InstCombineVectorOps.cpp 89.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241
//===- InstCombineVectorOps.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements instcombine for ExtractElement, InsertElement and
// ShuffleVector.
//
//===----------------------------------------------------------------------===//

#include "InstCombineInternal.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>

using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "instcombine"

/// Return true if the value is cheaper to scalarize than it is to leave as a
/// vector operation. IsConstantExtractIndex indicates whether we are extracting
/// one known element from a vector constant.
///
/// FIXME: It's possible to create more instructions than previously existed.
static bool cheapToScalarize(Value *V, bool IsConstantExtractIndex) {
  // If we can pick a scalar constant value out of a vector, that is free.
  if (auto *C = dyn_cast<Constant>(V))
    return IsConstantExtractIndex || C->getSplatValue();

  // An insertelement to the same constant index as our extract will simplify
  // to the scalar inserted element. An insertelement to a different constant
  // index is irrelevant to our extract.
  if (match(V, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())))
    return IsConstantExtractIndex;

  if (match(V, m_OneUse(m_Load(m_Value()))))
    return true;

  Value *V0, *V1;
  if (match(V, m_OneUse(m_BinOp(m_Value(V0), m_Value(V1)))))
    if (cheapToScalarize(V0, IsConstantExtractIndex) ||
        cheapToScalarize(V1, IsConstantExtractIndex))
      return true;

  CmpInst::Predicate UnusedPred;
  if (match(V, m_OneUse(m_Cmp(UnusedPred, m_Value(V0), m_Value(V1)))))
    if (cheapToScalarize(V0, IsConstantExtractIndex) ||
        cheapToScalarize(V1, IsConstantExtractIndex))
      return true;

  return false;
}

// If we have a PHI node with a vector type that is only used to feed
// itself and be an operand of extractelement at a constant location,
// try to replace the PHI of the vector type with a PHI of a scalar type.
Instruction *InstCombiner::scalarizePHI(ExtractElementInst &EI, PHINode *PN) {
  SmallVector<Instruction *, 2> Extracts;
  // The users we want the PHI to have are:
  // 1) The EI ExtractElement (we already know this)
  // 2) Possibly more ExtractElements with the same index.
  // 3) Another operand, which will feed back into the PHI.
  Instruction *PHIUser = nullptr;
  for (auto U : PN->users()) {
    if (ExtractElementInst *EU = dyn_cast<ExtractElementInst>(U)) {
      if (EI.getIndexOperand() == EU->getIndexOperand())
        Extracts.push_back(EU);
      else
        return nullptr;
    } else if (!PHIUser) {
      PHIUser = cast<Instruction>(U);
    } else {
      return nullptr;
    }
  }

  if (!PHIUser)
    return nullptr;

  // Verify that this PHI user has one use, which is the PHI itself,
  // and that it is a binary operation which is cheap to scalarize.
  // otherwise return nullptr.
  if (!PHIUser->hasOneUse() || !(PHIUser->user_back() == PN) ||
      !(isa<BinaryOperator>(PHIUser)) || !cheapToScalarize(PHIUser, true))
    return nullptr;

  // Create a scalar PHI node that will replace the vector PHI node
  // just before the current PHI node.
  PHINode *scalarPHI = cast<PHINode>(InsertNewInstWith(
      PHINode::Create(EI.getType(), PN->getNumIncomingValues(), ""), *PN));
  // Scalarize each PHI operand.
  for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
    Value *PHIInVal = PN->getIncomingValue(i);
    BasicBlock *inBB = PN->getIncomingBlock(i);
    Value *Elt = EI.getIndexOperand();
    // If the operand is the PHI induction variable:
    if (PHIInVal == PHIUser) {
      // Scalarize the binary operation. Its first operand is the
      // scalar PHI, and the second operand is extracted from the other
      // vector operand.
      BinaryOperator *B0 = cast<BinaryOperator>(PHIUser);
      unsigned opId = (B0->getOperand(0) == PN) ? 1 : 0;
      Value *Op = InsertNewInstWith(
          ExtractElementInst::Create(B0->getOperand(opId), Elt,
                                     B0->getOperand(opId)->getName() + ".Elt"),
          *B0);
      Value *newPHIUser = InsertNewInstWith(
          BinaryOperator::CreateWithCopiedFlags(B0->getOpcode(),
                                                scalarPHI, Op, B0), *B0);
      scalarPHI->addIncoming(newPHIUser, inBB);
    } else {
      // Scalarize PHI input:
      Instruction *newEI = ExtractElementInst::Create(PHIInVal, Elt, "");
      // Insert the new instruction into the predecessor basic block.
      Instruction *pos = dyn_cast<Instruction>(PHIInVal);
      BasicBlock::iterator InsertPos;
      if (pos && !isa<PHINode>(pos)) {
        InsertPos = ++pos->getIterator();
      } else {
        InsertPos = inBB->getFirstInsertionPt();
      }

      InsertNewInstWith(newEI, *InsertPos);

      scalarPHI->addIncoming(newEI, inBB);
    }
  }

  for (auto E : Extracts)
    replaceInstUsesWith(*E, scalarPHI);

  return &EI;
}

static Instruction *foldBitcastExtElt(ExtractElementInst &Ext,
                                      InstCombiner::BuilderTy &Builder,
                                      bool IsBigEndian) {
  Value *X;
  uint64_t ExtIndexC;
  if (!match(Ext.getVectorOperand(), m_BitCast(m_Value(X))) ||
      !X->getType()->isVectorTy() ||
      !match(Ext.getIndexOperand(), m_ConstantInt(ExtIndexC)))
    return nullptr;

  // If this extractelement is using a bitcast from a vector of the same number
  // of elements, see if we can find the source element from the source vector:
  // extelt (bitcast VecX), IndexC --> bitcast X[IndexC]
  Type *SrcTy = X->getType();
  Type *DestTy = Ext.getType();
  unsigned NumSrcElts = SrcTy->getVectorNumElements();
  unsigned NumElts = Ext.getVectorOperandType()->getNumElements();
  if (NumSrcElts == NumElts)
    if (Value *Elt = findScalarElement(X, ExtIndexC))
      return new BitCastInst(Elt, DestTy);

  // If the source elements are wider than the destination, try to shift and
  // truncate a subset of scalar bits of an insert op.
  if (NumSrcElts < NumElts) {
    Value *Scalar;
    uint64_t InsIndexC;
    if (!match(X, m_InsertElement(m_Value(), m_Value(Scalar),
                                  m_ConstantInt(InsIndexC))))
      return nullptr;

    // The extract must be from the subset of vector elements that we inserted
    // into. Example: if we inserted element 1 of a <2 x i64> and we are
    // extracting an i16 (narrowing ratio = 4), then this extract must be from 1
    // of elements 4-7 of the bitcasted vector.
    unsigned NarrowingRatio = NumElts / NumSrcElts;
    if (ExtIndexC / NarrowingRatio != InsIndexC)
      return nullptr;

    // We are extracting part of the original scalar. How that scalar is
    // inserted into the vector depends on the endian-ness. Example:
    //              Vector Byte Elt Index:    0  1  2  3  4  5  6  7
    //                                       +--+--+--+--+--+--+--+--+
    // inselt <2 x i32> V, <i32> S, 1:       |V0|V1|V2|V3|S0|S1|S2|S3|
    // extelt <4 x i16> V', 3:               |                 |S2|S3|
    //                                       +--+--+--+--+--+--+--+--+
    // If this is little-endian, S2|S3 are the MSB of the 32-bit 'S' value.
    // If this is big-endian, S2|S3 are the LSB of the 32-bit 'S' value.
    // In this example, we must right-shift little-endian. Big-endian is just a
    // truncate.
    unsigned Chunk = ExtIndexC % NarrowingRatio;
    if (IsBigEndian)
      Chunk = NarrowingRatio - 1 - Chunk;

    // Bail out if this is an FP vector to FP vector sequence. That would take
    // more instructions than we started with unless there is no shift, and it
    // may not be handled as well in the backend.
    bool NeedSrcBitcast = SrcTy->getScalarType()->isFloatingPointTy();
    bool NeedDestBitcast = DestTy->isFloatingPointTy();
    if (NeedSrcBitcast && NeedDestBitcast)
      return nullptr;

    unsigned SrcWidth = SrcTy->getScalarSizeInBits();
    unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
    unsigned ShAmt = Chunk * DestWidth;

    // TODO: This limitation is more strict than necessary. We could sum the
    // number of new instructions and subtract the number eliminated to know if
    // we can proceed.
    if (!X->hasOneUse() || !Ext.getVectorOperand()->hasOneUse())
      if (NeedSrcBitcast || NeedDestBitcast)
        return nullptr;

    if (NeedSrcBitcast) {
      Type *SrcIntTy = IntegerType::getIntNTy(Scalar->getContext(), SrcWidth);
      Scalar = Builder.CreateBitCast(Scalar, SrcIntTy);
    }

    if (ShAmt) {
      // Bail out if we could end with more instructions than we started with.
      if (!Ext.getVectorOperand()->hasOneUse())
        return nullptr;
      Scalar = Builder.CreateLShr(Scalar, ShAmt);
    }

    if (NeedDestBitcast) {
      Type *DestIntTy = IntegerType::getIntNTy(Scalar->getContext(), DestWidth);
      return new BitCastInst(Builder.CreateTrunc(Scalar, DestIntTy), DestTy);
    }
    return new TruncInst(Scalar, DestTy);
  }

  return nullptr;
}

/// Find elements of V demanded by UserInstr.
static APInt findDemandedEltsBySingleUser(Value *V, Instruction *UserInstr) {
  unsigned VWidth = V->getType()->getVectorNumElements();

  // Conservatively assume that all elements are needed.
  APInt UsedElts(APInt::getAllOnesValue(VWidth));

  switch (UserInstr->getOpcode()) {
  case Instruction::ExtractElement: {
    ExtractElementInst *EEI = cast<ExtractElementInst>(UserInstr);
    assert(EEI->getVectorOperand() == V);
    ConstantInt *EEIIndexC = dyn_cast<ConstantInt>(EEI->getIndexOperand());
    if (EEIIndexC && EEIIndexC->getValue().ult(VWidth)) {
      UsedElts = APInt::getOneBitSet(VWidth, EEIIndexC->getZExtValue());
    }
    break;
  }
  case Instruction::ShuffleVector: {
    ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(UserInstr);
    unsigned MaskNumElts = UserInstr->getType()->getVectorNumElements();

    UsedElts = APInt(VWidth, 0);
    for (unsigned i = 0; i < MaskNumElts; i++) {
      unsigned MaskVal = Shuffle->getMaskValue(i);
      if (MaskVal == -1u || MaskVal >= 2 * VWidth)
        continue;
      if (Shuffle->getOperand(0) == V && (MaskVal < VWidth))
        UsedElts.setBit(MaskVal);
      if (Shuffle->getOperand(1) == V &&
          ((MaskVal >= VWidth) && (MaskVal < 2 * VWidth)))
        UsedElts.setBit(MaskVal - VWidth);
    }
    break;
  }
  default:
    break;
  }
  return UsedElts;
}

/// Find union of elements of V demanded by all its users.
/// If it is known by querying findDemandedEltsBySingleUser that
/// no user demands an element of V, then the corresponding bit
/// remains unset in the returned value.
static APInt findDemandedEltsByAllUsers(Value *V) {
  unsigned VWidth = V->getType()->getVectorNumElements();

  APInt UnionUsedElts(VWidth, 0);
  for (const Use &U : V->uses()) {
    if (Instruction *I = dyn_cast<Instruction>(U.getUser())) {
      UnionUsedElts |= findDemandedEltsBySingleUser(V, I);
    } else {
      UnionUsedElts = APInt::getAllOnesValue(VWidth);
      break;
    }

    if (UnionUsedElts.isAllOnesValue())
      break;
  }

  return UnionUsedElts;
}

Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
  Value *SrcVec = EI.getVectorOperand();
  Value *Index = EI.getIndexOperand();
  if (Value *V = SimplifyExtractElementInst(SrcVec, Index,
                                            SQ.getWithInstruction(&EI)))
    return replaceInstUsesWith(EI, V);

