, v128h, 1>;
  defm VCHLF : BinaryVRRbSPair<"vchlf", 0xE7F9, z_vicmphl, z_vicmphls,
                               v128f, v128f, 2>;
  defm VCHLG : BinaryVRRbSPair<"vchlg", 0xE7F9, z_vicmphl, z_vicmphls,
                               v128g, v128g, 3>;

  // Test under mask.
  let Defs = [CC] in
    def VTM : CompareVRRa<"vtm", 0xE7D8, z_vtm, v128b, 0>;
}

//===----------------------------------------------------------------------===//
// Floating-point arithmetic
//===----------------------------------------------------------------------===//

// See comments in SystemZInstrFP.td for the suppression flags and
// rounding modes.
multiclass VectorRounding<Instruction insn, TypedReg tr> {
  def : FPConversion<insn, any_frint,      tr, tr, 0, 0>;
  def : FPConversion<insn, any_fnearbyint, tr, tr, 4, 0>;
  def : FPConversion<insn, any_ffloor,     tr, tr, 4, 7>;
  def : FPConversion<insn, any_fceil,      tr, tr, 4, 6>;
  def : FPConversion<insn, any_ftrunc,     tr, tr, 4, 5>;
  def : FPConversion<insn, any_fround,     tr, tr, 4, 1>;
}

let Predicates = [FeatureVector] in {
  // Add.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VFA   : BinaryVRRcFloatGeneric<"vfa", 0xE7E3>;
    def VFADB : BinaryVRRc<"vfadb", 0xE7E3, any_fadd, v128db, v128db, 3, 0>;
    def WFADB : BinaryVRRc<"wfadb", 0xE7E3, any_fadd, v64db, v64db, 3, 8>;
    let Predicates = [FeatureVectorEnhancements1] in {
      def VFASB : BinaryVRRc<"vfasb", 0xE7E3, any_fadd, v128sb, v128sb, 2, 0>;
      def WFASB : BinaryVRRc<"wfasb", 0xE7E3, any_fadd, v32sb, v32sb, 2, 8>;
      def WFAXB : BinaryVRRc<"wfaxb", 0xE7E3, any_fadd, v128xb, v128xb, 4, 8>;
    }
  }

  // Convert from fixed.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VCDG  : TernaryVRRaFloatGeneric<"vcdg", 0xE7C3>;
    def VCDGB : TernaryVRRa<"vcdgb", 0xE7C3, null_frag, v128db, v128g, 3, 0>;
    def WCDGB : TernaryVRRa<"wcdgb", 0xE7C3, null_frag, v64db, v64g, 3, 8>;
  }
  def : FPConversion<VCDGB, any_sint_to_fp, v128db, v128g, 0, 0>;
  let Predicates = [FeatureVectorEnhancements2] in {
    let Uses = [FPC], mayRaiseFPException = 1 in {
      let isAsmParserOnly = 1 in
        def VCFPS  : TernaryVRRaFloatGeneric<"vcfps", 0xE7C3>;
      def VCEFB : TernaryVRRa<"vcefb", 0xE7C3, null_frag, v128sb, v128g, 2, 0>;
      def WCEFB : TernaryVRRa<"wcefb", 0xE7C3, null_frag, v32sb, v32f, 2, 8>;
    }
    def : FPConversion<VCEFB, any_sint_to_fp, v128sb, v128f, 0, 0>;
  }

  // Convert from logical.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VCDLG  : TernaryVRRaFloatGeneric<"vcdlg", 0xE7C1>;
    def VCDLGB : TernaryVRRa<"vcdlgb", 0xE7C1, null_frag, v128db, v128g, 3, 0>;
    def WCDLGB : TernaryVRRa<"wcdlgb", 0xE7C1, null_frag, v64db, v64g, 3, 8>;
  }
  def : FPConversion<VCDLGB, any_uint_to_fp, v128db, v128g, 0, 0>;
  let Predicates = [FeatureVectorEnhancements2] in {
    let Uses = [FPC], mayRaiseFPException = 1 in {
      let isAsmParserOnly = 1 in
        def VCFPL  : TernaryVRRaFloatGeneric<"vcfpl", 0xE7C1>;
      def VCELFB : TernaryVRRa<"vcelfb", 0xE7C1, null_frag, v128sb, v128g, 2, 0>;
      def WCELFB : TernaryVRRa<"wcelfb", 0xE7C1, null_frag, v32sb, v32f, 2, 8>;
    }
    def : FPConversion<VCELFB, any_uint_to_fp, v128sb, v128f, 0, 0>;
  }

  // Convert to fixed.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VCGD  : TernaryVRRaFloatGeneric<"vcgd", 0xE7C2>;
    def VCGDB : TernaryVRRa<"vcgdb", 0xE7C2, null_frag, v128g, v128db, 3, 0>;
    def WCGDB : TernaryVRRa<"wcgdb", 0xE7C2, null_frag, v64g, v64db, 3, 8>;
  }
  // Rounding mode should agree with SystemZInstrFP.td.
  def : FPConversion<VCGDB, any_fp_to_sint, v128g, v128db, 0, 5>;
  let Predicates = [FeatureVectorEnhancements2] in {
    let Uses = [FPC], mayRaiseFPException = 1 in {
      let isAsmParserOnly = 1 in
        def VCSFP  : TernaryVRRaFloatGeneric<"vcsfp", 0xE7C2>;
      def VCFEB : TernaryVRRa<"vcfeb", 0xE7C2, null_frag, v128sb, v128g, 2, 0>;
      def WCFEB : TernaryVRRa<"wcfeb", 0xE7C2, null_frag, v32sb, v32f, 2, 8>;
    }
    // Rounding mode should agree with SystemZInstrFP.td.
    def : FPConversion<VCFEB, any_fp_to_sint, v128f, v128sb, 0, 5>;
  }

