Utils.cpp
39 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
//===- Utils.cpp ---- Misc utilities for analysis -------------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements miscellaneous analysis routines for non-loop IR
// structures.
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/Utils.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Dialect/AffineOps/AffineOps.h"
#include "mlir/Dialect/StandardOps/Ops.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "analysis-utils"
using namespace mlir;
using llvm::SmallDenseMap;
/// Populates 'loops' with IVs of the loops surrounding 'op' ordered from
/// the outermost 'affine.for' operation to the innermost one.
void mlir::getLoopIVs(Operation &op, SmallVectorImpl<AffineForOp> *loops) {
auto *currOp = op.getParentOp();
AffineForOp currAffineForOp;
// Traverse up the hierarchy collecting all 'affine.for' operation while
// skipping over 'affine.if' operations.
while (currOp && ((currAffineForOp = dyn_cast<AffineForOp>(currOp)) ||
isa<AffineIfOp>(currOp))) {
if (currAffineForOp)
loops->push_back(currAffineForOp);
currOp = currOp->getParentOp();
}
std::reverse(loops->begin(), loops->end());
}
// Populates 'cst' with FlatAffineConstraints which represent slice bounds.
LogicalResult
ComputationSliceState::getAsConstraints(FlatAffineConstraints *cst) {
assert(!lbOperands.empty());
// Adds src 'ivs' as dimension identifiers in 'cst'.
unsigned numDims = ivs.size();
// Adds operands (dst ivs and symbols) as symbols in 'cst'.
unsigned numSymbols = lbOperands[0].size();
SmallVector<Value, 4> values(ivs);
// Append 'ivs' then 'operands' to 'values'.
values.append(lbOperands[0].begin(), lbOperands[0].end());
cst->reset(numDims, numSymbols, 0, values);
// Add loop bound constraints for values which are loop IVs and equality
// constraints for symbols which are constants.
for (const auto &value : values) {
assert(cst->containsId(value) && "value expected to be present");
if (isValidSymbol(value)) {
// Check if the symbol is a constant.
if (auto cOp = dyn_cast_or_null<ConstantIndexOp>(value.getDefiningOp()))
cst->setIdToConstant(value, cOp.getValue());
} else if (auto loop = getForInductionVarOwner(value)) {
if (failed(cst->addAffineForOpDomain(loop)))
return failure();
}
}
// Add slices bounds on 'ivs' using maps 'lbs'/'ubs' with 'lbOperands[0]'
LogicalResult ret = cst->addSliceBounds(ivs, lbs, ubs, lbOperands[0]);
assert(succeeded(ret) &&
"should not fail as we never have semi-affine slice maps");
(void)ret;
return success();
}
// Clears state bounds and operand state.
void ComputationSliceState::clearBounds() {
lbs.clear();
ubs.clear();
lbOperands.clear();
ubOperands.clear();
}
unsigned MemRefRegion::getRank() const {
return memref.getType().cast<MemRefType>().getRank();
}
Optional<int64_t> MemRefRegion::getConstantBoundingSizeAndShape(
SmallVectorImpl<int64_t> *shape, std::vector<SmallVector<int64_t, 4>> *lbs,
SmallVectorImpl<int64_t> *lbDivisors) const {
auto memRefType = memref.getType().cast<MemRefType>();
unsigned rank = memRefType.getRank();
if (shape)
shape->reserve(rank);
assert(rank == cst.getNumDimIds() && "inconsistent memref region");
// Find a constant upper bound on the extent of this memref region along each
// dimension.
int64_t numElements = 1;
int64_t diffConstant;
int64_t lbDivisor;
for (unsigned d = 0; d < rank; d++) {
SmallVector<int64_t, 4> lb;
Optional<int64_t> diff = cst.getConstantBoundOnDimSize(d, &lb, &lbDivisor);
if (diff.hasValue()) {
diffConstant = diff.getValue();
assert(lbDivisor > 0);
} else {
// If no constant bound is found, then it can always be bound by the
// memref's dim size if the latter has a constant size along this dim.
auto dimSize = memRefType.getDimSize(d);
if (dimSize == -1)
return None;
diffConstant = dimSize;
// Lower bound becomes 0.
lb.resize(cst.getNumSymbolIds() + 1, 0);
lbDivisor = 1;
}
numElements *= diffConstant;
if (lbs) {
lbs->push_back(lb);
assert(lbDivisors && "both lbs and lbDivisor or none");
lbDivisors->push_back(lbDivisor);
}
if (shape) {
shape->push_back(diffConstant);
}
}
return numElements;
}
LogicalResult MemRefRegion::unionBoundingBox(const MemRefRegion &other) {
assert(memref == other.memref);
return cst.unionBoundingBox(*other.getConstraints());
}
/// Computes the memory region accessed by this memref with the region
/// represented as constraints symbolic/parametric in 'loopDepth' loops
/// surrounding opInst and any additional Function symbols.
// For example, the memref region for this load operation at loopDepth = 1 will
// be as below:
//
// affine.for %i = 0 to 32 {
// affine.for %ii = %i to (d0) -> (d0 + 8) (%i) {
// load %A[%ii]
// }
// }
//
// region: {memref = %A, write = false, {%i <= m0 <= %i + 7} }
// The last field is a 2-d FlatAffineConstraints symbolic in %i.