  // If extracting a specified index from the vector, see if we can recursively
  // find a previously computed scalar that was inserted into the vector.
  auto *IndexC = dyn_cast<ConstantInt>(Index);
  if (IndexC) {
    unsigned NumElts = EI.getVectorOperandType()->getNumElements();

    // InstSimplify should handle cases where the index is invalid.
    if (!IndexC->getValue().ule(NumElts))
      return nullptr;

    // This instruction only demands the single element from the input vector.
    if (NumElts != 1) {
      // If the input vector has a single use, simplify it based on this use
      // property.
      if (SrcVec->hasOneUse()) {
        APInt UndefElts(NumElts, 0);
        APInt DemandedElts(NumElts, 0);
        DemandedElts.setBit(IndexC->getZExtValue());
        if (Value *V =
                SimplifyDemandedVectorElts(SrcVec, DemandedElts, UndefElts)) {
          EI.setOperand(0, V);
          return &EI;
        }
      } else {
        // If the input vector has multiple uses, simplify it based on a union
        // of all elements used.
        APInt DemandedElts = findDemandedEltsByAllUsers(SrcVec);
        if (!DemandedElts.isAllOnesValue()) {
          APInt UndefElts(NumElts, 0);
          if (Value *V = SimplifyDemandedVectorElts(
                  SrcVec, DemandedElts, UndefElts, 0 /* Depth */,
                  true /* AllowMultipleUsers */)) {
            if (V != SrcVec) {
              SrcVec->replaceAllUsesWith(V);
              return &EI;
            }
          }
        }
      }
    }
    if (Instruction *I = foldBitcastExtElt(EI, Builder, DL.isBigEndian()))
      return I;

    // If there's a vector PHI feeding a scalar use through this extractelement
    // instruction, try to scalarize the PHI.
    if (auto *Phi = dyn_cast<PHINode>(SrcVec))
      if (Instruction *ScalarPHI = scalarizePHI(EI, Phi))
        return ScalarPHI;
  }

  BinaryOperator *BO;
  if (match(SrcVec, m_BinOp(BO)) && cheapToScalarize(SrcVec, IndexC)) {
    // extelt (binop X, Y), Index --> binop (extelt X, Index), (extelt Y, Index)
    Value *X = BO->getOperand(0), *Y = BO->getOperand(1);
    Value *E0 = Builder.CreateExtractElement(X, Index);
    Value *E1 = Builder.CreateExtractElement(Y, Index);
    return BinaryOperator::CreateWithCopiedFlags(BO->getOpcode(), E0, E1, BO);
  }

  Value *X, *Y;
  CmpInst::Predicate Pred;
  if (match(SrcVec, m_Cmp(Pred, m_Value(X), m_Value(Y))) &&
      cheapToScalarize(SrcVec, IndexC)) {
    // extelt (cmp X, Y), Index --> cmp (extelt X, Index), (extelt Y, Index)
    Value *E0 = Builder.CreateExtractElement(X, Index);
    Value *E1 = Builder.CreateExtractElement(Y, Index);
    return CmpInst::Create(cast<CmpInst>(SrcVec)->getOpcode(), Pred, E0, E1);
  }

  if (auto *I = dyn_cast<Instruction>(SrcVec)) {
    if (auto *IE = dyn_cast<InsertElementInst>(I)) {
      // Extracting the inserted element?
      if (IE->getOperand(2) == Index)
        return replaceInstUsesWith(EI, IE->getOperand(1));
      // If the inserted and extracted elements are constants, they must not
      // be the same value, extract from the pre-inserted value instead.
      if (isa<Constant>(IE->getOperand(2)) && IndexC) {
        Worklist.AddValue(SrcVec);
        EI.setOperand(0, IE->getOperand(0));
        return &EI;
      }
    } else if (auto *SVI = dyn_cast<ShuffleVectorInst>(I)) {
      // If this is extracting an element from a shufflevector, figure out where
      // it came from and extract from the appropriate input element instead.
      if (auto *Elt = dyn_cast<ConstantInt>(Index)) {
        int SrcIdx = SVI->getMaskValue(Elt->getZExtValue());
        Value *Src;
        unsigned LHSWidth =
          SVI->getOperand(0)->getType()->getVectorNumElements();

        if (SrcIdx < 0)
          return replaceInstUsesWith(EI, UndefValue::get(EI.getType()));
        if (SrcIdx < (int)LHSWidth)
          Src = SVI->getOperand(0);
        else {
          SrcIdx -= LHSWidth;
          Src = SVI->getOperand(1);
        }
        Type *Int32Ty = Type::getInt32Ty(EI.getContext());
        return ExtractElementInst::Create(Src,
                                          ConstantInt::get(Int32Ty,
                                                           SrcIdx, false));
      }
    } else if (auto *CI = dyn_cast<CastInst>(I)) {
      // Canonicalize extractelement(cast) -> cast(extractelement).
      // Bitcasts can change the number of vector elements, and they cost
      // nothing.
      if (CI->hasOneUse() && (CI->getOpcode() != Instruction::BitCast)) {
        Value *EE = Builder.CreateExtractElement(CI->getOperand(0), Index);
        Worklist.AddValue(EE);
        return CastInst::Create(CI->getOpcode(), EE, EI.getType());
      }
    }
  }
  return nullptr;
}

/// If V is a shuffle of values that ONLY returns elements from either LHS or
/// RHS, return the shuffle mask and true. Otherwise, return false.
static bool collectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
                                         SmallVectorImpl<Constant*> &Mask) {
  assert(LHS->getType() == RHS->getType() &&
         "Invalid CollectSingleShuffleElements");
  unsigned NumElts = V->getType()->getVectorNumElements();

  if (isa<UndefValue>(V)) {
    Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
    return true;
  }

  if (V == LHS) {
    for (unsigned i = 0; i != NumElts; ++i)
      Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
    return true;
  }

  if (V == RHS) {
    for (unsigned i = 0; i != NumElts; ++i)
      Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()),
                                      i+NumElts));
    return true;
  }

  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
    // If this is an insert of an extract from some other vector, include it.
    Value *VecOp    = IEI->getOperand(0);
    Value *ScalarOp = IEI->getOperand(1);
    Value *IdxOp    = IEI->getOperand(2);

    if (!isa<ConstantInt>(IdxOp))
      return false;
    unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();

    if (isa<UndefValue>(ScalarOp)) {  // inserting undef into vector.
      // We can handle this if the vector we are inserting into is
      // transitively ok.
      if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
        // If so, update the mask to reflect the inserted undef.
        Mask[InsertedIdx] = UndefValue::get(Type::getInt32Ty(V->getContext()));
        return true;
      }
    } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
      if (isa<ConstantInt>(EI->getOperand(1))) {
        unsigned ExtractedIdx =
        cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
        unsigned NumLHSElts = LHS->getType()->getVectorNumElements();

        // This must be extracting from either LHS or RHS.
        if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
          // We can handle this if the vector we are inserting into is
          // transitively ok.
          if (collectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
            // If so, update the mask to reflect the inserted value.
            if (EI->getOperand(0) == LHS) {
              Mask[InsertedIdx % NumElts] =
              ConstantInt::get(Type::getInt32Ty(V->getContext()),
                               ExtractedIdx);
            } else {
              assert(EI->getOperand(0) == RHS);
              Mask[InsertedIdx % NumElts] =
              ConstantInt::get(Type::getInt32Ty(V->getContext()),
                               ExtractedIdx + NumLHSElts);
            }
            return true;
          }
        }
      }
    }
  }

  return false;
}

/// If we have insertion into a vector that is wider than the vector that we
/// are extracting from, try to widen the source vector to allow a single
/// shufflevector to replace one or more insert/extract pairs.
static void replaceExtractElements(InsertElementInst *InsElt,
                                   ExtractElementInst *ExtElt,
                                   InstCombiner &IC) {
  VectorType *InsVecType = InsElt->getType();
  VectorType *ExtVecType = ExtElt->getVectorOperandType();
  unsigned NumInsElts = InsVecType->getVectorNumElements();
  unsigned NumExtElts = ExtVecType->getVectorNumElements();

  // The inserted-to vector must be wider than the extracted-from vector.
  if (InsVecType->getElementType() != ExtVecType->getElementType() ||
      NumExtElts >= NumInsElts)
    return;

  // Create a shuffle mask to widen the extended-from vector using undefined
  // values. The mask selects all of the values of the original vector followed
  // by as many undefined values as needed to create a vector of the same length
  // as the inserted-to vector.
  SmallVector<Constant *, 16> ExtendMask;
  IntegerType *IntType = Type::getInt32Ty(InsElt->getContext());
  for (unsigned i = 0; i < NumExtElts; ++i)
    ExtendMask.push_back(ConstantInt::get(IntType, i));
  for (unsigned i = NumExtElts; i < NumInsElts; ++i)
    ExtendMask.push_back(UndefValue::get(IntType));

  Value *ExtVecOp = ExtElt->getVectorOperand();
  auto *ExtVecOpInst = dyn_cast<Instruction>(ExtVecOp);
  BasicBlock *InsertionBlock = (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
                                   ? ExtVecOpInst->getParent()
                                   : ExtElt->getParent();

  // TODO: This restriction matches the basic block check below when creating
  // new extractelement instructions. If that limitation is removed, this one
  // could also be removed. But for now, we just bail out to ensure that we
  // will replace the extractelement instruction that is feeding our
  // insertelement instruction. This allows the insertelement to then be
  // replaced by a shufflevector. If the insertelement is not replaced, we can
  // induce infinite looping because there's an optimization for extractelement
  // that will delete our widening shuffle. This would trigger another attempt
  // here to create that shuffle, and we spin forever.
  if (InsertionBlock != InsElt->getParent())
    return;

  // TODO: This restriction matches the check in visitInsertElementInst() and
  // prevents an infinite loop caused by not turning the extract/insert pair
  // into a shuffle. We really should not need either check, but we're lacking
  // folds for shufflevectors because we're afraid to generate shuffle masks
  // that the backend can't handle.
  if (InsElt->hasOneUse() && isa<InsertElementInst>(InsElt->user_back()))
    return;

  auto *WideVec = new ShuffleVectorInst(ExtVecOp, UndefValue::get(ExtVecType),
                                        ConstantVector::get(ExtendMask));

  // Insert the new shuffle after the vector operand of the extract is defined
  // (as long as it's not a PHI) or at the start of the basic block of the
  // extract, so any subsequent extracts in the same basic block can use it.
  // TODO: Insert before the earliest ExtractElementInst that is replaced.
  if (ExtVecOpInst && !isa<PHINode>(ExtVecOpInst))
    WideVec->insertAfter(ExtVecOpInst);
  else
    IC.InsertNewInstWith(WideVec, *ExtElt->getParent()->getFirstInsertionPt());

  // Replace extracts from the original narrow vector with extracts from the new
  // wide vector.
  for (User *U : ExtVecOp->users()) {
    ExtractElementInst *OldExt = dyn_cast<ExtractElementInst>(U);
    if (!OldExt || OldExt->getParent() != WideVec->getParent())
      continue;
    auto *NewExt = ExtractElementInst::Create(WideVec, OldExt->getOperand(1));
    NewExt->insertAfter(OldExt);
    IC.replaceInstUsesWith(*OldExt, NewExt);
  }
}