  // Convert to logical.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VCLGD  : TernaryVRRaFloatGeneric<"vclgd", 0xE7C0>;
    def VCLGDB : TernaryVRRa<"vclgdb", 0xE7C0, null_frag, v128g, v128db, 3, 0>;
    def WCLGDB : TernaryVRRa<"wclgdb", 0xE7C0, null_frag, v64g, v64db, 3, 8>;
  }
  // Rounding mode should agree with SystemZInstrFP.td.
  def : FPConversion<VCLGDB, any_fp_to_uint, v128g, v128db, 0, 5>;
  let Predicates = [FeatureVectorEnhancements2] in {
    let Uses = [FPC], mayRaiseFPException = 1 in {
      let isAsmParserOnly = 1 in
        def VCLFP  : TernaryVRRaFloatGeneric<"vclfp", 0xE7C0>;
      def VCLFEB : TernaryVRRa<"vclfeb", 0xE7C0, null_frag, v128sb, v128g, 2, 0>;
      def WCLFEB : TernaryVRRa<"wclfeb", 0xE7C0, null_frag, v32sb, v32f, 2, 8>;
    }
    // Rounding mode should agree with SystemZInstrFP.td.
    def : FPConversion<VCLFEB, any_fp_to_uint, v128f, v128sb, 0, 5>;
  }

  // Divide.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VFD   : BinaryVRRcFloatGeneric<"vfd", 0xE7E5>;
    def VFDDB : BinaryVRRc<"vfddb", 0xE7E5, any_fdiv, v128db, v128db, 3, 0>;
    def WFDDB : BinaryVRRc<"wfddb", 0xE7E5, any_fdiv, v64db, v64db, 3, 8>;
    let Predicates = [FeatureVectorEnhancements1] in {
      def VFDSB : BinaryVRRc<"vfdsb", 0xE7E5, any_fdiv, v128sb, v128sb, 2, 0>;
      def WFDSB : BinaryVRRc<"wfdsb", 0xE7E5, any_fdiv, v32sb, v32sb, 2, 8>;
      def WFDXB : BinaryVRRc<"wfdxb", 0xE7E5, any_fdiv, v128xb, v128xb, 4, 8>;
    }
  }

  // Load FP integer.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VFI   : TernaryVRRaFloatGeneric<"vfi", 0xE7C7>;
    def VFIDB : TernaryVRRa<"vfidb", 0xE7C7, int_s390_vfidb, v128db, v128db, 3, 0>;
    def WFIDB : TernaryVRRa<"wfidb", 0xE7C7, null_frag, v64db, v64db, 3, 8>;
  }
  defm : VectorRounding<VFIDB, v128db>;
  defm : VectorRounding<WFIDB, v64db>;
  let Predicates = [FeatureVectorEnhancements1] in {
    let Uses = [FPC], mayRaiseFPException = 1 in {
      def VFISB : TernaryVRRa<"vfisb", 0xE7C7, int_s390_vfisb, v128sb, v128sb, 2, 0>;
      def WFISB : TernaryVRRa<"wfisb", 0xE7C7, null_frag, v32sb, v32sb, 2, 8>;
      def WFIXB : TernaryVRRa<"wfixb", 0xE7C7, null_frag, v128xb, v128xb, 4, 8>;
    }
    defm : VectorRounding<VFISB, v128sb>;
    defm : VectorRounding<WFISB, v32sb>;
    defm : VectorRounding<WFIXB, v128xb>;
  }

  // Load lengthened.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VLDE  : UnaryVRRaFloatGeneric<"vlde", 0xE7C4>;
    def VLDEB : UnaryVRRa<"vldeb", 0xE7C4, z_any_vextend, v128db, v128sb, 2, 0>;
    def WLDEB : UnaryVRRa<"wldeb", 0xE7C4, any_fpextend, v64db, v32sb, 2, 8>;
  }
  let Predicates = [FeatureVectorEnhancements1] in {
    let Uses = [FPC], mayRaiseFPException = 1 in {
      let isAsmParserOnly = 1 in {
        def VFLL  : UnaryVRRaFloatGeneric<"vfll", 0xE7C4>;
        def VFLLS : UnaryVRRa<"vflls", 0xE7C4, null_frag, v128db, v128sb, 2, 0>;
        def WFLLS : UnaryVRRa<"wflls", 0xE7C4, null_frag, v64db, v32sb, 2, 8>;
      }
      def WFLLD : UnaryVRRa<"wflld", 0xE7C4, any_fpextend, v128xb, v64db, 3, 8>;
    }
    def : Pat<(f128 (any_fpextend (f32 VR32:$src))),
              (WFLLD (WLDEB VR32:$src))>;
  }

  // Load rounded.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VLED  : TernaryVRRaFloatGeneric<"vled", 0xE7C5>;
    def VLEDB : TernaryVRRa<"vledb", 0xE7C5, null_frag, v128sb, v128db, 3, 0>;
    def WLEDB : TernaryVRRa<"wledb", 0xE7C5, null_frag, v32sb, v64db, 3, 8>;
  }
  def : Pat<(v4f32 (z_any_vround (v2f64 VR128:$src))), (VLEDB VR128:$src, 0, 0)>;
  def : FPConversion<WLEDB, any_fpround, v32sb, v64db, 0, 0>;
  let Predicates = [FeatureVectorEnhancements1] in {
    let Uses = [FPC], mayRaiseFPException = 1 in {
      let isAsmParserOnly = 1 in {
        def VFLR  : TernaryVRRaFloatGeneric<"vflr", 0xE7C5>;
        def VFLRD : TernaryVRRa<"vflrd", 0xE7C5, null_frag, v128sb, v128db, 3, 0>;
        def WFLRD : TernaryVRRa<"wflrd", 0xE7C5, null_frag, v32sb, v64db, 3, 8>;
      }
      def WFLRX : TernaryVRRa<"wflrx", 0xE7C5, null_frag, v64db, v128xb, 4, 8>;
    }
    def : FPConversion<WFLRX, any_fpround, v64db, v128xb, 0, 0>;
    def : Pat<(f32 (any_fpround (f128 VR128:$src))),
              (WLEDB (WFLRX VR128:$src, 0, 3), 0, 0)>;
  }