//
// TODO(bondhugula): extend this to any other memref dereferencing ops
// (dma_start, dma_wait).
LogicalResult MemRefRegion::compute(Operation *op, unsigned loopDepth,
ComputationSliceState *sliceState,
bool addMemRefDimBounds) {
assert((isa<AffineLoadOp>(op) || isa<AffineStoreOp>(op)) &&
"affine load/store op expected");
MemRefAccess access(op);
memref = access.memref;
write = access.isStore();
unsigned rank = access.getRank();
LLVM_DEBUG(llvm::dbgs() << "MemRefRegion::compute: " << *op
<< "depth: " << loopDepth << "\n";);
if (rank == 0) {
SmallVector<AffineForOp, 4> ivs;
getLoopIVs(*op, &ivs);
SmallVector<Value, 8> regionSymbols;
extractForInductionVars(ivs, ®ionSymbols);
// A rank 0 memref has a 0-d region.
cst.reset(rank, loopDepth, 0, regionSymbols);
return success();
}
// Build the constraints for this region.
AffineValueMap accessValueMap;
access.getAccessMap(&accessValueMap);
AffineMap accessMap = accessValueMap.getAffineMap();
unsigned numDims = accessMap.getNumDims();
unsigned numSymbols = accessMap.getNumSymbols();
unsigned numOperands = accessValueMap.getNumOperands();
// Merge operands with slice operands.
SmallVector<Value, 4> operands;
operands.resize(numOperands);
for (unsigned i = 0; i < numOperands; ++i)
operands[i] = accessValueMap.getOperand(i);
if (sliceState != nullptr) {
operands.reserve(operands.size() + sliceState->lbOperands[0].size());
// Append slice operands to 'operands' as symbols.
for (auto extraOperand : sliceState->lbOperands[0]) {
if (!llvm::is_contained(operands, extraOperand)) {
operands.push_back(extraOperand);
numSymbols++;
}
}
}
// We'll first associate the dims and symbols of the access map to the dims
// and symbols resp. of cst. This will change below once cst is
// fully constructed out.
cst.reset(numDims, numSymbols, 0, operands);
// Add equality constraints.
// Add inequalities for loop lower/upper bounds.
for (unsigned i = 0; i < numDims + numSymbols; ++i) {
auto operand = operands[i];
if (auto loop = getForInductionVarOwner(operand)) {
// Note that cst can now have more dimensions than accessMap if the
// bounds expressions involve outer loops or other symbols.
// TODO(bondhugula): rewrite this to use getInstIndexSet; this way
// conditionals will be handled when the latter supports it.
if (failed(cst.addAffineForOpDomain(loop)))
return failure();
} else {
// Has to be a valid symbol.
auto symbol = operand;
assert(isValidSymbol(symbol));
// Check if the symbol is a constant.
if (auto *op = symbol.getDefiningOp()) {
if (auto constOp = dyn_cast<ConstantIndexOp>(op)) {
cst.setIdToConstant(symbol, constOp.getValue());
}
}
}
}
// Add lower/upper bounds on loop IVs using bounds from 'sliceState'.
if (sliceState != nullptr) {
// Add dim and symbol slice operands.
for (auto operand : sliceState->lbOperands[0]) {
cst.addInductionVarOrTerminalSymbol(operand);
}
// Add upper/lower bounds from 'sliceState' to 'cst'.
LogicalResult ret =
cst.addSliceBounds(sliceState->ivs, sliceState->lbs, sliceState->ubs,
sliceState->lbOperands[0]);
assert(succeeded(ret) &&
"should not fail as we never have semi-affine slice maps");
(void)ret;
}
// Add access function equalities to connect loop IVs to data dimensions.
if (failed(cst.composeMap(&accessValueMap))) {
op->emitError("getMemRefRegion: compose affine map failed");
LLVM_DEBUG(accessValueMap.getAffineMap().dump());
return failure();
}
// Set all identifiers appearing after the first 'rank' identifiers as
// symbolic identifiers - so that the ones corresponding to the memref
// dimensions are the dimensional identifiers for the memref region.
cst.setDimSymbolSeparation(cst.getNumDimAndSymbolIds() - rank);
// Eliminate any loop IVs other than the outermost 'loopDepth' IVs, on which
// this memref region is symbolic.
SmallVector<AffineForOp, 4> enclosingIVs;
getLoopIVs(*op, &enclosingIVs);
assert(loopDepth <= enclosingIVs.size() && "invalid loop depth");
enclosingIVs.resize(loopDepth);
SmallVector<Value, 4> ids;
cst.getIdValues(cst.getNumDimIds(), cst.getNumDimAndSymbolIds(), &ids);
for (auto id : ids) {
AffineForOp iv;
if ((iv = getForInductionVarOwner(id)) &&
llvm::is_contained(enclosingIVs, iv) == false) {
cst.projectOut(id);
}
}
// Project out any local variables (these would have been added for any
// mod/divs).
cst.projectOut(cst.getNumDimAndSymbolIds(), cst.getNumLocalIds());
// Constant fold any symbolic identifiers.
cst.constantFoldIdRange(/*pos=*/cst.getNumDimIds(),
/*num=*/cst.getNumSymbolIds());
assert(cst.getNumDimIds() == rank && "unexpected MemRefRegion format");
// Add upper/lower bounds for each memref dimension with static size
// to guard against potential over-approximation from projection.