/// We are building a shuffle to create V, which is a sequence of insertelement,
/// extractelement pairs. If PermittedRHS is set, then we must either use it or
/// not rely on the second vector source. Return a std::pair containing the
/// left and right vectors of the proposed shuffle (or 0), and set the Mask
/// parameter as required.
///
/// Note: we intentionally don't try to fold earlier shuffles since they have
/// often been chosen carefully to be efficiently implementable on the target.
using ShuffleOps = std::pair<Value *, Value *>;

static ShuffleOps collectShuffleElements(Value *V,
                                         SmallVectorImpl<Constant *> &Mask,
                                         Value *PermittedRHS,
                                         InstCombiner &IC) {
  assert(V->getType()->isVectorTy() && "Invalid shuffle!");
  unsigned NumElts = V->getType()->getVectorNumElements();

  if (isa<UndefValue>(V)) {
    Mask.assign(NumElts, UndefValue::get(Type::getInt32Ty(V->getContext())));
    return std::make_pair(
        PermittedRHS ? UndefValue::get(PermittedRHS->getType()) : V, nullptr);
  }

  if (isa<ConstantAggregateZero>(V)) {
    Mask.assign(NumElts, ConstantInt::get(Type::getInt32Ty(V->getContext()),0));
    return std::make_pair(V, nullptr);
  }

  if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
    // If this is an insert of an extract from some other vector, include it.
    Value *VecOp    = IEI->getOperand(0);
    Value *ScalarOp = IEI->getOperand(1);
    Value *IdxOp    = IEI->getOperand(2);

    if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
      if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp)) {
        unsigned ExtractedIdx =
          cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
        unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();

        // Either the extracted from or inserted into vector must be RHSVec,
        // otherwise we'd end up with a shuffle of three inputs.
        if (EI->getOperand(0) == PermittedRHS || PermittedRHS == nullptr) {
          Value *RHS = EI->getOperand(0);
          ShuffleOps LR = collectShuffleElements(VecOp, Mask, RHS, IC);
          assert(LR.second == nullptr || LR.second == RHS);

          if (LR.first->getType() != RHS->getType()) {
            // Although we are giving up for now, see if we can create extracts
            // that match the inserts for another round of combining.
            replaceExtractElements(IEI, EI, IC);

            // We tried our best, but we can't find anything compatible with RHS
            // further up the chain. Return a trivial shuffle.
            for (unsigned i = 0; i < NumElts; ++i)
              Mask[i] = ConstantInt::get(Type::getInt32Ty(V->getContext()), i);
            return std::make_pair(V, nullptr);
          }

          unsigned NumLHSElts = RHS->getType()->getVectorNumElements();
          Mask[InsertedIdx % NumElts] =
            ConstantInt::get(Type::getInt32Ty(V->getContext()),
                             NumLHSElts+ExtractedIdx);
          return std::make_pair(LR.first, RHS);
        }

        if (VecOp == PermittedRHS) {
          // We've gone as far as we can: anything on the other side of the
          // extractelement will already have been converted into a shuffle.
          unsigned NumLHSElts =
              EI->getOperand(0)->getType()->getVectorNumElements();
          for (unsigned i = 0; i != NumElts; ++i)
            Mask.push_back(ConstantInt::get(
                Type::getInt32Ty(V->getContext()),
                i == InsertedIdx ? ExtractedIdx : NumLHSElts + i));
          return std::make_pair(EI->getOperand(0), PermittedRHS);
        }

        // If this insertelement is a chain that comes from exactly these two
        // vectors, return the vector and the effective shuffle.
        if (EI->getOperand(0)->getType() == PermittedRHS->getType() &&
            collectSingleShuffleElements(IEI, EI->getOperand(0), PermittedRHS,
                                         Mask))
          return std::make_pair(EI->getOperand(0), PermittedRHS);
      }
    }
  }

  // Otherwise, we can't do anything fancy. Return an identity vector.
  for (unsigned i = 0; i != NumElts; ++i)
    Mask.push_back(ConstantInt::get(Type::getInt32Ty(V->getContext()), i));
  return std::make_pair(V, nullptr);
}

/// Try to find redundant insertvalue instructions, like the following ones:
///  %0 = insertvalue { i8, i32 } undef, i8 %x, 0
///  %1 = insertvalue { i8, i32 } %0,    i8 %y, 0
/// Here the second instruction inserts values at the same indices, as the
/// first one, making the first one redundant.
/// It should be transformed to:
///  %0 = insertvalue { i8, i32 } undef, i8 %y, 0
Instruction *InstCombiner::visitInsertValueInst(InsertValueInst &I) {
  bool IsRedundant = false;
  ArrayRef<unsigned int> FirstIndices = I.getIndices();

  // If there is a chain of insertvalue instructions (each of them except the
  // last one has only one use and it's another insertvalue insn from this
  // chain), check if any of the 'children' uses the same indices as the first
  // instruction. In this case, the first one is redundant.
  Value *V = &I;
  unsigned Depth = 0;
  while (V->hasOneUse() && Depth < 10) {
    User *U = V->user_back();
    auto UserInsInst = dyn_cast<InsertValueInst>(U);
    if (!UserInsInst || U->getOperand(0) != V)
      break;
    if (UserInsInst->getIndices() == FirstIndices) {
      IsRedundant = true;
      break;
    }
    V = UserInsInst;
    Depth++;
  }

  if (IsRedundant)
    return replaceInstUsesWith(I, I.getOperand(0));
  return nullptr;
}

static bool isShuffleEquivalentToSelect(ShuffleVectorInst &Shuf) {
  int MaskSize = Shuf.getMask()->getType()->getVectorNumElements();
  int VecSize = Shuf.getOperand(0)->getType()->getVectorNumElements();

  // A vector select does not change the size of the operands.
  if (MaskSize != VecSize)
    return false;

  // Each mask element must be undefined or choose a vector element from one of
  // the source operands without crossing vector lanes.
  for (int i = 0; i != MaskSize; ++i) {
    int Elt = Shuf.getMaskValue(i);
    if (Elt != -1 && Elt != i && Elt != i + VecSize)
      return false;
  }

  return true;
}

/// Turn a chain of inserts that splats a value into an insert + shuffle:
/// insertelt(insertelt(insertelt(insertelt X, %k, 0), %k, 1), %k, 2) ... ->
/// shufflevector(insertelt(X, %k, 0), undef, zero)
static Instruction *foldInsSequenceIntoSplat(InsertElementInst &InsElt) {
  // We are interested in the last insert in a chain. So if this insert has a
  // single user and that user is an insert, bail.
  if (InsElt.hasOneUse() && isa<InsertElementInst>(InsElt.user_back()))
    return nullptr;

  auto *VecTy = cast<VectorType>(InsElt.getType());
  unsigned NumElements = VecTy->getNumElements();

  // Do not try to do this for a one-element vector, since that's a nop,
  // and will cause an inf-loop.
  if (NumElements == 1)
    return nullptr;

  Value *SplatVal = InsElt.getOperand(1);
  InsertElementInst *CurrIE = &InsElt;
  SmallVector<bool, 16> ElementPresent(NumElements, false);
  InsertElementInst *FirstIE = nullptr;

  // Walk the chain backwards, keeping track of which indices we inserted into,
  // until we hit something that isn't an insert of the splatted value.
  while (CurrIE) {
    auto *Idx = dyn_cast<ConstantInt>(CurrIE->getOperand(2));
    if (!Idx || CurrIE->getOperand(1) != SplatVal)
      return nullptr;

    auto *NextIE = dyn_cast<InsertElementInst>(CurrIE->getOperand(0));
    // Check none of the intermediate steps have any additional uses, except
    // for the root insertelement instruction, which can be re-used, if it
    // inserts at position 0.
    if (CurrIE != &InsElt &&
        (!CurrIE->hasOneUse() && (NextIE != nullptr || !Idx->isZero())))
      return nullptr;

    ElementPresent[Idx->getZExtValue()] = true;
    FirstIE = CurrIE;
    CurrIE = NextIE;
  }

  // If this is just a single insertelement (not a sequence), we are done.
  if (FirstIE == &InsElt)
    return nullptr;

  // If we are not inserting into an undef vector, make sure we've seen an
  // insert into every element.
  // TODO: If the base vector is not undef, it might be better to create a splat
  //       and then a select-shuffle (blend) with the base vector.
  if (!isa<UndefValue>(FirstIE->getOperand(0)))
    if (any_of(ElementPresent, [](bool Present) { return !Present; }))
      return nullptr;

  // Create the insert + shuffle.
  Type *Int32Ty = Type::getInt32Ty(InsElt.getContext());
  UndefValue *UndefVec = UndefValue::get(VecTy);
  Constant *Zero = ConstantInt::get(Int32Ty, 0);
  if (!cast<ConstantInt>(FirstIE->getOperand(2))->isZero())
    FirstIE = InsertElementInst::Create(UndefVec, SplatVal, Zero, "", &InsElt);

  // Splat from element 0, but replace absent elements with undef in the mask.
  SmallVector<Constant *, 16> Mask(NumElements, Zero);
  for (unsigned i = 0; i != NumElements; ++i)
    if (!ElementPresent[i])
      Mask[i] = UndefValue::get(Int32Ty);

  return new ShuffleVectorInst(FirstIE, UndefVec, ConstantVector::get(Mask));
}

/// Try to fold an insert element into an existing splat shuffle by changing
/// the shuffle's mask to include the index of this insert element.
static Instruction *foldInsEltIntoSplat(InsertElementInst &InsElt) {
  // Check if the vector operand of this insert is a canonical splat shuffle.
  auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
  if (!Shuf || !Shuf->isZeroEltSplat())
    return nullptr;

  // Check for a constant insertion index.
  uint64_t IdxC;
  if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
    return nullptr;

  // Check if the splat shuffle's input is the same as this insert's scalar op.
  Value *X = InsElt.getOperand(1);
  Value *Op0 = Shuf->getOperand(0);
  if (!match(Op0, m_InsertElement(m_Undef(), m_Specific(X), m_ZeroInt())))
    return nullptr;

  // Replace the shuffle mask element at the index of this insert with a zero.
  // For example:
  // inselt (shuf (inselt undef, X, 0), undef, <0,undef,0,undef>), X, 1
  //   --> shuf (inselt undef, X, 0), undef, <0,0,0,undef>
  unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
  SmallVector<Constant *, 16> NewMaskVec(NumMaskElts);
  Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext());
  Constant *Zero = ConstantInt::getNullValue(I32Ty);
  for (unsigned i = 0; i != NumMaskElts; ++i)
    NewMaskVec[i] = i == IdxC ? Zero : Shuf->getMask()->getAggregateElement(i);

  Constant *NewMask = ConstantVector::get(NewMaskVec);
  return new ShuffleVectorInst(Op0, UndefValue::get(Op0->getType()), NewMask);
}

/// Try to fold an extract+insert element into an existing identity shuffle by
/// changing the shuffle's mask to include the index of this insert element.
static Instruction *foldInsEltIntoIdentityShuffle(InsertElementInst &InsElt) {
  // Check if the vector operand of this insert is an identity shuffle.
  auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0));
  if (!Shuf || !isa<UndefValue>(Shuf->getOperand(1)) ||
      !(Shuf->isIdentityWithExtract() || Shuf->isIdentityWithPadding()))
    return nullptr;

  // Check for a constant insertion index.
  uint64_t IdxC;
  if (!match(InsElt.getOperand(2), m_ConstantInt(IdxC)))
    return nullptr;

  // Check if this insert's scalar op is extracted from the identity shuffle's
  // input vector.
  Value *Scalar = InsElt.getOperand(1);
  Value *X = Shuf->getOperand(0);
  if (!match(Scalar, m_ExtractElement(m_Specific(X), m_SpecificInt(IdxC))))
    return nullptr;