  // Maximum.
  multiclass VectorMax<Instruction insn, TypedReg tr> {
    def : FPMinMax<insn, any_fmaxnum, tr, 4>;
    def : FPMinMax<insn, any_fmaximum, tr, 1>;
  }
  let Predicates = [FeatureVectorEnhancements1] in {
    let Uses = [FPC], mayRaiseFPException = 1 in {
      def VFMAX   : TernaryVRRcFloatGeneric<"vfmax", 0xE7EF>;
      def VFMAXDB : TernaryVRRcFloat<"vfmaxdb", 0xE7EF, int_s390_vfmaxdb,
                                     v128db, v128db, 3, 0>;
      def WFMAXDB : TernaryVRRcFloat<"wfmaxdb", 0xE7EF, null_frag,
                                     v64db, v64db, 3, 8>;
      def VFMAXSB : TernaryVRRcFloat<"vfmaxsb", 0xE7EF, int_s390_vfmaxsb,
                                     v128sb, v128sb, 2, 0>;
      def WFMAXSB : TernaryVRRcFloat<"wfmaxsb", 0xE7EF, null_frag,
                                     v32sb, v32sb, 2, 8>;
      def WFMAXXB : TernaryVRRcFloat<"wfmaxxb", 0xE7EF, null_frag,
                                     v128xb, v128xb, 4, 8>;
    }
    defm : VectorMax<VFMAXDB, v128db>;
    defm : VectorMax<WFMAXDB, v64db>;
    defm : VectorMax<VFMAXSB, v128sb>;
    defm : VectorMax<WFMAXSB, v32sb>;
    defm : VectorMax<WFMAXXB, v128xb>;
  }

  // Minimum.
  multiclass VectorMin<Instruction insn, TypedReg tr> {
    def : FPMinMax<insn, any_fminnum, tr, 4>;
    def : FPMinMax<insn, any_fminimum, tr, 1>;
  }
  let Predicates = [FeatureVectorEnhancements1] in {
    let Uses = [FPC], mayRaiseFPException = 1 in {
      def VFMIN   : TernaryVRRcFloatGeneric<"vfmin", 0xE7EE>;
      def VFMINDB : TernaryVRRcFloat<"vfmindb", 0xE7EE, int_s390_vfmindb,
                                     v128db, v128db, 3, 0>;
      def WFMINDB : TernaryVRRcFloat<"wfmindb", 0xE7EE, null_frag,
                                     v64db, v64db, 3, 8>;
      def VFMINSB : TernaryVRRcFloat<"vfminsb", 0xE7EE, int_s390_vfminsb,
                                     v128sb, v128sb, 2, 0>;
      def WFMINSB : TernaryVRRcFloat<"wfminsb", 0xE7EE, null_frag,
                                     v32sb, v32sb, 2, 8>;
      def WFMINXB : TernaryVRRcFloat<"wfminxb", 0xE7EE, null_frag,
                                     v128xb, v128xb, 4, 8>;
    }
    defm : VectorMin<VFMINDB, v128db>;
    defm : VectorMin<WFMINDB, v64db>;
    defm : VectorMin<VFMINSB, v128sb>;
    defm : VectorMin<WFMINSB, v32sb>;
    defm : VectorMin<WFMINXB, v128xb>;
  }

  // Multiply.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VFM   : BinaryVRRcFloatGeneric<"vfm", 0xE7E7>;
    def VFMDB : BinaryVRRc<"vfmdb", 0xE7E7, any_fmul, v128db, v128db, 3, 0>;
    def WFMDB : BinaryVRRc<"wfmdb", 0xE7E7, any_fmul, v64db, v64db, 3, 8>;
    let Predicates = [FeatureVectorEnhancements1] in {
      def VFMSB : BinaryVRRc<"vfmsb", 0xE7E7, any_fmul, v128sb, v128sb, 2, 0>;
      def WFMSB : BinaryVRRc<"wfmsb", 0xE7E7, any_fmul, v32sb, v32sb, 2, 8>;
      def WFMXB : BinaryVRRc<"wfmxb", 0xE7E7, any_fmul, v128xb, v128xb, 4, 8>;
    }
  }

  // Multiply and add.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VFMA   : TernaryVRReFloatGeneric<"vfma", 0xE78F>;
    def VFMADB : TernaryVRRe<"vfmadb", 0xE78F, any_fma, v128db, v128db, 0, 3>;
    def WFMADB : TernaryVRRe<"wfmadb", 0xE78F, any_fma, v64db, v64db, 8, 3>;
    let Predicates = [FeatureVectorEnhancements1] in {
      def VFMASB : TernaryVRRe<"vfmasb", 0xE78F, any_fma, v128sb, v128sb, 0, 2>;
      def WFMASB : TernaryVRRe<"wfmasb", 0xE78F, any_fma, v32sb, v32sb, 8, 2>;
      def WFMAXB : TernaryVRRe<"wfmaxb", 0xE78F, any_fma, v128xb, v128xb, 8, 4>;
    }
  }

  // Multiply and subtract.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VFMS   : TernaryVRReFloatGeneric<"vfms", 0xE78E>;
    def VFMSDB : TernaryVRRe<"vfmsdb", 0xE78E, any_fms, v128db, v128db, 0, 3>;
    def WFMSDB : TernaryVRRe<"wfmsdb", 0xE78E, any_fms, v64db, v64db, 8, 3>;
    let Predicates = [FeatureVectorEnhancements1] in {
      def VFMSSB : TernaryVRRe<"vfmssb", 0xE78E, any_fms, v128sb, v128sb, 0, 2>;
      def WFMSSB : TernaryVRRe<"wfmssb", 0xE78E, any_fms, v32sb, v32sb, 8, 2>;
      def WFMSXB : TernaryVRRe<"wfmsxb", 0xE78E, any_fms, v128xb, v128xb, 8, 4>;
    }
  }

  // Negative multiply and add.
  let Uses = [FPC], mayRaiseFPException = 1,
      Predicates = [FeatureVectorEnhancements1] in {
    def VFNMA   : TernaryVRReFloatGeneric<"vfnma", 0xE79F>;
    def VFNMADB : TernaryVRRe<"vfnmadb", 0xE79F, any_fnma, v128db, v128db, 0, 3>;
    def WFNMADB : TernaryVRRe<"wfnmadb", 0xE79F, any_fnma, v64db, v64db, 8, 3>;
    def VFNMASB : TernaryVRRe<"vfnmasb", 0xE79F, any_fnma, v128sb, v128sb, 0, 2>;
    def WFNMASB : TernaryVRRe<"wfnmasb", 0xE79F, any_fnma, v32sb, v32sb, 8, 2>;
    def WFNMAXB : TernaryVRRe<"wfnmaxb", 0xE79F, any_fnma, v128xb, v128xb, 8, 4>;
  }

