TruncInstCombine.cpp 14.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
//===- TruncInstCombine.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// TruncInstCombine - looks for expression dags post-dominated by TruncInst and
// for each eligible dag, it will create a reduced bit-width expression, replace
// the old expression with this new one and remove the old expression.
// Eligible expression dag is such that:
//   1. Contains only supported instructions.
//   2. Supported leaves: ZExtInst, SExtInst, TruncInst and Constant value.
//   3. Can be evaluated into type with reduced legal bit-width.
//   4. All instructions in the dag must not have users outside the dag.
//      The only exception is for {ZExt, SExt}Inst with operand type equal to
//      the new reduced type evaluated in (3).
//
// The motivation for this optimization is that evaluating and expression using
// smaller bit-width is preferable, especially for vectorization where we can
// fit more values in one vectorized instruction. In addition, this optimization
// may decrease the number of cast instructions, but will not increase it.
//
//===----------------------------------------------------------------------===//

#include "AggressiveInstCombineInternal.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
using namespace llvm;

#define DEBUG_TYPE "aggressive-instcombine"

/// Given an instruction and a container, it fills all the relevant operands of
/// that instruction, with respect to the Trunc expression dag optimizaton.
static void getRelevantOperands(Instruction *I, SmallVectorImpl<Value *> &Ops) {
  unsigned Opc = I->getOpcode();
  switch (Opc) {
  case Instruction::Trunc:
  case Instruction::ZExt:
  case Instruction::SExt:
    // These CastInst are considered leaves of the evaluated expression, thus,
    // their operands are not relevent.
    break;
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
    Ops.push_back(I->getOperand(0));
    Ops.push_back(I->getOperand(1));
    break;
  default:
    llvm_unreachable("Unreachable!");
  }
}

bool TruncInstCombine::buildTruncExpressionDag() {
  SmallVector<Value *, 8> Worklist;
  SmallVector<Instruction *, 8> Stack;
  // Clear old expression dag.
  InstInfoMap.clear();

  Worklist.push_back(CurrentTruncInst->getOperand(0));

  while (!Worklist.empty()) {
    Value *Curr = Worklist.back();

    if (isa<Constant>(Curr)) {
      Worklist.pop_back();
      continue;
    }

    auto *I = dyn_cast<Instruction>(Curr);
    if (!I)
      return false;

    if (!Stack.empty() && Stack.back() == I) {
      // Already handled all instruction operands, can remove it from both the
      // Worklist and the Stack, and add it to the instruction info map.
      Worklist.pop_back();
      Stack.pop_back();
      // Insert I to the Info map.
      InstInfoMap.insert(std::make_pair(I, Info()));
      continue;
    }

    if (InstInfoMap.count(I)) {
      Worklist.pop_back();
      continue;
    }

    // Add the instruction to the stack before start handling its operands.
    Stack.push_back(I);

    unsigned Opc = I->getOpcode();
    switch (Opc) {
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt:
      // trunc(trunc(x)) -> trunc(x)
      // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
      // trunc(ext(x)) -> trunc(x) if the source type is larger than the new
      // dest
      break;
    case Instruction::Add:
    case Instruction::Sub:
    case Instruction::Mul:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor: {
      SmallVector<Value *, 2> Operands;
      getRelevantOperands(I, Operands);
      for (Value *Operand : Operands)
        Worklist.push_back(Operand);
      break;
    }
    default:
      // TODO: Can handle more cases here:
      // 1. select, shufflevector, extractelement, insertelement
      // 2. udiv, urem
      // 3. shl, lshr, ashr
      // 4. phi node(and loop handling)
      // ...
      return false;
    }
  }
  return true;
}

unsigned TruncInstCombine::getMinBitWidth() {
  SmallVector<Value *, 8> Worklist;
  SmallVector<Instruction *, 8> Stack;

  Value *Src = CurrentTruncInst->getOperand(0);
  Type *DstTy = CurrentTruncInst->getType();
  unsigned TruncBitWidth = DstTy->getScalarSizeInBits();
  unsigned OrigBitWidth =
      CurrentTruncInst->getOperand(0)->getType()->getScalarSizeInBits();

  if (isa<Constant>(Src))
    return TruncBitWidth;

  Worklist.push_back(Src);
  InstInfoMap[cast<Instruction>(Src)].ValidBitWidth = TruncBitWidth;

  while (!Worklist.empty()) {
    Value *Curr = Worklist.back();

    if (isa<Constant>(Curr)) {
      Worklist.pop_back();
      continue;
    }

    // Otherwise, it must be an instruction.
    auto *I = cast<Instruction>(Curr);

    auto &Info = InstInfoMap[I];

    SmallVector<Value *, 2> Operands;
    getRelevantOperands(I, Operands);

    if (!Stack.empty() && Stack.back() == I) {
      // Already handled all instruction operands, can remove it from both, the
      // Worklist and the Stack, and update MinBitWidth.
      Worklist.pop_back();
      Stack.pop_back();
      for (auto *Operand : Operands)
        if (auto *IOp = dyn_cast<Instruction>(Operand))
          Info.MinBitWidth =
              std::max(Info.MinBitWidth, InstInfoMap[IOp].MinBitWidth);
      continue;
    }