  // Replace the shuffle mask element at the index of this extract+insert with
  // that same index value.
  // For example:
  // inselt (shuf X, IdMask), (extelt X, IdxC), IdxC --> shuf X, IdMask'
  unsigned NumMaskElts = Shuf->getType()->getVectorNumElements();
  SmallVector<Constant *, 16> NewMaskVec(NumMaskElts);
  Type *I32Ty = IntegerType::getInt32Ty(Shuf->getContext());
  Constant *NewMaskEltC = ConstantInt::get(I32Ty, IdxC);
  Constant *OldMask = Shuf->getMask();
  for (unsigned i = 0; i != NumMaskElts; ++i) {
    if (i != IdxC) {
      // All mask elements besides the inserted element remain the same.
      NewMaskVec[i] = OldMask->getAggregateElement(i);
    } else if (OldMask->getAggregateElement(i) == NewMaskEltC) {
      // If the mask element was already set, there's nothing to do
      // (demanded elements analysis may unset it later).
      return nullptr;
    } else {
      assert(isa<UndefValue>(OldMask->getAggregateElement(i)) &&
             "Unexpected shuffle mask element for identity shuffle");
      NewMaskVec[i] = NewMaskEltC;
    }
  }

  Constant *NewMask = ConstantVector::get(NewMaskVec);
  return new ShuffleVectorInst(X, Shuf->getOperand(1), NewMask);
}

/// If we have an insertelement instruction feeding into another insertelement
/// and the 2nd is inserting a constant into the vector, canonicalize that
/// constant insertion before the insertion of a variable:
///
/// insertelement (insertelement X, Y, IdxC1), ScalarC, IdxC2 -->
/// insertelement (insertelement X, ScalarC, IdxC2), Y, IdxC1
///
/// This has the potential of eliminating the 2nd insertelement instruction
/// via constant folding of the scalar constant into a vector constant.
static Instruction *hoistInsEltConst(InsertElementInst &InsElt2,
                                     InstCombiner::BuilderTy &Builder) {
  auto *InsElt1 = dyn_cast<InsertElementInst>(InsElt2.getOperand(0));
  if (!InsElt1 || !InsElt1->hasOneUse())
    return nullptr;

  Value *X, *Y;
  Constant *ScalarC;
  ConstantInt *IdxC1, *IdxC2;
  if (match(InsElt1->getOperand(0), m_Value(X)) &&
      match(InsElt1->getOperand(1), m_Value(Y)) && !isa<Constant>(Y) &&
      match(InsElt1->getOperand(2), m_ConstantInt(IdxC1)) &&
      match(InsElt2.getOperand(1), m_Constant(ScalarC)) &&
      match(InsElt2.getOperand(2), m_ConstantInt(IdxC2)) && IdxC1 != IdxC2) {
    Value *NewInsElt1 = Builder.CreateInsertElement(X, ScalarC, IdxC2);
    return InsertElementInst::Create(NewInsElt1, Y, IdxC1);
  }

  return nullptr;
}

/// insertelt (shufflevector X, CVec, Mask|insertelt X, C1, CIndex1), C, CIndex
/// --> shufflevector X, CVec', Mask'
static Instruction *foldConstantInsEltIntoShuffle(InsertElementInst &InsElt) {
  auto *Inst = dyn_cast<Instruction>(InsElt.getOperand(0));
  // Bail out if the parent has more than one use. In that case, we'd be
  // replacing the insertelt with a shuffle, and that's not a clear win.
  if (!Inst || !Inst->hasOneUse())
    return nullptr;
  if (auto *Shuf = dyn_cast<ShuffleVectorInst>(InsElt.getOperand(0))) {
    // The shuffle must have a constant vector operand. The insertelt must have
    // a constant scalar being inserted at a constant position in the vector.
    Constant *ShufConstVec, *InsEltScalar;
    uint64_t InsEltIndex;
    if (!match(Shuf->getOperand(1), m_Constant(ShufConstVec)) ||
        !match(InsElt.getOperand(1), m_Constant(InsEltScalar)) ||
        !match(InsElt.getOperand(2), m_ConstantInt(InsEltIndex)))
      return nullptr;

    // Adding an element to an arbitrary shuffle could be expensive, but a
    // shuffle that selects elements from vectors without crossing lanes is
    // assumed cheap.
    // If we're just adding a constant into that shuffle, it will still be
    // cheap.
    if (!isShuffleEquivalentToSelect(*Shuf))
      return nullptr;

    // From the above 'select' check, we know that the mask has the same number
    // of elements as the vector input operands. We also know that each constant
    // input element is used in its lane and can not be used more than once by
    // the shuffle. Therefore, replace the constant in the shuffle's constant
    // vector with the insertelt constant. Replace the constant in the shuffle's
    // mask vector with the insertelt index plus the length of the vector
    // (because the constant vector operand of a shuffle is always the 2nd
    // operand).
    Constant *Mask = Shuf->getMask();
    unsigned NumElts = Mask->getType()->getVectorNumElements();
    SmallVector<Constant *, 16> NewShufElts(NumElts);
    SmallVector<Constant *, 16> NewMaskElts(NumElts);
    for (unsigned I = 0; I != NumElts; ++I) {
      if (I == InsEltIndex) {
        NewShufElts[I] = InsEltScalar;
        Type *Int32Ty = Type::getInt32Ty(Shuf->getContext());
        NewMaskElts[I] = ConstantInt::get(Int32Ty, InsEltIndex + NumElts);
      } else {
        // Copy over the existing values.
        NewShufElts[I] = ShufConstVec->getAggregateElement(I);
        NewMaskElts[I] = Mask->getAggregateElement(I);
      }
    }

    // Create new operands for a shuffle that includes the constant of the
    // original insertelt. The old shuffle will be dead now.
    return new ShuffleVectorInst(Shuf->getOperand(0),
                                 ConstantVector::get(NewShufElts),
                                 ConstantVector::get(NewMaskElts));
  } else if (auto *IEI = dyn_cast<InsertElementInst>(Inst)) {
    // Transform sequences of insertelements ops with constant data/indexes into
    // a single shuffle op.
    unsigned NumElts = InsElt.getType()->getNumElements();

    uint64_t InsertIdx[2];
    Constant *Val[2];
    if (!match(InsElt.getOperand(2), m_ConstantInt(InsertIdx[0])) ||
        !match(InsElt.getOperand(1), m_Constant(Val[0])) ||
        !match(IEI->getOperand(2), m_ConstantInt(InsertIdx[1])) ||
        !match(IEI->getOperand(1), m_Constant(Val[1])))
      return nullptr;
    SmallVector<Constant *, 16> Values(NumElts);
    SmallVector<Constant *, 16> Mask(NumElts);
    auto ValI = std::begin(Val);
    // Generate new constant vector and mask.
    // We have 2 values/masks from the insertelements instructions. Insert them
    // into new value/mask vectors.
    for (uint64_t I : InsertIdx) {
      if (!Values[I]) {
        assert(!Mask[I]);
        Values[I] = *ValI;
        Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()),
                                   NumElts + I);
      }
      ++ValI;
    }
    // Remaining values are filled with 'undef' values.
    for (unsigned I = 0; I < NumElts; ++I) {
      if (!Values[I]) {
        assert(!Mask[I]);
        Values[I] = UndefValue::get(InsElt.getType()->getElementType());
        Mask[I] = ConstantInt::get(Type::getInt32Ty(InsElt.getContext()), I);
      }
    }
    // Create new operands for a shuffle that includes the constant of the
    // original insertelt.
    return new ShuffleVectorInst(IEI->getOperand(0),
                                 ConstantVector::get(Values),
                                 ConstantVector::get(Mask));
  }
  return nullptr;
}

Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
  Value *VecOp    = IE.getOperand(0);
  Value *ScalarOp = IE.getOperand(1);
  Value *IdxOp    = IE.getOperand(2);

  if (auto *V = SimplifyInsertElementInst(
          VecOp, ScalarOp, IdxOp, SQ.getWithInstruction(&IE)))
    return replaceInstUsesWith(IE, V);

  // If the vector and scalar are both bitcast from the same element type, do
  // the insert in that source type followed by bitcast.
  Value *VecSrc, *ScalarSrc;
  if (match(VecOp, m_BitCast(m_Value(VecSrc))) &&
      match(ScalarOp, m_BitCast(m_Value(ScalarSrc))) &&
      (VecOp->hasOneUse() || ScalarOp->hasOneUse()) &&
      VecSrc->getType()->isVectorTy() && !ScalarSrc->getType()->isVectorTy() &&
      VecSrc->getType()->getVectorElementType() == ScalarSrc->getType()) {
    // inselt (bitcast VecSrc), (bitcast ScalarSrc), IdxOp -->
    //   bitcast (inselt VecSrc, ScalarSrc, IdxOp)
    Value *NewInsElt = Builder.CreateInsertElement(VecSrc, ScalarSrc, IdxOp);
    return new BitCastInst(NewInsElt, IE.getType());
  }

  // If the inserted element was extracted from some other vector and both
  // indexes are valid constants, try to turn this into a shuffle.
  uint64_t InsertedIdx, ExtractedIdx;
  Value *ExtVecOp;
  if (match(IdxOp, m_ConstantInt(InsertedIdx)) &&
      match(ScalarOp, m_ExtractElement(m_Value(ExtVecOp),
                                       m_ConstantInt(ExtractedIdx))) &&
      ExtractedIdx < ExtVecOp->getType()->getVectorNumElements()) {
    // TODO: Looking at the user(s) to determine if this insert is a
    // fold-to-shuffle opportunity does not match the usual instcombine
    // constraints. We should decide if the transform is worthy based only
    // on this instruction and its operands, but that may not work currently.
    //
    // Here, we are trying to avoid creating shuffles before reaching
    // the end of a chain of extract-insert pairs. This is complicated because
    // we do not generally form arbitrary shuffle masks in instcombine
    // (because those may codegen poorly), but collectShuffleElements() does
    // exactly that.
    //
    // The rules for determining what is an acceptable target-independent
    // shuffle mask are fuzzy because they evolve based on the backend's
    // capabilities and real-world impact.
    auto isShuffleRootCandidate = [](InsertElementInst &Insert) {
      if (!Insert.hasOneUse())
        return true;
      auto *InsertUser = dyn_cast<InsertElementInst>(Insert.user_back());
      if (!InsertUser)
        return true;
      return false;
    };

    // Try to form a shuffle from a chain of extract-insert ops.
    if (isShuffleRootCandidate(IE)) {
      SmallVector<Constant*, 16> Mask;
      ShuffleOps LR = collectShuffleElements(&IE, Mask, nullptr, *this);

      // The proposed shuffle may be trivial, in which case we shouldn't
      // perform the combine.
      if (LR.first != &IE && LR.second != &IE) {
        // We now have a shuffle of LHS, RHS, Mask.
        if (LR.second == nullptr)
          LR.second = UndefValue::get(LR.first->getType());
        return new ShuffleVectorInst(LR.first, LR.second,
                                     ConstantVector::get(Mask));
      }
    }
  }

  unsigned VWidth = VecOp->getType()->getVectorNumElements();
  APInt UndefElts(VWidth, 0);
  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
  if (Value *V = SimplifyDemandedVectorElts(&IE, AllOnesEltMask, UndefElts)) {
    if (V != &IE)
      return replaceInstUsesWith(IE, V);
    return &IE;
  }

  if (Instruction *Shuf = foldConstantInsEltIntoShuffle(IE))
    return Shuf;

  if (Instruction *NewInsElt = hoistInsEltConst(IE, Builder))
    return NewInsElt;

  if (Instruction *Broadcast = foldInsSequenceIntoSplat(IE))
    return Broadcast;

  if (Instruction *Splat = foldInsEltIntoSplat(IE))
    return Splat;

  if (Instruction *IdentityShuf = foldInsEltIntoIdentityShuffle(IE))
    return IdentityShuf;

  return nullptr;
}

/// Return true if we can evaluate the specified expression tree if the vector
/// elements were shuffled in a different order.
static bool canEvaluateShuffled(Value *V, ArrayRef<int> Mask,
                                unsigned Depth = 5) {
  // We can always reorder the elements of a constant.
  if (isa<Constant>(V))
    return true;