  // Negative multiply and subtract.
  let Uses = [FPC], mayRaiseFPException = 1,
      Predicates = [FeatureVectorEnhancements1] in {
    def VFNMS   : TernaryVRReFloatGeneric<"vfnms", 0xE79E>;
    def VFNMSDB : TernaryVRRe<"vfnmsdb", 0xE79E, any_fnms, v128db, v128db, 0, 3>;
    def WFNMSDB : TernaryVRRe<"wfnmsdb", 0xE79E, any_fnms, v64db, v64db, 8, 3>;
    def VFNMSSB : TernaryVRRe<"vfnmssb", 0xE79E, any_fnms, v128sb, v128sb, 0, 2>;
    def WFNMSSB : TernaryVRRe<"wfnmssb", 0xE79E, any_fnms, v32sb, v32sb, 8, 2>;
    def WFNMSXB : TernaryVRRe<"wfnmsxb", 0xE79E, any_fnms, v128xb, v128xb, 8, 4>;
  }

  // Perform sign operation.
  def VFPSO   : BinaryVRRaFloatGeneric<"vfpso", 0xE7CC>;
  def VFPSODB : BinaryVRRa<"vfpsodb", 0xE7CC, null_frag, v128db, v128db, 3, 0>;
  def WFPSODB : BinaryVRRa<"wfpsodb", 0xE7CC, null_frag, v64db, v64db, 3, 8>;
  let Predicates = [FeatureVectorEnhancements1] in {
    def VFPSOSB : BinaryVRRa<"vfpsosb", 0xE7CC, null_frag, v128sb, v128sb, 2, 0>;
    def WFPSOSB : BinaryVRRa<"wfpsosb", 0xE7CC, null_frag, v32sb, v32sb, 2, 8>;
    def WFPSOXB : BinaryVRRa<"wfpsoxb", 0xE7CC, null_frag, v128xb, v128xb, 4, 8>;
  }

  // Load complement.
  def VFLCDB : UnaryVRRa<"vflcdb", 0xE7CC, fneg, v128db, v128db, 3, 0, 0>;
  def WFLCDB : UnaryVRRa<"wflcdb", 0xE7CC, fneg, v64db, v64db, 3, 8, 0>;
  let Predicates = [FeatureVectorEnhancements1] in {
    def VFLCSB : UnaryVRRa<"vflcsb", 0xE7CC, fneg, v128sb, v128sb, 2, 0, 0>;
    def WFLCSB : UnaryVRRa<"wflcsb", 0xE7CC, fneg, v32sb, v32sb, 2, 8, 0>;
    def WFLCXB : UnaryVRRa<"wflcxb", 0xE7CC, fneg, v128xb, v128xb, 4, 8, 0>;
  }

  // Load negative.
  def VFLNDB : UnaryVRRa<"vflndb", 0xE7CC, fnabs, v128db, v128db, 3, 0, 1>;
  def WFLNDB : UnaryVRRa<"wflndb", 0xE7CC, fnabs, v64db, v64db, 3, 8, 1>;
  let Predicates = [FeatureVectorEnhancements1] in {
    def VFLNSB : UnaryVRRa<"vflnsb", 0xE7CC, fnabs, v128sb, v128sb, 2, 0, 1>;
    def WFLNSB : UnaryVRRa<"wflnsb", 0xE7CC, fnabs, v32sb, v32sb, 2, 8, 1>;
    def WFLNXB : UnaryVRRa<"wflnxb", 0xE7CC, fnabs, v128xb, v128xb, 4, 8, 1>;
  }

  // Load positive.
  def VFLPDB : UnaryVRRa<"vflpdb", 0xE7CC, fabs, v128db, v128db, 3, 0, 2>;
  def WFLPDB : UnaryVRRa<"wflpdb", 0xE7CC, fabs, v64db, v64db, 3, 8, 2>;
  let Predicates = [FeatureVectorEnhancements1] in {
    def VFLPSB : UnaryVRRa<"vflpsb", 0xE7CC, fabs, v128sb, v128sb, 2, 0, 2>;
    def WFLPSB : UnaryVRRa<"wflpsb", 0xE7CC, fabs, v32sb, v32sb, 2, 8, 2>;
    def WFLPXB : UnaryVRRa<"wflpxb", 0xE7CC, fabs, v128xb, v128xb, 4, 8, 2>;
  }

  // Square root.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VFSQ   : UnaryVRRaFloatGeneric<"vfsq", 0xE7CE>;
    def VFSQDB : UnaryVRRa<"vfsqdb", 0xE7CE, any_fsqrt, v128db, v128db, 3, 0>;
    def WFSQDB : UnaryVRRa<"wfsqdb", 0xE7CE, any_fsqrt, v64db, v64db, 3, 8>;
    let Predicates = [FeatureVectorEnhancements1] in {
      def VFSQSB : UnaryVRRa<"vfsqsb", 0xE7CE, any_fsqrt, v128sb, v128sb, 2, 0>;
      def WFSQSB : UnaryVRRa<"wfsqsb", 0xE7CE, any_fsqrt, v32sb, v32sb, 2, 8>;
      def WFSQXB : UnaryVRRa<"wfsqxb", 0xE7CE, any_fsqrt, v128xb, v128xb, 4, 8>;
    }
  }

  // Subtract.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def VFS   : BinaryVRRcFloatGeneric<"vfs", 0xE7E2>;
    def VFSDB : BinaryVRRc<"vfsdb", 0xE7E2, any_fsub, v128db, v128db, 3, 0>;
    def WFSDB : BinaryVRRc<"wfsdb", 0xE7E2, any_fsub, v64db, v64db, 3, 8>;
    let Predicates = [FeatureVectorEnhancements1] in {
      def VFSSB : BinaryVRRc<"vfssb", 0xE7E2, any_fsub, v128sb, v128sb, 2, 0>;
      def WFSSB : BinaryVRRc<"wfssb", 0xE7E2, any_fsub, v32sb, v32sb, 2, 8>;
      def WFSXB : BinaryVRRc<"wfsxb", 0xE7E2, any_fsub, v128xb, v128xb, 4, 8>;
    }
  }