// TODO(andydavis) Support dynamic memref dimensions.
if (addMemRefDimBounds) {
auto memRefType = memref.getType().cast<MemRefType>();
for (unsigned r = 0; r < rank; r++) {
cst.addConstantLowerBound(r, 0);
int64_t dimSize = memRefType.getDimSize(r);
if (ShapedType::isDynamic(dimSize))
continue;
cst.addConstantUpperBound(r, dimSize - 1);
}
}
LLVM_DEBUG(llvm::dbgs() << "Memory region:\n");
LLVM_DEBUG(cst.dump());
return success();
}
// TODO(mlir-team): improve/complete this when we have target data.
static unsigned getMemRefEltSizeInBytes(MemRefType memRefType) {
auto elementType = memRefType.getElementType();
unsigned sizeInBits;
if (elementType.isIntOrFloat()) {
sizeInBits = elementType.getIntOrFloatBitWidth();
} else {
auto vectorType = elementType.cast<VectorType>();
sizeInBits =
vectorType.getElementTypeBitWidth() * vectorType.getNumElements();
}
return llvm::divideCeil(sizeInBits, 8);
}
// Returns the size of the region.
Optional<int64_t> MemRefRegion::getRegionSize() {
auto memRefType = memref.getType().cast<MemRefType>();
auto layoutMaps = memRefType.getAffineMaps();
if (layoutMaps.size() > 1 ||
(layoutMaps.size() == 1 && !layoutMaps[0].isIdentity())) {
LLVM_DEBUG(llvm::dbgs() << "Non-identity layout map not yet supported\n");
return false;
}
// Indices to use for the DmaStart op.
// Indices for the original memref being DMAed from/to.
SmallVector<Value, 4> memIndices;
// Indices for the faster buffer being DMAed into/from.
SmallVector<Value, 4> bufIndices;
// Compute the extents of the buffer.
Optional<int64_t> numElements = getConstantBoundingSizeAndShape();
if (!numElements.hasValue()) {
LLVM_DEBUG(llvm::dbgs() << "Dynamic shapes not yet supported\n");
return None;
}
return getMemRefEltSizeInBytes(memRefType) * numElements.getValue();
}
/// Returns the size of memref data in bytes if it's statically shaped, None
/// otherwise. If the element of the memref has vector type, takes into account
/// size of the vector as well.
// TODO(mlir-team): improve/complete this when we have target data.
Optional<uint64_t> mlir::getMemRefSizeInBytes(MemRefType memRefType) {
if (!memRefType.hasStaticShape())
return None;
auto elementType = memRefType.getElementType();
if (!elementType.isIntOrFloat() && !elementType.isa<VectorType>())
return None;
uint64_t sizeInBytes = getMemRefEltSizeInBytes(memRefType);
for (unsigned i = 0, e = memRefType.getRank(); i < e; i++) {
sizeInBytes = sizeInBytes * memRefType.getDimSize(i);
}
return sizeInBytes;
}
template <typename LoadOrStoreOpPointer>
LogicalResult mlir::boundCheckLoadOrStoreOp(LoadOrStoreOpPointer loadOrStoreOp,
bool emitError) {
static_assert(std::is_same<LoadOrStoreOpPointer, AffineLoadOp>::value ||
std::is_same<LoadOrStoreOpPointer, AffineStoreOp>::value,
"argument should be either a AffineLoadOp or a AffineStoreOp");
Operation *opInst = loadOrStoreOp.getOperation();
MemRefRegion region(opInst->getLoc());
if (failed(region.compute(opInst, /*loopDepth=*/0, /*sliceState=*/nullptr,
/*addMemRefDimBounds=*/false)))
return success();
LLVM_DEBUG(llvm::dbgs() << "Memory region");
LLVM_DEBUG(region.getConstraints()->dump());
bool outOfBounds = false;
unsigned rank = loadOrStoreOp.getMemRefType().getRank();
// For each dimension, check for out of bounds.
for (unsigned r = 0; r < rank; r++) {
FlatAffineConstraints ucst(*region.getConstraints());
// Intersect memory region with constraint capturing out of bounds (both out
// of upper and out of lower), and check if the constraint system is
// feasible. If it is, there is at least one point out of bounds.
SmallVector<int64_t, 4> ineq(rank + 1, 0);
int64_t dimSize = loadOrStoreOp.getMemRefType().getDimSize(r);
// TODO(bondhugula): handle dynamic dim sizes.
if (dimSize == -1)
continue;
// Check for overflow: d_i >= memref dim size.
ucst.addConstantLowerBound(r, dimSize);
outOfBounds = !ucst.isEmpty();
if (outOfBounds && emitError) {
loadOrStoreOp.emitOpError()
<< "memref out of upper bound access along dimension #" << (r + 1);
}
// Check for a negative index.