  // We won't reorder vector arguments. No IPO here.
  Instruction *I = dyn_cast<Instruction>(V);
  if (!I) return false;

  // Two users may expect different orders of the elements. Don't try it.
  if (!I->hasOneUse())
    return false;

  if (Depth == 0) return false;

  switch (I->getOpcode()) {
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::URem:
    case Instruction::SRem:
      // Propagating an undefined shuffle mask element to integer div/rem is not
      // allowed because those opcodes can create immediate undefined behavior
      // from an undefined element in an operand.
      if (llvm::any_of(Mask, [](int M){ return M == -1; }))
        return false;
      LLVM_FALLTHROUGH;
    case Instruction::Add:
    case Instruction::FAdd:
    case Instruction::Sub:
    case Instruction::FSub:
    case Instruction::Mul:
    case Instruction::FMul:
    case Instruction::FDiv:
    case Instruction::FRem:
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor:
    case Instruction::ICmp:
    case Instruction::FCmp:
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::UIToFP:
    case Instruction::SIToFP:
    case Instruction::FPTrunc:
    case Instruction::FPExt:
    case Instruction::GetElementPtr: {
      // Bail out if we would create longer vector ops. We could allow creating
      // longer vector ops, but that may result in more expensive codegen.
      Type *ITy = I->getType();
      if (ITy->isVectorTy() && Mask.size() > ITy->getVectorNumElements())
        return false;
      for (Value *Operand : I->operands()) {
        if (!canEvaluateShuffled(Operand, Mask, Depth - 1))
          return false;
      }
      return true;
    }
    case Instruction::InsertElement: {
      ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
      if (!CI) return false;
      int ElementNumber = CI->getLimitedValue();

      // Verify that 'CI' does not occur twice in Mask. A single 'insertelement'
      // can't put an element into multiple indices.
      bool SeenOnce = false;
      for (int i = 0, e = Mask.size(); i != e; ++i) {
        if (Mask[i] == ElementNumber) {
          if (SeenOnce)
            return false;
          SeenOnce = true;
        }
      }
      return canEvaluateShuffled(I->getOperand(0), Mask, Depth - 1);
    }
  }
  return false;
}

/// Rebuild a new instruction just like 'I' but with the new operands given.
/// In the event of type mismatch, the type of the operands is correct.
static Value *buildNew(Instruction *I, ArrayRef<Value*> NewOps) {
  // We don't want to use the IRBuilder here because we want the replacement
  // instructions to appear next to 'I', not the builder's insertion point.
  switch (I->getOpcode()) {
    case Instruction::Add:
    case Instruction::FAdd:
    case Instruction::Sub:
    case Instruction::FSub:
    case Instruction::Mul:
    case Instruction::FMul:
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::FDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::FRem:
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor: {
      BinaryOperator *BO = cast<BinaryOperator>(I);
      assert(NewOps.size() == 2 && "binary operator with #ops != 2");
      BinaryOperator *New =
          BinaryOperator::Create(cast<BinaryOperator>(I)->getOpcode(),
                                 NewOps[0], NewOps[1], "", BO);
      if (isa<OverflowingBinaryOperator>(BO)) {
        New->setHasNoUnsignedWrap(BO->hasNoUnsignedWrap());
        New->setHasNoSignedWrap(BO->hasNoSignedWrap());
      }
      if (isa<PossiblyExactOperator>(BO)) {
        New->setIsExact(BO->isExact());
      }
      if (isa<FPMathOperator>(BO))
        New->copyFastMathFlags(I);
      return New;
    }
    case Instruction::ICmp:
      assert(NewOps.size() == 2 && "icmp with #ops != 2");
      return new ICmpInst(I, cast<ICmpInst>(I)->getPredicate(),
                          NewOps[0], NewOps[1]);
    case Instruction::FCmp:
      assert(NewOps.size() == 2 && "fcmp with #ops != 2");
      return new FCmpInst(I, cast<FCmpInst>(I)->getPredicate(),
                          NewOps[0], NewOps[1]);
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::UIToFP:
    case Instruction::SIToFP:
    case Instruction::FPTrunc:
    case Instruction::FPExt: {
      // It's possible that the mask has a different number of elements from
      // the original cast. We recompute the destination type to match the mask.
      Type *DestTy =
          VectorType::get(I->getType()->getScalarType(),
                          NewOps[0]->getType()->getVectorNumElements());
      assert(NewOps.size() == 1 && "cast with #ops != 1");
      return CastInst::Create(cast<CastInst>(I)->getOpcode(), NewOps[0], DestTy,
                              "", I);
    }
    case Instruction::GetElementPtr: {
      Value *Ptr = NewOps[0];
      ArrayRef<Value*> Idx = NewOps.slice(1);
      GetElementPtrInst *GEP = GetElementPtrInst::Create(
          cast<GetElementPtrInst>(I)->getSourceElementType(), Ptr, Idx, "", I);
      GEP->setIsInBounds(cast<GetElementPtrInst>(I)->isInBounds());
      return GEP;
    }
  }
  llvm_unreachable("failed to rebuild vector instructions");
}

static Value *evaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask) {
  // Mask.size() does not need to be equal to the number of vector elements.

  assert(V->getType()->isVectorTy() && "can't reorder non-vector elements");
  Type *EltTy = V->getType()->getScalarType();
  Type *I32Ty = IntegerType::getInt32Ty(V->getContext());
  if (isa<UndefValue>(V))
    return UndefValue::get(VectorType::get(EltTy, Mask.size()));

  if (isa<ConstantAggregateZero>(V))
    return ConstantAggregateZero::get(VectorType::get(EltTy, Mask.size()));

  if (Constant *C = dyn_cast<Constant>(V)) {
    SmallVector<Constant *, 16> MaskValues;
    for (int i = 0, e = Mask.size(); i != e; ++i) {
      if (Mask[i] == -1)
        MaskValues.push_back(UndefValue::get(I32Ty));
      else
        MaskValues.push_back(ConstantInt::get(I32Ty, Mask[i]));
    }
    return ConstantExpr::getShuffleVector(C, UndefValue::get(C->getType()),
                                          ConstantVector::get(MaskValues));
  }

  Instruction *I = cast<Instruction>(V);
  switch (I->getOpcode()) {
    case Instruction::Add:
    case Instruction::FAdd:
    case Instruction::Sub:
    case Instruction::FSub:
    case Instruction::Mul:
    case Instruction::FMul:
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::FDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::FRem:
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor:
    case Instruction::ICmp:
    case Instruction::FCmp:
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::UIToFP:
    case Instruction::SIToFP:
    case Instruction::FPTrunc:
    case Instruction::FPExt:
    case Instruction::Select:
    case Instruction::GetElementPtr: {
      SmallVector<Value*, 8> NewOps;
      bool NeedsRebuild = (Mask.size() != I->getType()->getVectorNumElements());
      for (int i = 0, e = I->getNumOperands(); i != e; ++i) {
        Value *V;
        // Recursively call evaluateInDifferentElementOrder on vector arguments
        // as well. E.g. GetElementPtr may have scalar operands even if the
        // return value is a vector, so we need to examine the operand type.
        if (I->getOperand(i)->getType()->isVectorTy())
          V = evaluateInDifferentElementOrder(I->getOperand(i), Mask);
        else
          V = I->getOperand(i);
        NewOps.push_back(V);
        NeedsRebuild |= (V != I->getOperand(i));
      }
      if (NeedsRebuild) {
        return buildNew(I, NewOps);
      }
      return I;
    }
    case Instruction::InsertElement: {
      int Element = cast<ConstantInt>(I->getOperand(2))->getLimitedValue();

      // The insertelement was inserting at Element. Figure out which element
      // that becomes after shuffling. The answer is guaranteed to be unique
      // by CanEvaluateShuffled.
      bool Found = false;
      int Index = 0;
      for (int e = Mask.size(); Index != e; ++Index) {
        if (Mask[Index] == Element) {
          Found = true;
          break;
        }
      }

      // If element is not in Mask, no need to handle the operand 1 (element to
      // be inserted). Just evaluate values in operand 0 according to Mask.
      if (!Found)
        return evaluateInDifferentElementOrder(I->getOperand(0), Mask);

      Value *V = evaluateInDifferentElementOrder(I->getOperand(0), Mask);
      return InsertElementInst::Create(V, I->getOperand(1),
                                       ConstantInt::get(I32Ty, Index), "", I);
    }
  }
  llvm_unreachable("failed to reorder elements of vector instruction!");
}

// Returns true if the shuffle is extracting a contiguous range of values from
// LHS, for example:
//                 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
//   Input:        |AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|
//   Shuffles to:  |EE|FF|GG|HH|
//                 +--+--+--+--+
static bool isShuffleExtractingFromLHS(ShuffleVectorInst &SVI,
                                       SmallVector<int, 16> &Mask) {
  unsigned LHSElems = SVI.getOperand(0)->getType()->getVectorNumElements();
  unsigned MaskElems = Mask.size();
  unsigned BegIdx = Mask.front();
  unsigned EndIdx = Mask.back();
  if (BegIdx > EndIdx || EndIdx >= LHSElems || EndIdx - BegIdx != MaskElems - 1)
    return false;
  for (unsigned I = 0; I != MaskElems; ++I)
    if (static_cast<unsigned>(Mask[I]) != BegIdx + I)
      return false;
  return true;
}

/// These are the ingredients in an alternate form binary operator as described
/// below.
struct BinopElts {
  BinaryOperator::BinaryOps Opcode;
  Value *Op0;
  Value *Op1;
  BinopElts(BinaryOperator::BinaryOps Opc = (BinaryOperator::BinaryOps)0,
            Value *V0 = nullptr, Value *V1 = nullptr) :
      Opcode(Opc), Op0(V0), Op1(V1) {}
  operator bool() const { return Opcode != 0; }
};

/// Binops may be transformed into binops with different opcodes and operands.
/// Reverse the usual canonicalization to enable folds with the non-canonical
/// form of the binop. If a transform is possible, return the elements of the
/// new binop. If not, return invalid elements.
static BinopElts getAlternateBinop(BinaryOperator *BO, const DataLayout &DL) {
  Value *BO0 = BO->getOperand(0), *BO1 = BO->getOperand(1);
  Type *Ty = BO->getType();
  switch (BO->getOpcode()) {
    case Instruction::Shl: {
      // shl X, C --> mul X, (1 << C)
      Constant *C;
      if (match(BO1, m_Constant(C))) {
        Constant *ShlOne = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C);
        return { Instruction::Mul, BO0, ShlOne };
      }
      break;
    }
    case Instruction::Or: {
      // or X, C --> add X, C (when X and C have no common bits set)
      const APInt *C;
      if (match(BO1, m_APInt(C)) && MaskedValueIsZero(BO0, *C, DL))
        return { Instruction::Add, BO0, BO1 };
      break;
    }
    default:
      break;
  }
  return {};
}

static Instruction *foldSelectShuffleWith1Binop(ShuffleVectorInst &Shuf) {
  assert(Shuf.isSelect() && "Must have select-equivalent shuffle");

  // Are we shuffling together some value and that same value after it has been
  // modified by a binop with a constant?
  Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
  Constant *C;
  bool Op0IsBinop;
  if (match(Op0, m_BinOp(m_Specific(Op1), m_Constant(C))))
    Op0IsBinop = true;
  else if (match(Op1, m_BinOp(m_Specific(Op0), m_Constant(C))))
    Op0IsBinop = false;
  else
    return nullptr;

  // The identity constant for a binop leaves a variable operand unchanged. For
  // a vector, this is a splat of something like 0, -1, or 1.
  // If there's no identity constant for this binop, we're done.
  auto *BO = cast<BinaryOperator>(Op0IsBinop ? Op0 : Op1);
  BinaryOperator::BinaryOps BOpcode = BO->getOpcode();
  Constant *IdC = ConstantExpr::getBinOpIdentity(BOpcode, Shuf.getType(), true);
  if (!IdC)
    return nullptr;