    // Add the instruction to the stack before start handling its operands.
    Stack.push_back(I);
    unsigned ValidBitWidth = Info.ValidBitWidth;

    // Update minimum bit-width before handling its operands. This is required
    // when the instruction is part of a loop.
    Info.MinBitWidth = std::max(Info.MinBitWidth, Info.ValidBitWidth);

    for (auto *Operand : Operands)
      if (auto *IOp = dyn_cast<Instruction>(Operand)) {
        // If we already calculated the minimum bit-width for this valid
        // bit-width, or for a smaller valid bit-width, then just keep the
        // answer we already calculated.
        unsigned IOpBitwidth = InstInfoMap.lookup(IOp).ValidBitWidth;
        if (IOpBitwidth >= ValidBitWidth)
          continue;
        InstInfoMap[IOp].ValidBitWidth = std::max(ValidBitWidth, IOpBitwidth);
        Worklist.push_back(IOp);
      }
  }
  unsigned MinBitWidth = InstInfoMap.lookup(cast<Instruction>(Src)).MinBitWidth;
  assert(MinBitWidth >= TruncBitWidth);

  if (MinBitWidth > TruncBitWidth) {
    // In this case reducing expression with vector type might generate a new
    // vector type, which is not preferable as it might result in generating
    // sub-optimal code.
    if (DstTy->isVectorTy())
      return OrigBitWidth;
    // Use the smallest integer type in the range [MinBitWidth, OrigBitWidth).
    Type *Ty = DL.getSmallestLegalIntType(DstTy->getContext(), MinBitWidth);
    // Update minimum bit-width with the new destination type bit-width if
    // succeeded to find such, otherwise, with original bit-width.
    MinBitWidth = Ty ? Ty->getScalarSizeInBits() : OrigBitWidth;
  } else { // MinBitWidth == TruncBitWidth
    // In this case the expression can be evaluated with the trunc instruction
    // destination type, and trunc instruction can be omitted. However, we
    // should not perform the evaluation if the original type is a legal scalar
    // type and the target type is illegal.
    bool FromLegal = MinBitWidth == 1 || DL.isLegalInteger(OrigBitWidth);
    bool ToLegal = MinBitWidth == 1 || DL.isLegalInteger(MinBitWidth);
    if (!DstTy->isVectorTy() && FromLegal && !ToLegal)
      return OrigBitWidth;
  }
  return MinBitWidth;
}

Type *TruncInstCombine::getBestTruncatedType() {
  if (!buildTruncExpressionDag())
    return nullptr;

  // We don't want to duplicate instructions, which isn't profitable. Thus, we
  // can't shrink something that has multiple users, unless all users are
  // post-dominated by the trunc instruction, i.e., were visited during the
  // expression evaluation.
  unsigned DesiredBitWidth = 0;
  for (auto Itr : InstInfoMap) {
    Instruction *I = Itr.first;
    if (I->hasOneUse())
      continue;
    bool IsExtInst = (isa<ZExtInst>(I) || isa<SExtInst>(I));
    for (auto *U : I->users())
      if (auto *UI = dyn_cast<Instruction>(U))
        if (UI != CurrentTruncInst && !InstInfoMap.count(UI)) {
          if (!IsExtInst)
            return nullptr;
          // If this is an extension from the dest type, we can eliminate it,
          // even if it has multiple users. Thus, update the DesiredBitWidth and
          // validate all extension instructions agrees on same DesiredBitWidth.
          unsigned ExtInstBitWidth =
              I->getOperand(0)->getType()->getScalarSizeInBits();
          if (DesiredBitWidth && DesiredBitWidth != ExtInstBitWidth)
            return nullptr;
          DesiredBitWidth = ExtInstBitWidth;
        }
  }

  unsigned OrigBitWidth =
      CurrentTruncInst->getOperand(0)->getType()->getScalarSizeInBits();

  // Calculate minimum allowed bit-width allowed for shrinking the currently
  // visited truncate's operand.
  unsigned MinBitWidth = getMinBitWidth();

  // Check that we can shrink to smaller bit-width than original one and that
  // it is similar to the DesiredBitWidth is such exists.
  if (MinBitWidth >= OrigBitWidth ||
      (DesiredBitWidth && DesiredBitWidth != MinBitWidth))
    return nullptr;

  return IntegerType::get(CurrentTruncInst->getContext(), MinBitWidth);
}

/// Given a reduced scalar type \p Ty and a \p V value, return a reduced type
/// for \p V, according to its type, if it vector type, return the vector
/// version of \p Ty, otherwise return \p Ty.
static Type *getReducedType(Value *V, Type *Ty) {
  assert(Ty && !Ty->isVectorTy() && "Expect Scalar Type");
  if (auto *VTy = dyn_cast<VectorType>(V->getType()))
    return VectorType::get(Ty, VTy->getNumElements());
  return Ty;
}