FlatAffineConstraints lcst(*region.getConstraints());
std::fill(ineq.begin(), ineq.end(), 0);
// d_i <= -1;
lcst.addConstantUpperBound(r, -1);
outOfBounds = !lcst.isEmpty();
if (outOfBounds && emitError) {
loadOrStoreOp.emitOpError()
<< "memref out of lower bound access along dimension #" << (r + 1);
}
}
return failure(outOfBounds);
}
// Explicitly instantiate the template so that the compiler knows we need them!
template LogicalResult mlir::boundCheckLoadOrStoreOp(AffineLoadOp loadOp,
bool emitError);
template LogicalResult mlir::boundCheckLoadOrStoreOp(AffineStoreOp storeOp,
bool emitError);
// Returns in 'positions' the Block positions of 'op' in each ancestor
// Block from the Block containing operation, stopping at 'limitBlock'.
static void findInstPosition(Operation *op, Block *limitBlock,
SmallVectorImpl<unsigned> *positions) {
Block *block = op->getBlock();
while (block != limitBlock) {
// FIXME: This algorithm is unnecessarily O(n) and should be improved to not
// rely on linear scans.
int instPosInBlock = std::distance(block->begin(), op->getIterator());
positions->push_back(instPosInBlock);
op = block->getParentOp();
block = op->getBlock();
}
std::reverse(positions->begin(), positions->end());
}
// Returns the Operation in a possibly nested set of Blocks, where the
// position of the operation is represented by 'positions', which has a
// Block position for each level of nesting.
static Operation *getInstAtPosition(ArrayRef<unsigned> positions,
unsigned level, Block *block) {
unsigned i = 0;
for (auto &op : *block) {
if (i != positions[level]) {
++i;
continue;
}
if (level == positions.size() - 1)
return &op;
if (auto childAffineForOp = dyn_cast<AffineForOp>(op))
return getInstAtPosition(positions, level + 1,
childAffineForOp.getBody());
for (auto ®ion : op.getRegions()) {
for (auto &b : region)
if (auto *ret = getInstAtPosition(positions, level + 1, &b))
return ret;
}
return nullptr;
}
return nullptr;
}
// Adds loop IV bounds to 'cst' for loop IVs not found in 'ivs'.
static LogicalResult addMissingLoopIVBounds(SmallPtrSet<Value, 8> &ivs,
FlatAffineConstraints *cst) {
for (unsigned i = 0, e = cst->getNumDimIds(); i < e; ++i) {
auto value = cst->getIdValue(i);
if (ivs.count(value) == 0) {
assert(isForInductionVar(value));
auto loop = getForInductionVarOwner(value);
if (failed(cst->addAffineForOpDomain(loop)))
return failure();
}
}
return success();
}
// Returns the innermost common loop depth for the set of operations in 'ops'.
// TODO(andydavis) Move this to LoopUtils.
static unsigned
getInnermostCommonLoopDepth(ArrayRef<Operation *> ops,
SmallVectorImpl<AffineForOp> &surroundingLoops) {
unsigned numOps = ops.size();
assert(numOps > 0);
std::vector<SmallVector<AffineForOp, 4>> loops(numOps);
unsigned loopDepthLimit = std::numeric_limits<unsigned>::max();
for (unsigned i = 0; i < numOps; ++i) {
getLoopIVs(*ops[i], &loops[i]);
loopDepthLimit =
std::min(loopDepthLimit, static_cast<unsigned>(loops[i].size()));
}
unsigned loopDepth = 0;
for (unsigned d = 0; d < loopDepthLimit; ++d) {
unsigned i;
for (i = 1; i < numOps; ++i) {
if (loops[i - 1][d] != loops[i][d])
return loopDepth;
}
surroundingLoops.push_back(loops[i - 1][d]);
++loopDepth;
}
return loopDepth;
}
/// Computes in 'sliceUnion' the union of all slice bounds computed at
/// 'loopDepth' between all dependent pairs of ops in 'opsA' and 'opsB'.
/// Returns 'Success' if union was computed, 'failure' otherwise.
LogicalResult mlir::computeSliceUnion(ArrayRef<Operation *> opsA,
ArrayRef<Operation *> opsB,
unsigned loopDepth,
unsigned numCommonLoops,
bool isBackwardSlice,
ComputationSliceState *sliceUnion) {
// Compute the union of slice bounds between all pairs in 'opsA' and
// 'opsB' in 'sliceUnionCst'.
FlatAffineConstraints sliceUnionCst;
assert(sliceUnionCst.getNumDimAndSymbolIds() == 0);
std::vector<std::pair<Operation *, Operation *>> dependentOpPairs;
for (unsigned i = 0, numOpsA = opsA.size(); i < numOpsA; ++i) {
MemRefAccess srcAccess(opsA[i]);
for (unsigned j = 0, numOpsB = opsB.size(); j < numOpsB; ++j) {
MemRefAccess dstAccess(opsB[j]);
if (srcAccess.memref != dstAccess.memref)
continue;
// Check if 'loopDepth' exceeds nesting depth of src/dst ops.
if ((!isBackwardSlice && loopDepth > getNestingDepth(*opsA[i])) ||
(isBackwardSlice && loopDepth > getNestingDepth(*opsB[j]))) {
LLVM_DEBUG(llvm::dbgs() << "Invalid loop depth\n.");
return failure();
}
bool readReadAccesses = isa<AffineLoadOp>(srcAccess.opInst) &&
isa<AffineLoadOp>(dstAccess.opInst);
FlatAffineConstraints dependenceConstraints;
// Check dependence between 'srcAccess' and 'dstAccess'.