  // Shuffle identity constants into the lanes that return the original value.
  // Example: shuf (mul X, {-1,-2,-3,-4}), X, {0,5,6,3} --> mul X, {-1,1,1,-4}
  // Example: shuf X, (add X, {-1,-2,-3,-4}), {0,1,6,7} --> add X, {0,0,-3,-4}
  // The existing binop constant vector remains in the same operand position.
  Constant *Mask = Shuf.getMask();
  Constant *NewC = Op0IsBinop ? ConstantExpr::getShuffleVector(C, IdC, Mask) :
                                ConstantExpr::getShuffleVector(IdC, C, Mask);

  bool MightCreatePoisonOrUB =
      Mask->containsUndefElement() &&
      (Instruction::isIntDivRem(BOpcode) || Instruction::isShift(BOpcode));
  if (MightCreatePoisonOrUB)
    NewC = getSafeVectorConstantForBinop(BOpcode, NewC, true);

  // shuf (bop X, C), X, M --> bop X, C'
  // shuf X, (bop X, C), M --> bop X, C'
  Value *X = Op0IsBinop ? Op1 : Op0;
  Instruction *NewBO = BinaryOperator::Create(BOpcode, X, NewC);
  NewBO->copyIRFlags(BO);

  // An undef shuffle mask element may propagate as an undef constant element in
  // the new binop. That would produce poison where the original code might not.
  // If we already made a safe constant, then there's no danger.
  if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
    NewBO->dropPoisonGeneratingFlags();
  return NewBO;
}

/// If we have an insert of a scalar to a non-zero element of an undefined
/// vector and then shuffle that value, that's the same as inserting to the zero
/// element and shuffling. Splatting from the zero element is recognized as the
/// canonical form of splat.
static Instruction *canonicalizeInsertSplat(ShuffleVectorInst &Shuf,
                                            InstCombiner::BuilderTy &Builder) {
  Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
  Constant *Mask = Shuf.getMask();
  Value *X;
  uint64_t IndexC;

  // Match a shuffle that is a splat to a non-zero element.
  if (!match(Op0, m_OneUse(m_InsertElement(m_Undef(), m_Value(X),
                                           m_ConstantInt(IndexC)))) ||
      !match(Op1, m_Undef()) || match(Mask, m_ZeroInt()) || IndexC == 0)
    return nullptr;

  // Insert into element 0 of an undef vector.
  UndefValue *UndefVec = UndefValue::get(Shuf.getType());
  Constant *Zero = Builder.getInt32(0);
  Value *NewIns = Builder.CreateInsertElement(UndefVec, X, Zero);

  // Splat from element 0. Any mask element that is undefined remains undefined.
  // For example:
  // shuf (inselt undef, X, 2), undef, <2,2,undef>
  //   --> shuf (inselt undef, X, 0), undef, <0,0,undef>
  unsigned NumMaskElts = Shuf.getType()->getVectorNumElements();
  SmallVector<Constant *, 16> NewMask(NumMaskElts, Zero);
  for (unsigned i = 0; i != NumMaskElts; ++i)
    if (isa<UndefValue>(Mask->getAggregateElement(i)))
      NewMask[i] = Mask->getAggregateElement(i);

  return new ShuffleVectorInst(NewIns, UndefVec, ConstantVector::get(NewMask));
}

/// Try to fold shuffles that are the equivalent of a vector select.
static Instruction *foldSelectShuffle(ShuffleVectorInst &Shuf,
                                      InstCombiner::BuilderTy &Builder,
                                      const DataLayout &DL) {
  if (!Shuf.isSelect())
    return nullptr;

  // Canonicalize to choose from operand 0 first unless operand 1 is undefined.
  // Commuting undef to operand 0 conflicts with another canonicalization.
  unsigned NumElts = Shuf.getType()->getVectorNumElements();
  if (!isa<UndefValue>(Shuf.getOperand(1)) &&
      Shuf.getMaskValue(0) >= (int)NumElts) {
    // TODO: Can we assert that both operands of a shuffle-select are not undef
    // (otherwise, it would have been folded by instsimplify?
    Shuf.commute();
    return &Shuf;
  }

  if (Instruction *I = foldSelectShuffleWith1Binop(Shuf))
    return I;

  BinaryOperator *B0, *B1;
  if (!match(Shuf.getOperand(0), m_BinOp(B0)) ||
      !match(Shuf.getOperand(1), m_BinOp(B1)))
    return nullptr;

  Value *X, *Y;
  Constant *C0, *C1;
  bool ConstantsAreOp1;
  if (match(B0, m_BinOp(m_Value(X), m_Constant(C0))) &&
      match(B1, m_BinOp(m_Value(Y), m_Constant(C1))))
    ConstantsAreOp1 = true;
  else if (match(B0, m_BinOp(m_Constant(C0), m_Value(X))) &&
           match(B1, m_BinOp(m_Constant(C1), m_Value(Y))))
    ConstantsAreOp1 = false;
  else
    return nullptr;

  // We need matching binops to fold the lanes together.
  BinaryOperator::BinaryOps Opc0 = B0->getOpcode();
  BinaryOperator::BinaryOps Opc1 = B1->getOpcode();
  bool DropNSW = false;
  if (ConstantsAreOp1 && Opc0 != Opc1) {
    // TODO: We drop "nsw" if shift is converted into multiply because it may
    // not be correct when the shift amount is BitWidth - 1. We could examine
    // each vector element to determine if it is safe to keep that flag.
    if (Opc0 == Instruction::Shl || Opc1 == Instruction::Shl)
      DropNSW = true;
    if (BinopElts AltB0 = getAlternateBinop(B0, DL)) {
      assert(isa<Constant>(AltB0.Op1) && "Expecting constant with alt binop");
      Opc0 = AltB0.Opcode;
      C0 = cast<Constant>(AltB0.Op1);
    } else if (BinopElts AltB1 = getAlternateBinop(B1, DL)) {
      assert(isa<Constant>(AltB1.Op1) && "Expecting constant with alt binop");
      Opc1 = AltB1.Opcode;
      C1 = cast<Constant>(AltB1.Op1);
    }
  }

  if (Opc0 != Opc1)
    return nullptr;

  // The opcodes must be the same. Use a new name to make that clear.
  BinaryOperator::BinaryOps BOpc = Opc0;

  // Select the constant elements needed for the single binop.
  Constant *Mask = Shuf.getMask();
  Constant *NewC = ConstantExpr::getShuffleVector(C0, C1, Mask);

  // We are moving a binop after a shuffle. When a shuffle has an undefined
  // mask element, the result is undefined, but it is not poison or undefined
  // behavior. That is not necessarily true for div/rem/shift.
  bool MightCreatePoisonOrUB =
      Mask->containsUndefElement() &&
      (Instruction::isIntDivRem(BOpc) || Instruction::isShift(BOpc));
  if (MightCreatePoisonOrUB)
    NewC = getSafeVectorConstantForBinop(BOpc, NewC, ConstantsAreOp1);

  Value *V;
  if (X == Y) {
    // Remove a binop and the shuffle by rearranging the constant:
    // shuffle (op V, C0), (op V, C1), M --> op V, C'
    // shuffle (op C0, V), (op C1, V), M --> op C', V
    V = X;
  } else {
    // If there are 2 different variable operands, we must create a new shuffle
    // (select) first, so check uses to ensure that we don't end up with more
    // instructions than we started with.
    if (!B0->hasOneUse() && !B1->hasOneUse())
      return nullptr;

    // If we use the original shuffle mask and op1 is *variable*, we would be
    // putting an undef into operand 1 of div/rem/shift. This is either UB or
    // poison. We do not have to guard against UB when *constants* are op1
    // because safe constants guarantee that we do not overflow sdiv/srem (and
    // there's no danger for other opcodes).
    // TODO: To allow this case, create a new shuffle mask with no undefs.
    if (MightCreatePoisonOrUB && !ConstantsAreOp1)
      return nullptr;

    // Note: In general, we do not create new shuffles in InstCombine because we
    // do not know if a target can lower an arbitrary shuffle optimally. In this
    // case, the shuffle uses the existing mask, so there is no additional risk.

    // Select the variable vectors first, then perform the binop:
    // shuffle (op X, C0), (op Y, C1), M --> op (shuffle X, Y, M), C'
    // shuffle (op C0, X), (op C1, Y), M --> op C', (shuffle X, Y, M)
    V = Builder.CreateShuffleVector(X, Y, Mask);
  }

  Instruction *NewBO = ConstantsAreOp1 ? BinaryOperator::Create(BOpc, V, NewC) :
                                         BinaryOperator::Create(BOpc, NewC, V);

  // Flags are intersected from the 2 source binops. But there are 2 exceptions:
  // 1. If we changed an opcode, poison conditions might have changed.
  // 2. If the shuffle had undef mask elements, the new binop might have undefs
  //    where the original code did not. But if we already made a safe constant,
  //    then there's no danger.
  NewBO->copyIRFlags(B0);
  NewBO->andIRFlags(B1);
  if (DropNSW)
    NewBO->setHasNoSignedWrap(false);
  if (Mask->containsUndefElement() && !MightCreatePoisonOrUB)
    NewBO->dropPoisonGeneratingFlags();
  return NewBO;
}

/// Match a shuffle-select-shuffle pattern where the shuffles are widening and
/// narrowing (concatenating with undef and extracting back to the original
/// length). This allows replacing the wide select with a narrow select.
static Instruction *narrowVectorSelect(ShuffleVectorInst &Shuf,
                                       InstCombiner::BuilderTy &Builder) {
  // This must be a narrowing identity shuffle. It extracts the 1st N elements
  // of the 1st vector operand of a shuffle.
  if (!match(Shuf.getOperand(1), m_Undef()) || !Shuf.isIdentityWithExtract())
    return nullptr;

  // The vector being shuffled must be a vector select that we can eliminate.
  // TODO: The one-use requirement could be eased if X and/or Y are constants.
  Value *Cond, *X, *Y;
  if (!match(Shuf.getOperand(0),
             m_OneUse(m_Select(m_Value(Cond), m_Value(X), m_Value(Y)))))
    return nullptr;

  // We need a narrow condition value. It must be extended with undef elements
  // and have the same number of elements as this shuffle.
  unsigned NarrowNumElts = Shuf.getType()->getVectorNumElements();
  Value *NarrowCond;
  if (!match(Cond, m_OneUse(m_ShuffleVector(m_Value(NarrowCond), m_Undef(),
                                            m_Constant()))) ||
      NarrowCond->getType()->getVectorNumElements() != NarrowNumElts ||
      !cast<ShuffleVectorInst>(Cond)->isIdentityWithPadding())
    return nullptr;

  // shuf (sel (shuf NarrowCond, undef, WideMask), X, Y), undef, NarrowMask) -->
  // sel NarrowCond, (shuf X, undef, NarrowMask), (shuf Y, undef, NarrowMask)
  Value *Undef = UndefValue::get(X->getType());
  Value *NarrowX = Builder.CreateShuffleVector(X, Undef, Shuf.getMask());
  Value *NarrowY = Builder.CreateShuffleVector(Y, Undef, Shuf.getMask());
  return SelectInst::Create(NarrowCond, NarrowX, NarrowY);
}

/// Try to combine 2 shuffles into 1 shuffle by concatenating a shuffle mask.
static Instruction *foldIdentityExtractShuffle(ShuffleVectorInst &Shuf) {
  Value *Op0 = Shuf.getOperand(0), *Op1 = Shuf.getOperand(1);
  if (!Shuf.isIdentityWithExtract() || !isa<UndefValue>(Op1))
    return nullptr;

  Value *X, *Y;
  Constant *Mask;
  if (!match(Op0, m_ShuffleVector(m_Value(X), m_Value(Y), m_Constant(Mask))))
    return nullptr;