  // Test data class immediate.
  let Defs = [CC] in {
    def VFTCI   : BinaryVRIeFloatGeneric<"vftci", 0xE74A>;
    def VFTCIDB : BinaryVRIe<"vftcidb", 0xE74A, z_vftci, v128g, v128db, 3, 0>;
    def WFTCIDB : BinaryVRIe<"wftcidb", 0xE74A, null_frag, v64g, v64db, 3, 8>;
    let Predicates = [FeatureVectorEnhancements1] in {
      def VFTCISB : BinaryVRIe<"vftcisb", 0xE74A, z_vftci, v128f, v128sb, 2, 0>;
      def WFTCISB : BinaryVRIe<"wftcisb", 0xE74A, null_frag, v32f, v32sb, 2, 8>;
      def WFTCIXB : BinaryVRIe<"wftcixb", 0xE74A, null_frag, v128q, v128xb, 4, 8>;
    }
  }
}

//===----------------------------------------------------------------------===//
// Floating-point comparison
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  // Compare scalar.
  let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in {
    def WFC   : CompareVRRaFloatGeneric<"wfc", 0xE7CB>;
    def WFCDB : CompareVRRa<"wfcdb", 0xE7CB, z_any_fcmp, v64db, 3>;
    let Predicates = [FeatureVectorEnhancements1] in {
      def WFCSB : CompareVRRa<"wfcsb", 0xE7CB, z_any_fcmp, v32sb, 2>;
      def WFCXB : CompareVRRa<"wfcxb", 0xE7CB, z_any_fcmp, v128xb, 4>;
    }
  }

  // Compare and signal scalar.
  let Uses = [FPC], mayRaiseFPException = 1, Defs = [CC] in {
    def WFK   : CompareVRRaFloatGeneric<"wfk", 0xE7CA>;
    def WFKDB : CompareVRRa<"wfkdb", 0xE7CA, z_strict_fcmps, v64db, 3>;
    let Predicates = [FeatureVectorEnhancements1] in {
      def WFKSB : CompareVRRa<"wfksb", 0xE7CA, z_strict_fcmps, v32sb, 2>;
      def WFKXB : CompareVRRa<"wfkxb", 0xE7CA, z_strict_fcmps, v128xb, 4>;
    }
  }

  // Compare equal.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def  VFCE   : BinaryVRRcSPairFloatGeneric<"vfce", 0xE7E8>;
    defm VFCEDB : BinaryVRRcSPair<"vfcedb", 0xE7E8, z_any_vfcmpe, z_vfcmpes,
                                  v128g, v128db, 3, 0>;
    defm WFCEDB : BinaryVRRcSPair<"wfcedb", 0xE7E8, null_frag, null_frag,
                                  v64g, v64db, 3, 8>;
    let Predicates = [FeatureVectorEnhancements1] in {
      defm VFCESB : BinaryVRRcSPair<"vfcesb", 0xE7E8, z_any_vfcmpe, z_vfcmpes,
                                    v128f, v128sb, 2, 0>;
      defm WFCESB : BinaryVRRcSPair<"wfcesb", 0xE7E8, null_frag, null_frag,
                                    v32f, v32sb, 2, 8>;
      defm WFCEXB : BinaryVRRcSPair<"wfcexb", 0xE7E8, null_frag, null_frag,
                                    v128q, v128xb, 4, 8>;
    }
  }

  // Compare and signal equal.
  let Uses = [FPC], mayRaiseFPException = 1,
      Predicates = [FeatureVectorEnhancements1] in {
    defm VFKEDB : BinaryVRRcSPair<"vfkedb", 0xE7E8, z_strict_vfcmpes, null_frag,
                                  v128g, v128db, 3, 4>;
    defm WFKEDB : BinaryVRRcSPair<"wfkedb", 0xE7E8, null_frag, null_frag,
                                  v64g, v64db, 3, 12>;
    defm VFKESB : BinaryVRRcSPair<"vfkesb", 0xE7E8, z_strict_vfcmpes, null_frag,
                                  v128f, v128sb, 2, 4>;
    defm WFKESB : BinaryVRRcSPair<"wfkesb", 0xE7E8, null_frag, null_frag,
                                  v32f, v32sb, 2, 12>;
    defm WFKEXB : BinaryVRRcSPair<"wfkexb", 0xE7E8, null_frag, null_frag,
                                  v128q, v128xb, 4, 12>;
  }

  // Compare high.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def  VFCH   : BinaryVRRcSPairFloatGeneric<"vfch", 0xE7EB>;
    defm VFCHDB : BinaryVRRcSPair<"vfchdb", 0xE7EB, z_any_vfcmph, z_vfcmphs,
                                  v128g, v128db, 3, 0>;
    defm WFCHDB : BinaryVRRcSPair<"wfchdb", 0xE7EB, null_frag, null_frag,
                                  v64g, v64db, 3, 8>;
    let Predicates = [FeatureVectorEnhancements1] in {
      defm VFCHSB : BinaryVRRcSPair<"vfchsb", 0xE7EB, z_any_vfcmph, z_vfcmphs,
                                    v128f, v128sb, 2, 0>;
      defm WFCHSB : BinaryVRRcSPair<"wfchsb", 0xE7EB, null_frag, null_frag,
                                    v32f, v32sb, 2, 8>;
      defm WFCHXB : BinaryVRRcSPair<"wfchxb", 0xE7EB, null_frag, null_frag,
                                    v128q, v128xb, 4, 8>;
    }
  }