DependenceResult result = checkMemrefAccessDependence(
srcAccess, dstAccess, /*loopDepth=*/numCommonLoops + 1,
&dependenceConstraints, /*dependenceComponents=*/nullptr,
/*allowRAR=*/readReadAccesses);
if (result.value == DependenceResult::Failure) {
LLVM_DEBUG(llvm::dbgs() << "Dependence check failed\n.");
return failure();
}
if (result.value == DependenceResult::NoDependence)
continue;
dependentOpPairs.push_back({opsA[i], opsB[j]});
// Compute slice bounds for 'srcAccess' and 'dstAccess'.
ComputationSliceState tmpSliceState;
mlir::getComputationSliceState(opsA[i], opsB[j], &dependenceConstraints,
loopDepth, isBackwardSlice,
&tmpSliceState);
if (sliceUnionCst.getNumDimAndSymbolIds() == 0) {
// Initialize 'sliceUnionCst' with the bounds computed in previous step.
if (failed(tmpSliceState.getAsConstraints(&sliceUnionCst))) {
LLVM_DEBUG(llvm::dbgs()
<< "Unable to compute slice bound constraints\n.");
return failure();
}
assert(sliceUnionCst.getNumDimAndSymbolIds() > 0);
continue;
}
// Compute constraints for 'tmpSliceState' in 'tmpSliceCst'.
FlatAffineConstraints tmpSliceCst;
if (failed(tmpSliceState.getAsConstraints(&tmpSliceCst))) {
LLVM_DEBUG(llvm::dbgs()
<< "Unable to compute slice bound constraints\n.");
return failure();
}
// Align coordinate spaces of 'sliceUnionCst' and 'tmpSliceCst' if needed.
if (!sliceUnionCst.areIdsAlignedWithOther(tmpSliceCst)) {
// Pre-constraint id alignment: record loop IVs used in each constraint
// system.
SmallPtrSet<Value, 8> sliceUnionIVs;
for (unsigned k = 0, l = sliceUnionCst.getNumDimIds(); k < l; ++k)
sliceUnionIVs.insert(sliceUnionCst.getIdValue(k));
SmallPtrSet<Value, 8> tmpSliceIVs;
for (unsigned k = 0, l = tmpSliceCst.getNumDimIds(); k < l; ++k)
tmpSliceIVs.insert(tmpSliceCst.getIdValue(k));
sliceUnionCst.mergeAndAlignIdsWithOther(/*offset=*/0, &tmpSliceCst);
// Post-constraint id alignment: add loop IV bounds missing after
// id alignment to constraint systems. This can occur if one constraint
// system uses an loop IV that is not used by the other. The call
// to unionBoundingBox below expects constraints for each Loop IV, even
// if they are the unsliced full loop bounds added here.
if (failed(addMissingLoopIVBounds(sliceUnionIVs, &sliceUnionCst)))
return failure();
if (failed(addMissingLoopIVBounds(tmpSliceIVs, &tmpSliceCst)))
return failure();
}
// Compute union bounding box of 'sliceUnionCst' and 'tmpSliceCst'.
if (sliceUnionCst.getNumLocalIds() > 0 ||
tmpSliceCst.getNumLocalIds() > 0 ||
failed(sliceUnionCst.unionBoundingBox(tmpSliceCst))) {
LLVM_DEBUG(llvm::dbgs()
<< "Unable to compute union bounding box of slice bounds."
"\n.");
return failure();
}
}
}
// Empty union.
if (sliceUnionCst.getNumDimAndSymbolIds() == 0)
return failure();
// Gather loops surrounding ops from loop nest where slice will be inserted.
SmallVector<Operation *, 4> ops;
for (auto &dep : dependentOpPairs) {
ops.push_back(isBackwardSlice ? dep.second : dep.first);
}
SmallVector<AffineForOp, 4> surroundingLoops;
unsigned innermostCommonLoopDepth =
getInnermostCommonLoopDepth(ops, surroundingLoops);
if (loopDepth > innermostCommonLoopDepth) {
LLVM_DEBUG(llvm::dbgs() << "Exceeds max loop depth\n.");
return failure();
}
// Store 'numSliceLoopIVs' before converting dst loop IVs to dims.
unsigned numSliceLoopIVs = sliceUnionCst.getNumDimIds();
// Convert any dst loop IVs which are symbol identifiers to dim identifiers.
sliceUnionCst.convertLoopIVSymbolsToDims();
sliceUnion->clearBounds();
sliceUnion->lbs.resize(numSliceLoopIVs, AffineMap());
sliceUnion->ubs.resize(numSliceLoopIVs, AffineMap());
// Get slice bounds from slice union constraints 'sliceUnionCst'.
sliceUnionCst.getSliceBounds(/*offset=*/0, numSliceLoopIVs,
opsA[0]->getContext(), &sliceUnion->lbs,
&sliceUnion->ubs);
// Add slice bound operands of union.