Value *TruncInstCombine::getReducedOperand(Value *V, Type *SclTy) {
  Type *Ty = getReducedType(V, SclTy);
  if (auto *C = dyn_cast<Constant>(V)) {
    C = ConstantExpr::getIntegerCast(C, Ty, false);
    // If we got a constantexpr back, try to simplify it with DL info.
    if (Constant *FoldedC = ConstantFoldConstant(C, DL, &TLI))
      C = FoldedC;
    return C;
  }

  auto *I = cast<Instruction>(V);
  Info Entry = InstInfoMap.lookup(I);
  assert(Entry.NewValue);
  return Entry.NewValue;
}

void TruncInstCombine::ReduceExpressionDag(Type *SclTy) {
  for (auto &Itr : InstInfoMap) { // Forward
    Instruction *I = Itr.first;
    TruncInstCombine::Info &NodeInfo = Itr.second;

    assert(!NodeInfo.NewValue && "Instruction has been evaluated");

    IRBuilder<> Builder(I);
    Value *Res = nullptr;
    unsigned Opc = I->getOpcode();
    switch (Opc) {
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt: {
      Type *Ty = getReducedType(I, SclTy);
      // If the source type of the cast is the type we're trying for then we can
      // just return the source.  There's no need to insert it because it is not
      // new.
      if (I->getOperand(0)->getType() == Ty) {
        assert(!isa<TruncInst>(I) && "Cannot reach here with TruncInst");
        NodeInfo.NewValue = I->getOperand(0);
        continue;
      }
      // Otherwise, must be the same type of cast, so just reinsert a new one.
      // This also handles the case of zext(trunc(x)) -> zext(x).
      Res = Builder.CreateIntCast(I->getOperand(0), Ty,
                                  Opc == Instruction::SExt);

      // Update Worklist entries with new value if needed.
      // There are three possible changes to the Worklist:
      // 1. Update Old-TruncInst -> New-TruncInst.
      // 2. Remove Old-TruncInst (if New node is not TruncInst).
      // 3. Add New-TruncInst (if Old node was not TruncInst).
      auto Entry = find(Worklist, I);
      if (Entry != Worklist.end()) {
        if (auto *NewCI = dyn_cast<TruncInst>(Res))
          *Entry = NewCI;
        else
          Worklist.erase(Entry);
      } else if (auto *NewCI = dyn_cast<TruncInst>(Res))
          Worklist.push_back(NewCI);
      break;
    }
    case Instruction::Add:
    case Instruction::Sub:
    case Instruction::Mul:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor: {
      Value *LHS = getReducedOperand(I->getOperand(0), SclTy);
      Value *RHS = getReducedOperand(I->getOperand(1), SclTy);
      Res = Builder.CreateBinOp((Instruction::BinaryOps)Opc, LHS, RHS);
      break;
    }
    default:
      llvm_unreachable("Unhandled instruction");
    }

    NodeInfo.NewValue = Res;
    if (auto *ResI = dyn_cast<Instruction>(Res))
      ResI->takeName(I);
  }

  Value *Res = getReducedOperand(CurrentTruncInst->getOperand(0), SclTy);
  Type *DstTy = CurrentTruncInst->getType();
  if (Res->getType() != DstTy) {
    IRBuilder<> Builder(CurrentTruncInst);
    Res = Builder.CreateIntCast(Res, DstTy, false);
    if (auto *ResI = dyn_cast<Instruction>(Res))
      ResI->takeName(CurrentTruncInst);
  }
  CurrentTruncInst->replaceAllUsesWith(Res);

  // Erase old expression dag, which was replaced by the reduced expression dag.
  // We iterate backward, which means we visit the instruction before we visit
  // any of its operands, this way, when we get to the operand, we already
  // removed the instructions (from the expression dag) that uses it.
  CurrentTruncInst->eraseFromParent();
  for (auto I = InstInfoMap.rbegin(), E = InstInfoMap.rend(); I != E; ++I) {
    // We still need to check that the instruction has no users before we erase
    // it, because {SExt, ZExt}Inst Instruction might have other users that was
    // not reduced, in such case, we need to keep that instruction.
    if (I->first->use_empty())
      I->first->eraseFromParent();
  }
}

bool TruncInstCombine::run(Function &F) {
  bool MadeIRChange = false;

  // Collect all TruncInst in the function into the Worklist for evaluating.
  for (auto &BB : F) {
    // Ignore unreachable basic block.
    if (!DT.isReachableFromEntry(&BB))
      continue;
    for (auto &I : BB)
      if (auto *CI = dyn_cast<TruncInst>(&I))
        Worklist.push_back(CI);
  }

  // Process all TruncInst in the Worklist, for each instruction:
  //   1. Check if it dominates an eligible expression dag to be reduced.
  //   2. Create a reduced expression dag and replace the old one with it.
  while (!Worklist.empty()) {
    CurrentTruncInst = Worklist.pop_back_val();

    if (Type *NewDstSclTy = getBestTruncatedType()) {
      LLVM_DEBUG(
          dbgs() << "ICE: TruncInstCombine reducing type of expression dag "
                    "dominated by: "
                 << CurrentTruncInst << '\n');
      ReduceExpressionDag(NewDstSclTy);
      MadeIRChange = true;
    }
  }

  return MadeIRChange;
}