  // Compare and signal high.
  let Uses = [FPC], mayRaiseFPException = 1,
      Predicates = [FeatureVectorEnhancements1] in {
    defm VFKHDB : BinaryVRRcSPair<"vfkhdb", 0xE7EB, z_strict_vfcmphs, null_frag,
                                  v128g, v128db, 3, 4>;
    defm WFKHDB : BinaryVRRcSPair<"wfkhdb", 0xE7EB, null_frag, null_frag,
                                  v64g, v64db, 3, 12>;
    defm VFKHSB : BinaryVRRcSPair<"vfkhsb", 0xE7EB, z_strict_vfcmphs, null_frag,
                                  v128f, v128sb, 2, 4>;
    defm WFKHSB : BinaryVRRcSPair<"wfkhsb", 0xE7EB, null_frag, null_frag,
                                  v32f, v32sb, 2, 12>;
    defm WFKHXB : BinaryVRRcSPair<"wfkhxb", 0xE7EB, null_frag, null_frag,
                                  v128q, v128xb, 4, 12>;
  }

  // Compare high or equal.
  let Uses = [FPC], mayRaiseFPException = 1 in {
    def  VFCHE   : BinaryVRRcSPairFloatGeneric<"vfche", 0xE7EA>;
    defm VFCHEDB : BinaryVRRcSPair<"vfchedb", 0xE7EA, z_any_vfcmphe, z_vfcmphes,
                                   v128g, v128db, 3, 0>;
    defm WFCHEDB : BinaryVRRcSPair<"wfchedb", 0xE7EA, null_frag, null_frag,
                                   v64g, v64db, 3, 8>;
    let Predicates = [FeatureVectorEnhancements1] in {
      defm VFCHESB : BinaryVRRcSPair<"vfchesb", 0xE7EA, z_any_vfcmphe, z_vfcmphes,
                                     v128f, v128sb, 2, 0>;
      defm WFCHESB : BinaryVRRcSPair<"wfchesb", 0xE7EA, null_frag, null_frag,
                                     v32f, v32sb, 2, 8>;
      defm WFCHEXB : BinaryVRRcSPair<"wfchexb", 0xE7EA, null_frag, null_frag,
                                     v128q, v128xb, 4, 8>;
    }
  }

  // Compare and signal high or equal.
  let Uses = [FPC], mayRaiseFPException = 1,
      Predicates = [FeatureVectorEnhancements1] in {
    defm VFKHEDB : BinaryVRRcSPair<"vfkhedb", 0xE7EA, z_strict_vfcmphes, null_frag,
                                   v128g, v128db, 3, 4>;
    defm WFKHEDB : BinaryVRRcSPair<"wfkhedb", 0xE7EA, null_frag, null_frag,
                                   v64g, v64db, 3, 12>;
    defm VFKHESB : BinaryVRRcSPair<"vfkhesb", 0xE7EA, z_strict_vfcmphes, null_frag,
                                   v128f, v128sb, 2, 4>;
    defm WFKHESB : BinaryVRRcSPair<"wfkhesb", 0xE7EA, null_frag, null_frag,
                                   v32f, v32sb, 2, 12>;
    defm WFKHEXB : BinaryVRRcSPair<"wfkhexb", 0xE7EA, null_frag, null_frag,
                                   v128q, v128xb, 4, 12>;
  }
}

//===----------------------------------------------------------------------===//
// Conversions
//===----------------------------------------------------------------------===//

def : Pat<(v16i8 (bitconvert (v8i16 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v4i32 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v2i64 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v4f32 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (v2f64 VR128:$src))), (v16i8 VR128:$src)>;
def : Pat<(v16i8 (bitconvert (f128  VR128:$src))), (v16i8 VR128:$src)>;

def : Pat<(v8i16 (bitconvert (v16i8 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v4i32 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v2i64 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v4f32 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (v2f64 VR128:$src))), (v8i16 VR128:$src)>;
def : Pat<(v8i16 (bitconvert (f128  VR128:$src))), (v8i16 VR128:$src)>;

def : Pat<(v4i32 (bitconvert (v16i8 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v8i16 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v2i64 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v4f32 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (v2f64 VR128:$src))), (v4i32 VR128:$src)>;
def : Pat<(v4i32 (bitconvert (f128  VR128:$src))), (v4i32 VR128:$src)>;

def : Pat<(v2i64 (bitconvert (v16i8 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v8i16 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v4i32 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v4f32 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (v2f64 VR128:$src))), (v2i64 VR128:$src)>;
def : Pat<(v2i64 (bitconvert (f128  VR128:$src))), (v2i64 VR128:$src)>;

def : Pat<(v4f32 (bitconvert (v16i8 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v8i16 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v4i32 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v2i64 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (v2f64 VR128:$src))), (v4f32 VR128:$src)>;
def : Pat<(v4f32 (bitconvert (f128  VR128:$src))), (v4f32 VR128:$src)>;

def : Pat<(v2f64 (bitconvert (v16i8 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v8i16 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v4i32 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v2i64 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (v4f32 VR128:$src))), (v2f64 VR128:$src)>;
def : Pat<(v2f64 (bitconvert (f128  VR128:$src))), (v2f64 VR128:$src)>;

def : Pat<(f128  (bitconvert (v16i8 VR128:$src))), (f128  VR128:$src)>;
def : Pat<(f128  (bitconvert (v8i16 VR128:$src))), (f128  VR128:$src)>;
def : Pat<(f128  (bitconvert (v4i32 VR128:$src))), (f128  VR128:$src)>;
def : Pat<(f128  (bitconvert (v2i64 VR128:$src))), (f128  VR128:$src)>;
def : Pat<(f128  (bitconvert (v4f32 VR128:$src))), (f128  VR128:$src)>;
def : Pat<(f128  (bitconvert (v2f64 VR128:$src))), (f128  VR128:$src)>;

//===----------------------------------------------------------------------===//
// Replicating scalars
//===----------------------------------------------------------------------===//

// Define patterns for replicating a scalar GR32 into a vector of type TYPE.
// INDEX is 8 minus the element size in bytes.
class VectorReplicateScalar<ValueType type, Instruction insn, bits<16> index>
  : Pat<(type (z_replicate GR32:$scalar)),
        (insn (VLVGP32 GR32:$scalar, GR32:$scalar), index)>;

def : VectorReplicateScalar<v16i8, VREPB, 7>;
def : VectorReplicateScalar<v8i16, VREPH, 3>;
def : VectorReplicateScalar<v4i32, VREPF, 1>;

// i64 replications are just a single isntruction.
def : Pat<(v2i64 (z_replicate GR64:$scalar)),
          (VLVGP GR64:$scalar, GR64:$scalar)>;