  // Be conservative with shuffle transforms. If we can't kill the 1st shuffle,
  // then combining may result in worse codegen.
  if (!Op0->hasOneUse())
    return nullptr;

  // We are extracting a subvector from a shuffle. Remove excess elements from
  // the 1st shuffle mask to eliminate the extract.
  //
  // This transform is conservatively limited to identity extracts because we do
  // not allow arbitrary shuffle mask creation as a target-independent transform
  // (because we can't guarantee that will lower efficiently).
  //
  // If the extracting shuffle has an undef mask element, it transfers to the
  // new shuffle mask. Otherwise, copy the original mask element. Example:
  //   shuf (shuf X, Y, <C0, C1, C2, undef, C4>), undef, <0, undef, 2, 3> -->
  //   shuf X, Y, <C0, undef, C2, undef>
  unsigned NumElts = Shuf.getType()->getVectorNumElements();
  SmallVector<Constant *, 16> NewMask(NumElts);
  assert(NumElts < Mask->getType()->getVectorNumElements() &&
         "Identity with extract must have less elements than its inputs");

  for (unsigned i = 0; i != NumElts; ++i) {
    Constant *ExtractMaskElt = Shuf.getMask()->getAggregateElement(i);
    Constant *MaskElt = Mask->getAggregateElement(i);
    NewMask[i] = isa<UndefValue>(ExtractMaskElt) ? ExtractMaskElt : MaskElt;
  }
  return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
}

/// Try to replace a shuffle with an insertelement or try to replace a shuffle
/// operand with the operand of an insertelement.
static Instruction *foldShuffleWithInsert(ShuffleVectorInst &Shuf) {
  Value *V0 = Shuf.getOperand(0), *V1 = Shuf.getOperand(1);
  SmallVector<int, 16> Mask = Shuf.getShuffleMask();

  // The shuffle must not change vector sizes.
  // TODO: This restriction could be removed if the insert has only one use
  //       (because the transform would require a new length-changing shuffle).
  int NumElts = Mask.size();
  if (NumElts != (int)(V0->getType()->getVectorNumElements()))
    return nullptr;

  // This is a specialization of a fold in SimplifyDemandedVectorElts. We may
  // not be able to handle it there if the insertelement has >1 use.
  // If the shuffle has an insertelement operand but does not choose the
  // inserted scalar element from that value, then we can replace that shuffle
  // operand with the source vector of the insertelement.
  Value *X;
  uint64_t IdxC;
  if (match(V0, m_InsertElement(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
    // shuf (inselt X, ?, IdxC), ?, Mask --> shuf X, ?, Mask
    if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; })) {
      Shuf.setOperand(0, X);
      return &Shuf;
    }
  }
  if (match(V1, m_InsertElement(m_Value(X), m_Value(), m_ConstantInt(IdxC)))) {
    // Offset the index constant by the vector width because we are checking for
    // accesses to the 2nd vector input of the shuffle.
    IdxC += NumElts;
    // shuf ?, (inselt X, ?, IdxC), Mask --> shuf ?, X, Mask
    if (none_of(Mask, [IdxC](int MaskElt) { return MaskElt == (int)IdxC; })) {
      Shuf.setOperand(1, X);
      return &Shuf;
    }
  }

  // shuffle (insert ?, Scalar, IndexC), V1, Mask --> insert V1, Scalar, IndexC'
  auto isShufflingScalarIntoOp1 = [&](Value *&Scalar, ConstantInt *&IndexC) {
    // We need an insertelement with a constant index.
    if (!match(V0, m_InsertElement(m_Value(), m_Value(Scalar),
                                   m_ConstantInt(IndexC))))
      return false;

    // Test the shuffle mask to see if it splices the inserted scalar into the
    // operand 1 vector of the shuffle.
    int NewInsIndex = -1;
    for (int i = 0; i != NumElts; ++i) {
      // Ignore undef mask elements.
      if (Mask[i] == -1)
        continue;

      // The shuffle takes elements of operand 1 without lane changes.
      if (Mask[i] == NumElts + i)
        continue;

      // The shuffle must choose the inserted scalar exactly once.
      if (NewInsIndex != -1 || Mask[i] != IndexC->getSExtValue())
        return false;

      // The shuffle is placing the inserted scalar into element i.
      NewInsIndex = i;
    }

    assert(NewInsIndex != -1 && "Did not fold shuffle with unused operand?");

    // Index is updated to the potentially translated insertion lane.
    IndexC = ConstantInt::get(IndexC->getType(), NewInsIndex);
    return true;
  };

  // If the shuffle is unnecessary, insert the scalar operand directly into
  // operand 1 of the shuffle. Example:
  // shuffle (insert ?, S, 1), V1, <1, 5, 6, 7> --> insert V1, S, 0
  Value *Scalar;
  ConstantInt *IndexC;
  if (isShufflingScalarIntoOp1(Scalar, IndexC))
    return InsertElementInst::Create(V1, Scalar, IndexC);

  // Try again after commuting shuffle. Example:
  // shuffle V0, (insert ?, S, 0), <0, 1, 2, 4> -->
  // shuffle (insert ?, S, 0), V0, <4, 5, 6, 0> --> insert V0, S, 3
  std::swap(V0, V1);
  ShuffleVectorInst::commuteShuffleMask(Mask, NumElts);
  if (isShufflingScalarIntoOp1(Scalar, IndexC))
    return InsertElementInst::Create(V1, Scalar, IndexC);

  return nullptr;
}

static Instruction *foldIdentityPaddedShuffles(ShuffleVectorInst &Shuf) {
  // Match the operands as identity with padding (also known as concatenation
  // with undef) shuffles of the same source type. The backend is expected to
  // recreate these concatenations from a shuffle of narrow operands.
  auto *Shuffle0 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(0));
  auto *Shuffle1 = dyn_cast<ShuffleVectorInst>(Shuf.getOperand(1));
  if (!Shuffle0 || !Shuffle0->isIdentityWithPadding() ||
      !Shuffle1 || !Shuffle1->isIdentityWithPadding())
    return nullptr;

  // We limit this transform to power-of-2 types because we expect that the
  // backend can convert the simplified IR patterns to identical nodes as the
  // original IR.
  // TODO: If we can verify the same behavior for arbitrary types, the
  //       power-of-2 checks can be removed.
  Value *X = Shuffle0->getOperand(0);
  Value *Y = Shuffle1->getOperand(0);
  if (X->getType() != Y->getType() ||
      !isPowerOf2_32(Shuf.getType()->getVectorNumElements()) ||
      !isPowerOf2_32(Shuffle0->getType()->getVectorNumElements()) ||
      !isPowerOf2_32(X->getType()->getVectorNumElements()) ||
      isa<UndefValue>(X) || isa<UndefValue>(Y))
    return nullptr;
  assert(isa<UndefValue>(Shuffle0->getOperand(1)) &&
         isa<UndefValue>(Shuffle1->getOperand(1)) &&
         "Unexpected operand for identity shuffle");

  // This is a shuffle of 2 widening shuffles. We can shuffle the narrow source
  // operands directly by adjusting the shuffle mask to account for the narrower
  // types:
  // shuf (widen X), (widen Y), Mask --> shuf X, Y, Mask'
  int NarrowElts = X->getType()->getVectorNumElements();
  int WideElts = Shuffle0->getType()->getVectorNumElements();
  assert(WideElts > NarrowElts && "Unexpected types for identity with padding");

  Type *I32Ty = IntegerType::getInt32Ty(Shuf.getContext());
  SmallVector<int, 16> Mask = Shuf.getShuffleMask();
  SmallVector<Constant *, 16> NewMask(Mask.size(), UndefValue::get(I32Ty));
  for (int i = 0, e = Mask.size(); i != e; ++i) {
    if (Mask[i] == -1)
      continue;

    // If this shuffle is choosing an undef element from 1 of the sources, that
    // element is undef.
    if (Mask[i] < WideElts) {
      if (Shuffle0->getMaskValue(Mask[i]) == -1)
        continue;
    } else {
      if (Shuffle1->getMaskValue(Mask[i] - WideElts) == -1)
        continue;
    }

    // If this shuffle is choosing from the 1st narrow op, the mask element is
    // the same. If this shuffle is choosing from the 2nd narrow op, the mask
    // element is offset down to adjust for the narrow vector widths.
    if (Mask[i] < WideElts) {
      assert(Mask[i] < NarrowElts && "Unexpected shuffle mask");
      NewMask[i] = ConstantInt::get(I32Ty, Mask[i]);
    } else {
      assert(Mask[i] < (WideElts + NarrowElts) && "Unexpected shuffle mask");
      NewMask[i] = ConstantInt::get(I32Ty, Mask[i] - (WideElts - NarrowElts));
    }
  }
  return new ShuffleVectorInst(X, Y, ConstantVector::get(NewMask));
}

Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
  Value *LHS = SVI.getOperand(0);
  Value *RHS = SVI.getOperand(1);
  if (auto *V = SimplifyShuffleVectorInst(
          LHS, RHS, SVI.getMask(), SVI.getType(), SQ.getWithInstruction(&SVI)))
    return replaceInstUsesWith(SVI, V);

  // shuffle x, x, mask --> shuffle x, undef, mask'
  unsigned VWidth = SVI.getType()->getVectorNumElements();
  unsigned LHSWidth = LHS->getType()->getVectorNumElements();
  SmallVector<int, 16> Mask = SVI.getShuffleMask();
  Type *Int32Ty = Type::getInt32Ty(SVI.getContext());
  if (LHS == RHS) {
    assert(!isa<UndefValue>(RHS) && "Shuffle with 2 undef ops not simplified?");
    // Remap any references to RHS to use LHS.
    SmallVector<Constant*, 16> Elts;
    for (unsigned i = 0; i != VWidth; ++i) {
      // Propagate undef elements or force mask to LHS.
      if (Mask[i] < 0)
        Elts.push_back(UndefValue::get(Int32Ty));
      else
        Elts.push_back(ConstantInt::get(Int32Ty, Mask[i] % LHSWidth));
    }
    SVI.setOperand(0, SVI.getOperand(1));
    SVI.setOperand(1, UndefValue::get(RHS->getType()));
    SVI.setOperand(2, ConstantVector::get(Elts));
    return &SVI;
  }

  // shuffle undef, x, mask --> shuffle x, undef, mask'
  if (isa<UndefValue>(LHS)) {
    SVI.commute();
    return &SVI;
  }

  if (Instruction *I = canonicalizeInsertSplat(SVI, Builder))
    return I;

  if (Instruction *I = foldSelectShuffle(SVI, Builder, DL))
    return I;

  if (Instruction *I = narrowVectorSelect(SVI, Builder))
    return I;

  APInt UndefElts(VWidth, 0);
  APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
  if (Value *V = SimplifyDemandedVectorElts(&SVI, AllOnesEltMask, UndefElts)) {
    if (V != &SVI)
      return replaceInstUsesWith(SVI, V);
    return &SVI;
  }

  if (Instruction *I = foldIdentityExtractShuffle(SVI))
    return I;

  // These transforms have the potential to lose undef knowledge, so they are
  // intentionally placed after SimplifyDemandedVectorElts().
  if (Instruction *I = foldShuffleWithInsert(SVI))
    return I;
  if (Instruction *I = foldIdentityPaddedShuffles(SVI))
    return I;

  if (isa<UndefValue>(RHS) && canEvaluateShuffled(LHS, Mask)) {
    Value *V = evaluateInDifferentElementOrder(LHS, Mask);
    return replaceInstUsesWith(SVI, V);
  }