SmallVector<Value, 4> sliceBoundOperands;
sliceUnionCst.getIdValues(numSliceLoopIVs,
sliceUnionCst.getNumDimAndSymbolIds(),
&sliceBoundOperands);
// Copy src loop IVs from 'sliceUnionCst' to 'sliceUnion'.
sliceUnion->ivs.clear();
sliceUnionCst.getIdValues(0, numSliceLoopIVs, &sliceUnion->ivs);
// Set loop nest insertion point to block start at 'loopDepth'.
sliceUnion->insertPoint =
isBackwardSlice
? surroundingLoops[loopDepth - 1].getBody()->begin()
: std::prev(surroundingLoops[loopDepth - 1].getBody()->end());
// Give each bound its own copy of 'sliceBoundOperands' for subsequent
// canonicalization.
sliceUnion->lbOperands.resize(numSliceLoopIVs, sliceBoundOperands);
sliceUnion->ubOperands.resize(numSliceLoopIVs, sliceBoundOperands);
return success();
}
const char *const kSliceFusionBarrierAttrName = "slice_fusion_barrier";
// Computes slice bounds by projecting out any loop IVs from
// 'dependenceConstraints' at depth greater than 'loopDepth', and computes slice
// bounds in 'sliceState' which represent the one loop nest's IVs in terms of
// the other loop nest's IVs, symbols and constants (using 'isBackwardsSlice').
void mlir::getComputationSliceState(
Operation *depSourceOp, Operation *depSinkOp,
FlatAffineConstraints *dependenceConstraints, unsigned loopDepth,
bool isBackwardSlice, ComputationSliceState *sliceState) {
// Get loop nest surrounding src operation.
SmallVector<AffineForOp, 4> srcLoopIVs;
getLoopIVs(*depSourceOp, &srcLoopIVs);
unsigned numSrcLoopIVs = srcLoopIVs.size();
// Get loop nest surrounding dst operation.
SmallVector<AffineForOp, 4> dstLoopIVs;
getLoopIVs(*depSinkOp, &dstLoopIVs);
unsigned numDstLoopIVs = dstLoopIVs.size();
assert((!isBackwardSlice && loopDepth <= numSrcLoopIVs) ||
(isBackwardSlice && loopDepth <= numDstLoopIVs));
// Project out dimensions other than those up to 'loopDepth'.
unsigned pos = isBackwardSlice ? numSrcLoopIVs + loopDepth : loopDepth;
unsigned num =
isBackwardSlice ? numDstLoopIVs - loopDepth : numSrcLoopIVs - loopDepth;
dependenceConstraints->projectOut(pos, num);
// Add slice loop IV values to 'sliceState'.
unsigned offset = isBackwardSlice ? 0 : loopDepth;
unsigned numSliceLoopIVs = isBackwardSlice ? numSrcLoopIVs : numDstLoopIVs;
dependenceConstraints->getIdValues(offset, offset + numSliceLoopIVs,
&sliceState->ivs);
// Set up lower/upper bound affine maps for the slice.
sliceState->lbs.resize(numSliceLoopIVs, AffineMap());
sliceState->ubs.resize(numSliceLoopIVs, AffineMap());
// Get bounds for slice IVs in terms of other IVs, symbols, and constants.
dependenceConstraints->getSliceBounds(offset, numSliceLoopIVs,
depSourceOp->getContext(),
&sliceState->lbs, &sliceState->ubs);
// Set up bound operands for the slice's lower and upper bounds.
SmallVector<Value, 4> sliceBoundOperands;
unsigned numDimsAndSymbols = dependenceConstraints->getNumDimAndSymbolIds();
for (unsigned i = 0; i < numDimsAndSymbols; ++i) {
if (i < offset || i >= offset + numSliceLoopIVs) {
sliceBoundOperands.push_back(dependenceConstraints->getIdValue(i));
}
}
// Give each bound its own copy of 'sliceBoundOperands' for subsequent
// canonicalization.
sliceState->lbOperands.resize(numSliceLoopIVs, sliceBoundOperands);
sliceState->ubOperands.resize(numSliceLoopIVs, sliceBoundOperands);
// Set destination loop nest insertion point to block start at 'dstLoopDepth'.
sliceState->insertPoint =
isBackwardSlice ? dstLoopIVs[loopDepth - 1].getBody()->begin()
: std::prev(srcLoopIVs[loopDepth - 1].getBody()->end());
llvm::SmallDenseSet<Value, 8> sequentialLoops;
if (isa<AffineLoadOp>(depSourceOp) && isa<AffineLoadOp>(depSinkOp)) {
// For read-read access pairs, clear any slice bounds on sequential loops.
// Get sequential loops in loop nest rooted at 'srcLoopIVs[0]'.
getSequentialLoops(isBackwardSlice ? srcLoopIVs[0] : dstLoopIVs[0],
&sequentialLoops);
}
// Clear all sliced loop bounds beginning at the first sequential loop, or
// first loop with a slice fusion barrier attribute..
// TODO(andydavis, bondhugula) Use MemRef read/write regions instead of
// using 'kSliceFusionBarrierAttrName'.
auto getSliceLoop = [&](unsigned i) {
return isBackwardSlice ? srcLoopIVs[i] : dstLoopIVs[i];
};
for (unsigned i = 0; i < numSliceLoopIVs; ++i) {
Value iv = getSliceLoop(i).getInductionVar();
if (sequentialLoops.count(iv) == 0 &&
getSliceLoop(i).getAttr(kSliceFusionBarrierAttrName) == nullptr)
continue;
for (unsigned j = i; j < numSliceLoopIVs; ++j) {
sliceState->lbs[j] = AffineMap();
sliceState->ubs[j] = AffineMap();
}
break;
}
}
/// Creates a computation slice of the loop nest surrounding 'srcOpInst',
/// updates the slice loop bounds with any non-null bound maps specified in
/// 'sliceState', and inserts this slice into the loop nest surrounding
/// 'dstOpInst' at loop depth 'dstLoopDepth'.