//===----------------------------------------------------------------------===//
// Floating-point insertion and extraction
//===----------------------------------------------------------------------===//

// Moving 32-bit values between GPRs and FPRs can be done using VLVGF
// and VLGVF.
let Predicates = [FeatureVector] in {
  def LEFR : UnaryAliasVRS<VR32, GR32>;
  def LFER : UnaryAliasVRS<GR64, VR32>;
  def : Pat<(f32 (bitconvert (i32 GR32:$src))), (LEFR GR32:$src)>;
  def : Pat<(i32 (bitconvert (f32 VR32:$src))),
            (EXTRACT_SUBREG (LFER VR32:$src), subreg_l32)>;
}

// Floating-point values are stored in element 0 of the corresponding
// vector register.  Scalar to vector conversion is just a subreg and
// scalar replication can just replicate element 0 of the vector register.
multiclass ScalarToVectorFP<Instruction vrep, ValueType vt, RegisterOperand cls,
                            SubRegIndex subreg> {
  def : Pat<(vt (scalar_to_vector cls:$scalar)),
            (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar, subreg)>;
  def : Pat<(vt (z_replicate cls:$scalar)),
            (vrep (INSERT_SUBREG (vt (IMPLICIT_DEF)), cls:$scalar,
                                 subreg), 0)>;
}
defm : ScalarToVectorFP<VREPF, v4f32, FP32, subreg_h32>;
defm : ScalarToVectorFP<VREPG, v2f64, FP64, subreg_h64>;

// Match v2f64 insertions.  The AddedComplexity counters the 3 added by
// TableGen for the base register operand in VLVG-based integer insertions
// and ensures that this version is strictly better.
let AddedComplexity = 4 in {
  def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 0),
            (VPDI (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt,
                                 subreg_h64), VR128:$vec, 1)>;
  def : Pat<(z_vector_insert (v2f64 VR128:$vec), FP64:$elt, 1),
            (VPDI VR128:$vec, (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FP64:$elt,
                                             subreg_h64), 0)>;
}

// We extract floating-point element X by replicating (for elements other
// than 0) and then taking a high subreg.  The AddedComplexity counters the
// 3 added by TableGen for the base register operand in VLGV-based integer
// extractions and ensures that this version is strictly better.
let AddedComplexity = 4 in {
  def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), 0)),
            (EXTRACT_SUBREG VR128:$vec, subreg_h32)>;
  def : Pat<(f32 (z_vector_extract (v4f32 VR128:$vec), imm32zx2:$index)),
            (EXTRACT_SUBREG (VREPF VR128:$vec, imm32zx2:$index), subreg_h32)>;

  def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), 0)),
            (EXTRACT_SUBREG VR128:$vec, subreg_h64)>;
  def : Pat<(f64 (z_vector_extract (v2f64 VR128:$vec), imm32zx1:$index)),
            (EXTRACT_SUBREG (VREPG VR128:$vec, imm32zx1:$index), subreg_h64)>;
}

//===----------------------------------------------------------------------===//
// Support for 128-bit floating-point values in vector registers
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVectorEnhancements1] in {
  def : Pat<(f128 (load bdxaddr12only:$addr)),
            (VL bdxaddr12only:$addr)>;
  def : Pat<(store (f128 VR128:$src), bdxaddr12only:$addr),
            (VST VR128:$src, bdxaddr12only:$addr)>;

  def : Pat<(f128 fpimm0), (VZERO)>;
  def : Pat<(f128 fpimmneg0), (WFLNXB (VZERO))>;
}

//===----------------------------------------------------------------------===//
// String instructions
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVector] in {
  defm VFAE  : TernaryOptVRRbSPairGeneric<"vfae", 0xE782>;
  defm VFAEB : TernaryOptVRRbSPair<"vfaeb", 0xE782, int_s390_vfaeb,
                                   z_vfae_cc, v128b, v128b, 0>;
  defm VFAEH : TernaryOptVRRbSPair<"vfaeh", 0xE782, int_s390_vfaeh,
                                   z_vfae_cc, v128h, v128h, 1>;
  defm VFAEF : TernaryOptVRRbSPair<"vfaef", 0xE782, int_s390_vfaef,
                                   z_vfae_cc, v128f, v128f, 2>;
  defm VFAEZB : TernaryOptVRRbSPair<"vfaezb", 0xE782, int_s390_vfaezb,
                                    z_vfaez_cc, v128b, v128b, 0, 2>;
  defm VFAEZH : TernaryOptVRRbSPair<"vfaezh", 0xE782, int_s390_vfaezh,
                                    z_vfaez_cc, v128h, v128h, 1, 2>;
  defm VFAEZF : TernaryOptVRRbSPair<"vfaezf", 0xE782, int_s390_vfaezf,
                                    z_vfaez_cc, v128f, v128f, 2, 2>;

  defm VFEE  : BinaryExtraVRRbSPairGeneric<"vfee", 0xE780>;
  defm VFEEB : BinaryExtraVRRbSPair<"vfeeb", 0xE780, int_s390_vfeeb,
                                    z_vfee_cc, v128b, v128b, 0>;
  defm VFEEH : BinaryExtraVRRbSPair<"vfeeh", 0xE780, int_s390_vfeeh,
                                    z_vfee_cc, v128h, v128h, 1>;
  defm VFEEF : BinaryExtraVRRbSPair<"vfeef", 0xE780, int_s390_vfeef,
                                    z_vfee_cc, v128f, v128f, 2>;
  defm VFEEZB : BinaryVRRbSPair<"vfeezb", 0xE780, int_s390_vfeezb,
                                z_vfeez_cc, v128b, v128b, 0, 2>;
  defm VFEEZH : BinaryVRRbSPair<"vfeezh", 0xE780, int_s390_vfeezh,
                                z_vfeez_cc, v128h, v128h, 1, 2>;
  defm VFEEZF : BinaryVRRbSPair<"vfeezf", 0xE780, int_s390_vfeezf,
                                z_vfeez_cc, v128f, v128f, 2, 2>;