  // SROA generates shuffle+bitcast when the extracted sub-vector is bitcast to
  // a non-vector type. We can instead bitcast the original vector followed by
  // an extract of the desired element:
  //
  //   %sroa = shufflevector <16 x i8> %in, <16 x i8> undef,
  //                         <4 x i32> <i32 0, i32 1, i32 2, i32 3>
  //   %1 = bitcast <4 x i8> %sroa to i32
  // Becomes:
  //   %bc = bitcast <16 x i8> %in to <4 x i32>
  //   %ext = extractelement <4 x i32> %bc, i32 0
  //
  // If the shuffle is extracting a contiguous range of values from the input
  // vector then each use which is a bitcast of the extracted size can be
  // replaced. This will work if the vector types are compatible, and the begin
  // index is aligned to a value in the casted vector type. If the begin index
  // isn't aligned then we can shuffle the original vector (keeping the same
  // vector type) before extracting.
  //
  // This code will bail out if the target type is fundamentally incompatible
  // with vectors of the source type.
  //
  // Example of <16 x i8>, target type i32:
  // Index range [4,8):         v-----------v Will work.
  //                +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
  //     <16 x i8>: |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
  //     <4 x i32>: |           |           |           |           |
  //                +-----------+-----------+-----------+-----------+
  // Index range [6,10):              ^-----------^ Needs an extra shuffle.
  // Target type i40:           ^--------------^ Won't work, bail.
  bool MadeChange = false;
  if (isShuffleExtractingFromLHS(SVI, Mask)) {
    Value *V = LHS;
    unsigned MaskElems = Mask.size();
    VectorType *SrcTy = cast<VectorType>(V->getType());
    unsigned VecBitWidth = SrcTy->getBitWidth();
    unsigned SrcElemBitWidth = DL.getTypeSizeInBits(SrcTy->getElementType());
    assert(SrcElemBitWidth && "vector elements must have a bitwidth");
    unsigned SrcNumElems = SrcTy->getNumElements();
    SmallVector<BitCastInst *, 8> BCs;
    DenseMap<Type *, Value *> NewBCs;
    for (User *U : SVI.users())
      if (BitCastInst *BC = dyn_cast<BitCastInst>(U))
        if (!BC->use_empty())
          // Only visit bitcasts that weren't previously handled.
          BCs.push_back(BC);
    for (BitCastInst *BC : BCs) {
      unsigned BegIdx = Mask.front();
      Type *TgtTy = BC->getDestTy();
      unsigned TgtElemBitWidth = DL.getTypeSizeInBits(TgtTy);
      if (!TgtElemBitWidth)
        continue;
      unsigned TgtNumElems = VecBitWidth / TgtElemBitWidth;
      bool VecBitWidthsEqual = VecBitWidth == TgtNumElems * TgtElemBitWidth;
      bool BegIsAligned = 0 == ((SrcElemBitWidth * BegIdx) % TgtElemBitWidth);
      if (!VecBitWidthsEqual)
        continue;
      if (!VectorType::isValidElementType(TgtTy))
        continue;
      VectorType *CastSrcTy = VectorType::get(TgtTy, TgtNumElems);
      if (!BegIsAligned) {
        // Shuffle the input so [0,NumElements) contains the output, and
        // [NumElems,SrcNumElems) is undef.
        SmallVector<Constant *, 16> ShuffleMask(SrcNumElems,
                                                UndefValue::get(Int32Ty));
        for (unsigned I = 0, E = MaskElems, Idx = BegIdx; I != E; ++Idx, ++I)
          ShuffleMask[I] = ConstantInt::get(Int32Ty, Idx);
        V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
                                        ConstantVector::get(ShuffleMask),
                                        SVI.getName() + ".extract");
        BegIdx = 0;
      }
      unsigned SrcElemsPerTgtElem = TgtElemBitWidth / SrcElemBitWidth;
      assert(SrcElemsPerTgtElem);
      BegIdx /= SrcElemsPerTgtElem;
      bool BCAlreadyExists = NewBCs.find(CastSrcTy) != NewBCs.end();
      auto *NewBC =
          BCAlreadyExists
              ? NewBCs[CastSrcTy]
              : Builder.CreateBitCast(V, CastSrcTy, SVI.getName() + ".bc");
      if (!BCAlreadyExists)
        NewBCs[CastSrcTy] = NewBC;
      auto *Ext = Builder.CreateExtractElement(
          NewBC, ConstantInt::get(Int32Ty, BegIdx), SVI.getName() + ".extract");
      // The shufflevector isn't being replaced: the bitcast that used it
      // is. InstCombine will visit the newly-created instructions.
      replaceInstUsesWith(*BC, Ext);
      MadeChange = true;
    }
  }

  // If the LHS is a shufflevector itself, see if we can combine it with this
  // one without producing an unusual shuffle.
  // Cases that might be simplified:
  // 1.
  // x1=shuffle(v1,v2,mask1)
  //  x=shuffle(x1,undef,mask)
  //        ==>
  //  x=shuffle(v1,undef,newMask)
  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : -1
  // 2.
  // x1=shuffle(v1,undef,mask1)
  //  x=shuffle(x1,x2,mask)
  // where v1.size() == mask1.size()
  //        ==>
  //  x=shuffle(v1,x2,newMask)
  // newMask[i] = (mask[i] < x1.size()) ? mask1[mask[i]] : mask[i]
  // 3.
  // x2=shuffle(v2,undef,mask2)
  //  x=shuffle(x1,x2,mask)
  // where v2.size() == mask2.size()
  //        ==>
  //  x=shuffle(x1,v2,newMask)
  // newMask[i] = (mask[i] < x1.size())
  //              ? mask[i] : mask2[mask[i]-x1.size()]+x1.size()
  // 4.
  // x1=shuffle(v1,undef,mask1)
  // x2=shuffle(v2,undef,mask2)
  //  x=shuffle(x1,x2,mask)
  // where v1.size() == v2.size()
  //        ==>
  //  x=shuffle(v1,v2,newMask)
  // newMask[i] = (mask[i] < x1.size())
  //              ? mask1[mask[i]] : mask2[mask[i]-x1.size()]+v1.size()
  //
  // Here we are really conservative:
  // we are absolutely afraid of producing a shuffle mask not in the input
  // program, because the code gen may not be smart enough to turn a merged
  // shuffle into two specific shuffles: it may produce worse code.  As such,
  // we only merge two shuffles if the result is either a splat or one of the
  // input shuffle masks.  In this case, merging the shuffles just removes
  // one instruction, which we know is safe.  This is good for things like
  // turning: (splat(splat)) -> splat, or
  // merge(V[0..n], V[n+1..2n]) -> V[0..2n]
  ShuffleVectorInst* LHSShuffle = dyn_cast<ShuffleVectorInst>(LHS);
  ShuffleVectorInst* RHSShuffle = dyn_cast<ShuffleVectorInst>(RHS);
  if (LHSShuffle)
    if (!isa<UndefValue>(LHSShuffle->getOperand(1)) && !isa<UndefValue>(RHS))
      LHSShuffle = nullptr;
  if (RHSShuffle)
    if (!isa<UndefValue>(RHSShuffle->getOperand(1)))
      RHSShuffle = nullptr;
  if (!LHSShuffle && !RHSShuffle)
    return MadeChange ? &SVI : nullptr;

  Value* LHSOp0 = nullptr;
  Value* LHSOp1 = nullptr;
  Value* RHSOp0 = nullptr;
  unsigned LHSOp0Width = 0;
  unsigned RHSOp0Width = 0;
  if (LHSShuffle) {
    LHSOp0 = LHSShuffle->getOperand(0);
    LHSOp1 = LHSShuffle->getOperand(1);
    LHSOp0Width = LHSOp0->getType()->getVectorNumElements();
  }
  if (RHSShuffle) {
    RHSOp0 = RHSShuffle->getOperand(0);
    RHSOp0Width = RHSOp0->getType()->getVectorNumElements();
  }
  Value* newLHS = LHS;
  Value* newRHS = RHS;
  if (LHSShuffle) {
    // case 1
    if (isa<UndefValue>(RHS)) {
      newLHS = LHSOp0;
      newRHS = LHSOp1;
    }
    // case 2 or 4
    else if (LHSOp0Width == LHSWidth) {
      newLHS = LHSOp0;
    }
  }
  // case 3 or 4
  if (RHSShuffle && RHSOp0Width == LHSWidth) {
    newRHS = RHSOp0;
  }
  // case 4
  if (LHSOp0 == RHSOp0) {
    newLHS = LHSOp0;
    newRHS = nullptr;
  }

  if (newLHS == LHS && newRHS == RHS)
    return MadeChange ? &SVI : nullptr;

  SmallVector<int, 16> LHSMask;
  SmallVector<int, 16> RHSMask;
  if (newLHS != LHS)
    LHSMask = LHSShuffle->getShuffleMask();
  if (RHSShuffle && newRHS != RHS)
    RHSMask = RHSShuffle->getShuffleMask();

  unsigned newLHSWidth = (newLHS != LHS) ? LHSOp0Width : LHSWidth;
  SmallVector<int, 16> newMask;
  bool isSplat = true;
  int SplatElt = -1;
  // Create a new mask for the new ShuffleVectorInst so that the new
  // ShuffleVectorInst is equivalent to the original one.
  for (unsigned i = 0; i < VWidth; ++i) {
    int eltMask;
    if (Mask[i] < 0) {
      // This element is an undef value.
      eltMask = -1;
    } else if (Mask[i] < (int)LHSWidth) {
      // This element is from left hand side vector operand.
      //
      // If LHS is going to be replaced (case 1, 2, or 4), calculate the
      // new mask value for the element.
      if (newLHS != LHS) {
        eltMask = LHSMask[Mask[i]];
        // If the value selected is an undef value, explicitly specify it
        // with a -1 mask value.
        if (eltMask >= (int)LHSOp0Width && isa<UndefValue>(LHSOp1))
          eltMask = -1;
      } else
        eltMask = Mask[i];
    } else {
      // This element is from right hand side vector operand
      //
      // If the value selected is an undef value, explicitly specify it
      // with a -1 mask value. (case 1)
      if (isa<UndefValue>(RHS))
        eltMask = -1;
      // If RHS is going to be replaced (case 3 or 4), calculate the
      // new mask value for the element.
      else if (newRHS != RHS) {
        eltMask = RHSMask[Mask[i]-LHSWidth];
        // If the value selected is an undef value, explicitly specify it
        // with a -1 mask value.
        if (eltMask >= (int)RHSOp0Width) {
          assert(isa<UndefValue>(RHSShuffle->getOperand(1))
                 && "should have been check above");
          eltMask = -1;
        }
      } else
        eltMask = Mask[i]-LHSWidth;

      // If LHS's width is changed, shift the mask value accordingly.
      // If newRHS == nullptr, i.e. LHSOp0 == RHSOp0, we want to remap any
      // references from RHSOp0 to LHSOp0, so we don't need to shift the mask.
      // If newRHS == newLHS, we want to remap any references from newRHS to
      // newLHS so that we can properly identify splats that may occur due to
      // obfuscation across the two vectors.
      if (eltMask >= 0 && newRHS != nullptr && newLHS != newRHS)
        eltMask += newLHSWidth;
    }

    // Check if this could still be a splat.
    if (eltMask >= 0) {
      if (SplatElt >= 0 && SplatElt != eltMask)
        isSplat = false;
      SplatElt = eltMask;
    }

    newMask.push_back(eltMask);
  }

  // If the result mask is equal to one of the original shuffle masks,
  // or is a splat, do the replacement.
  if (isSplat || newMask == LHSMask || newMask == RHSMask || newMask == Mask) {
    SmallVector<Constant*, 16> Elts;
    for (unsigned i = 0, e = newMask.size(); i != e; ++i) {
      if (newMask[i] < 0) {
        Elts.push_back(UndefValue::get(Int32Ty));
      } else {
        Elts.push_back(ConstantInt::get(Int32Ty, newMask[i]));
      }
    }
    if (!newRHS)
      newRHS = UndefValue::get(newLHS->getType());
    return new ShuffleVectorInst(newLHS, newRHS, ConstantVector::get(Elts));
  }

  return MadeChange ? &SVI : nullptr;
}