// TODO(andydavis,bondhugula): extend the slicing utility to compute slices that
// aren't necessarily a one-to-one relation b/w the source and destination. The
// relation between the source and destination could be many-to-many in general.
// TODO(andydavis,bondhugula): the slice computation is incorrect in the cases
// where the dependence from the source to the destination does not cover the
// entire destination index set. Subtract out the dependent destination
// iterations from destination index set and check for emptiness --- this is one
// solution.
AffineForOp
mlir::insertBackwardComputationSlice(Operation *srcOpInst, Operation *dstOpInst,
unsigned dstLoopDepth,
ComputationSliceState *sliceState) {
// Get loop nest surrounding src operation.
SmallVector<AffineForOp, 4> srcLoopIVs;
getLoopIVs(*srcOpInst, &srcLoopIVs);
unsigned numSrcLoopIVs = srcLoopIVs.size();
// Get loop nest surrounding dst operation.
SmallVector<AffineForOp, 4> dstLoopIVs;
getLoopIVs(*dstOpInst, &dstLoopIVs);
unsigned dstLoopIVsSize = dstLoopIVs.size();
if (dstLoopDepth > dstLoopIVsSize) {
dstOpInst->emitError("invalid destination loop depth");
return AffineForOp();
}
// Find the op block positions of 'srcOpInst' within 'srcLoopIVs'.
SmallVector<unsigned, 4> positions;
// TODO(andydavis): This code is incorrect since srcLoopIVs can be 0-d.
findInstPosition(srcOpInst, srcLoopIVs[0].getOperation()->getBlock(),
&positions);
// Clone src loop nest and insert it a the beginning of the operation block
// of the loop at 'dstLoopDepth' in 'dstLoopIVs'.
auto dstAffineForOp = dstLoopIVs[dstLoopDepth - 1];
OpBuilder b(dstAffineForOp.getBody(), dstAffineForOp.getBody()->begin());
auto sliceLoopNest =
cast<AffineForOp>(b.clone(*srcLoopIVs[0].getOperation()));
Operation *sliceInst =
getInstAtPosition(positions, /*level=*/0, sliceLoopNest.getBody());
// Get loop nest surrounding 'sliceInst'.
SmallVector<AffineForOp, 4> sliceSurroundingLoops;
getLoopIVs(*sliceInst, &sliceSurroundingLoops);
// Sanity check.
unsigned sliceSurroundingLoopsSize = sliceSurroundingLoops.size();
(void)sliceSurroundingLoopsSize;
assert(dstLoopDepth + numSrcLoopIVs >= sliceSurroundingLoopsSize);
unsigned sliceLoopLimit = dstLoopDepth + numSrcLoopIVs;
(void)sliceLoopLimit;
assert(sliceLoopLimit >= sliceSurroundingLoopsSize);
// Update loop bounds for loops in 'sliceLoopNest'.
for (unsigned i = 0; i < numSrcLoopIVs; ++i) {
auto forOp = sliceSurroundingLoops[dstLoopDepth + i];
if (AffineMap lbMap = sliceState->lbs[i])
forOp.setLowerBound(sliceState->lbOperands[i], lbMap);
if (AffineMap ubMap = sliceState->ubs[i])
forOp.setUpperBound(sliceState->ubOperands[i], ubMap);
}
return sliceLoopNest;
}
// Constructs MemRefAccess populating it with the memref, its indices and
// opinst from 'loadOrStoreOpInst'.
MemRefAccess::MemRefAccess(Operation *loadOrStoreOpInst) {
if (auto loadOp = dyn_cast<AffineLoadOp>(loadOrStoreOpInst)) {
memref = loadOp.getMemRef();
opInst = loadOrStoreOpInst;
auto loadMemrefType = loadOp.getMemRefType();
indices.reserve(loadMemrefType.getRank());
for (auto index : loadOp.getMapOperands()) {
indices.push_back(index);
}
} else {
assert(isa<AffineStoreOp>(loadOrStoreOpInst) && "load/store op expected");
auto storeOp = dyn_cast<AffineStoreOp>(loadOrStoreOpInst);
opInst = loadOrStoreOpInst;
memref = storeOp.getMemRef();
auto storeMemrefType = storeOp.getMemRefType();
indices.reserve(storeMemrefType.getRank());
for (auto index : storeOp.getMapOperands()) {
indices.push_back(index);
}
}
}
unsigned MemRefAccess::getRank() const {
return memref.getType().cast<MemRefType>().getRank();
}
bool MemRefAccess::isStore() const { return isa<AffineStoreOp>(opInst); }
/// Returns the nesting depth of this statement, i.e., the number of loops
/// surrounding this statement.
unsigned mlir::getNestingDepth(Operation &op) {
Operation *currOp = &op;
unsigned depth = 0;
while ((currOp = currOp->getParentOp())) {
if (isa<AffineForOp>(currOp))
depth++;
}
return depth;
}
/// Equal if both affine accesses are provably equivalent (at compile
/// time) when considering the memref, the affine maps and their respective
/// operands. The equality of access functions + operands is checked by
/// subtracting fully composed value maps, and then simplifying the difference
/// using the expression flattener.