  defm VFENE  : BinaryExtraVRRbSPairGeneric<"vfene", 0xE781>;
  defm VFENEB : BinaryExtraVRRbSPair<"vfeneb", 0xE781, int_s390_vfeneb,
                                     z_vfene_cc, v128b, v128b, 0>;
  defm VFENEH : BinaryExtraVRRbSPair<"vfeneh", 0xE781, int_s390_vfeneh,
                                     z_vfene_cc, v128h, v128h, 1>;
  defm VFENEF : BinaryExtraVRRbSPair<"vfenef", 0xE781, int_s390_vfenef,
                                     z_vfene_cc, v128f, v128f, 2>;
  defm VFENEZB : BinaryVRRbSPair<"vfenezb", 0xE781, int_s390_vfenezb,
                                 z_vfenez_cc, v128b, v128b, 0, 2>;
  defm VFENEZH : BinaryVRRbSPair<"vfenezh", 0xE781, int_s390_vfenezh,
                                 z_vfenez_cc, v128h, v128h, 1, 2>;
  defm VFENEZF : BinaryVRRbSPair<"vfenezf", 0xE781, int_s390_vfenezf,
                                 z_vfenez_cc, v128f, v128f, 2, 2>;

  defm VISTR  : UnaryExtraVRRaSPairGeneric<"vistr", 0xE75C>;
  defm VISTRB : UnaryExtraVRRaSPair<"vistrb", 0xE75C, int_s390_vistrb,
                                    z_vistr_cc, v128b, v128b, 0>;
  defm VISTRH : UnaryExtraVRRaSPair<"vistrh", 0xE75C, int_s390_vistrh,
                                    z_vistr_cc, v128h, v128h, 1>;
  defm VISTRF : UnaryExtraVRRaSPair<"vistrf", 0xE75C, int_s390_vistrf,
                                    z_vistr_cc, v128f, v128f, 2>;

  defm VSTRC  : QuaternaryOptVRRdSPairGeneric<"vstrc", 0xE78A>;
  defm VSTRCB : QuaternaryOptVRRdSPair<"vstrcb", 0xE78A, int_s390_vstrcb,
                                       z_vstrc_cc, v128b, v128b, 0>;
  defm VSTRCH : QuaternaryOptVRRdSPair<"vstrch", 0xE78A, int_s390_vstrch,
                                       z_vstrc_cc, v128h, v128h, 1>;
  defm VSTRCF : QuaternaryOptVRRdSPair<"vstrcf", 0xE78A, int_s390_vstrcf,
                                       z_vstrc_cc, v128f, v128f, 2>;
  defm VSTRCZB : QuaternaryOptVRRdSPair<"vstrczb", 0xE78A, int_s390_vstrczb,
                                        z_vstrcz_cc, v128b, v128b, 0, 2>;
  defm VSTRCZH : QuaternaryOptVRRdSPair<"vstrczh", 0xE78A, int_s390_vstrczh,
                                        z_vstrcz_cc, v128h, v128h, 1, 2>;
  defm VSTRCZF : QuaternaryOptVRRdSPair<"vstrczf", 0xE78A, int_s390_vstrczf,
                                        z_vstrcz_cc, v128f, v128f, 2, 2>;
}

let Predicates = [FeatureVectorEnhancements2] in {
  defm VSTRS  : TernaryExtraVRRdGeneric<"vstrs", 0xE78B>;
  defm VSTRSB : TernaryExtraVRRd<"vstrsb", 0xE78B,
                                 z_vstrs_cc, v128b, v128b, 0>;
  defm VSTRSH : TernaryExtraVRRd<"vstrsh", 0xE78B,
                                 z_vstrs_cc, v128b, v128h, 1>;
  defm VSTRSF : TernaryExtraVRRd<"vstrsf", 0xE78B,
                                 z_vstrs_cc, v128b, v128f, 2>;
  let Defs = [CC] in {
    def VSTRSZB : TernaryVRRd<"vstrszb", 0xE78B,
                              z_vstrsz_cc, v128b, v128b, 0, 2>;
    def VSTRSZH : TernaryVRRd<"vstrszh", 0xE78B,
                              z_vstrsz_cc, v128b, v128h, 1, 2>;
    def VSTRSZF : TernaryVRRd<"vstrszf", 0xE78B,
                              z_vstrsz_cc, v128b, v128f, 2, 2>;
  }
}

//===----------------------------------------------------------------------===//
// Packed-decimal instructions
//===----------------------------------------------------------------------===//

let Predicates = [FeatureVectorPackedDecimal] in {
  def VLIP : BinaryVRIh<"vlip", 0xE649>;

  def VPKZ : BinaryVSI<"vpkz", 0xE634, null_frag, 0>;
  def VUPKZ : StoreLengthVSI<"vupkz", 0xE63C, null_frag, 0>;

  let Defs = [CC] in {
    let Predicates = [FeatureVectorPackedDecimalEnhancement] in {
      def VCVBOpt : TernaryVRRi<"vcvb", 0xE650, GR32>;
      def VCVBGOpt : TernaryVRRi<"vcvbg", 0xE652, GR64>;
    }
    def VCVB : BinaryVRRi<"vcvb", 0xE650, GR32>;
    def VCVBG : BinaryVRRi<"vcvbg", 0xE652, GR64>;
    def VCVD : TernaryVRIi<"vcvd", 0xE658, GR32>;
    def VCVDG : TernaryVRIi<"vcvdg", 0xE65A, GR64>;

    def VAP : QuaternaryVRIf<"vap", 0xE671>;
    def VSP : QuaternaryVRIf<"vsp", 0xE673>;

    def VMP : QuaternaryVRIf<"vmp", 0xE678>;
    def VMSP : QuaternaryVRIf<"vmsp", 0xE679>;

    def VDP : QuaternaryVRIf<"vdp", 0xE67A>;
    def VRP : QuaternaryVRIf<"vrp", 0xE67B>;
    def VSDP : QuaternaryVRIf<"vsdp", 0xE67E>;

    def VSRP : QuaternaryVRIg<"vsrp", 0xE659>;
    def VPSOP : QuaternaryVRIg<"vpsop", 0xE65B>;

    def VTP : TestVRRg<"vtp", 0xE65F>;
    def VCP : CompareVRRh<"vcp", 0xE677>;
  }
}