/// TODO: this does not account for aliasing of memrefs.
bool MemRefAccess::operator==(const MemRefAccess &rhs) const {
if (memref != rhs.memref)
return false;
AffineValueMap diff, thisMap, rhsMap;
getAccessMap(&thisMap);
rhs.getAccessMap(&rhsMap);
AffineValueMap::difference(thisMap, rhsMap, &diff);
return llvm::all_of(diff.getAffineMap().getResults(),
[](AffineExpr e) { return e == 0; });
}
/// Returns the number of surrounding loops common to 'loopsA' and 'loopsB',
/// where each lists loops from outer-most to inner-most in loop nest.
unsigned mlir::getNumCommonSurroundingLoops(Operation &A, Operation &B) {
SmallVector<AffineForOp, 4> loopsA, loopsB;
getLoopIVs(A, &loopsA);
getLoopIVs(B, &loopsB);
unsigned minNumLoops = std::min(loopsA.size(), loopsB.size());
unsigned numCommonLoops = 0;
for (unsigned i = 0; i < minNumLoops; ++i) {
if (loopsA[i].getOperation() != loopsB[i].getOperation())
break;
++numCommonLoops;
}
return numCommonLoops;
}
static Optional<int64_t> getMemoryFootprintBytes(Block &block,
Block::iterator start,
Block::iterator end,
int memorySpace) {
SmallDenseMap<Value, std::unique_ptr<MemRefRegion>, 4> regions;
// Walk this 'affine.for' operation to gather all memory regions.
auto result = block.walk(start, end, [&](Operation *opInst) -> WalkResult {
if (!isa<AffineLoadOp>(opInst) && !isa<AffineStoreOp>(opInst)) {
// Neither load nor a store op.
return WalkResult::advance();
}
// Compute the memref region symbolic in any IVs enclosing this block.
auto region = std::make_unique<MemRefRegion>(opInst->getLoc());
if (failed(
region->compute(opInst,
/*loopDepth=*/getNestingDepth(*block.begin())))) {
return opInst->emitError("error obtaining memory region\n");
}
auto it = regions.find(region->memref);
if (it == regions.end()) {
regions[region->memref] = std::move(region);
} else if (failed(it->second->unionBoundingBox(*region))) {
return opInst->emitWarning(
"getMemoryFootprintBytes: unable to perform a union on a memory "
"region");
}
return WalkResult::advance();
});
if (result.wasInterrupted())
return None;
int64_t totalSizeInBytes = 0;
for (const auto ®ion : regions) {
Optional<int64_t> size = region.second->getRegionSize();
if (!size.hasValue())
return None;
totalSizeInBytes += size.getValue();
}
return totalSizeInBytes;
}
Optional<int64_t> mlir::getMemoryFootprintBytes(AffineForOp forOp,
int memorySpace) {
auto *forInst = forOp.getOperation();
return ::getMemoryFootprintBytes(
*forInst->getBlock(), Block::iterator(forInst),
std::next(Block::iterator(forInst)), memorySpace);
}
/// Returns in 'sequentialLoops' all sequential loops in loop nest rooted
/// at 'forOp'.
void mlir::getSequentialLoops(AffineForOp forOp,
llvm::SmallDenseSet<Value, 8> *sequentialLoops) {
forOp.getOperation()->walk([&](Operation *op) {
if (auto innerFor = dyn_cast<AffineForOp>(op))
if (!isLoopParallel(innerFor))
sequentialLoops->insert(innerFor.getInductionVar());
});
}
/// Returns true if 'forOp' is parallel.
bool mlir::isLoopParallel(AffineForOp forOp) {
// Collect all load and store ops in loop nest rooted at 'forOp'.
SmallVector<Operation *, 8> loadAndStoreOpInsts;
auto walkResult = forOp.walk([&](Operation *opInst) {
if (isa<AffineLoadOp>(opInst) || isa<AffineStoreOp>(opInst))
loadAndStoreOpInsts.push_back(opInst);
else if (!isa<AffineForOp>(opInst) && !isa<AffineTerminatorOp>(opInst) &&
!isa<AffineIfOp>(opInst) && !opInst->hasNoSideEffect())
return WalkResult::interrupt();
return WalkResult::advance();
});
// Stop early if the loop has unknown ops with side effects.
if (walkResult.wasInterrupted())
return false;
// Dep check depth would be number of enclosing loops + 1.
unsigned depth = getNestingDepth(*forOp.getOperation()) + 1;
// Check dependences between all pairs of ops in 'loadAndStoreOpInsts'.
for (auto *srcOpInst : loadAndStoreOpInsts) {
MemRefAccess srcAccess(srcOpInst);
for (auto *dstOpInst : loadAndStoreOpInsts) {
MemRefAccess dstAccess(dstOpInst);
FlatAffineConstraints dependenceConstraints;
DependenceResult result = checkMemrefAccessDependence(
srcAccess, dstAccess, depth, &dependenceConstraints,
/*dependenceComponents=*/nullptr);
if (result.value != DependenceResult::NoDependence)
return false;
}
}
return true;
}