LoopTiling.cpp 15.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
//===- LoopTiling.cpp --- Loop tiling pass ------------------------------*-===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to tile loop nests.
//
//===----------------------------------------------------------------------===//

#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/Dialect/AffineOps/AffineOps.h"
#include "mlir/IR/Builders.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/LoopUtils.h"
#include "mlir/Transforms/Passes.h"
#include "mlir/Transforms/Utils.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
using namespace mlir;

#define DEBUG_TYPE "affine-loop-tile"

static llvm::cl::OptionCategory clOptionsCategory(DEBUG_TYPE " options");

static llvm::cl::opt<unsigned long long>
    clCacheSizeKiB("tile-cache-size",
                   llvm::cl::desc("Set size of cache to tile for in KiB"),
                   llvm::cl::cat(clOptionsCategory));

// Tile size to use for all loops (overrides -tile-sizes if provided).
static llvm::cl::opt<unsigned>
    clTileSize("tile-size", llvm::cl::desc("Use this tile size for all loops"),
               llvm::cl::cat(clOptionsCategory));

// List of tile sizes. If any of them aren't provided, they are filled with
// clTileSize / kDefaultTileSize.
static llvm::cl::list<unsigned> clTileSizes(
    "tile-sizes",
    llvm::cl::desc(
        "List of tile sizes for each perfect nest (overridden by -tile-size)"),
    llvm::cl::ZeroOrMore, llvm::cl::cat(clOptionsCategory));

namespace {

/// A pass to perform loop tiling on all suitable loop nests of a Function.
struct LoopTiling : public FunctionPass<LoopTiling> {
  explicit LoopTiling(uint64_t cacheSizeBytes = kDefaultCacheMemCapacity,
                      bool avoidMaxMinBounds = true)
      : cacheSizeBytes(cacheSizeBytes), avoidMaxMinBounds(avoidMaxMinBounds) {}

  void runOnFunction() override;
  void getTileSizes(ArrayRef<AffineForOp> band,
                    SmallVectorImpl<unsigned> *tileSizes);

  // Default tile size if nothing is provided.
  constexpr static unsigned kDefaultTileSize = 4;
  constexpr static uint64_t kDefaultCacheMemCapacity = 512 * 1024UL;

  // Capacity of the cache to tile for.
  uint64_t cacheSizeBytes;
  // If true, tile sizes are set to avoid max/min in bounds if possible.
  bool avoidMaxMinBounds;
};

} // end anonymous namespace

/// Creates a pass to perform loop tiling on all suitable loop nests of a
/// Function.
std::unique_ptr<OpPassBase<FuncOp>>
mlir::createLoopTilingPass(uint64_t cacheSizeBytes) {
  return std::make_unique<LoopTiling>(cacheSizeBytes);
}

// Move the loop body of AffineForOp 'src' from 'src' into the specified
// location in destination's body, ignoring the terminator.
static inline void moveLoopBody(AffineForOp src, AffineForOp dest,
                                Block::iterator loc) {
  auto &insts = src.getBody()->getOperations();
  dest.getBody()->getOperations().splice(loc, insts, insts.begin(),
                                         std::prev(insts.end()));
}

// Move the loop body of AffineForOp 'src' from 'src' to the start of dest's
// body.
static inline void moveLoopBody(AffineForOp src, AffineForOp dest) {
  moveLoopBody(src, dest, dest.getBody()->begin());
}

/// Constructs and sets new loop bounds after tiling for the case of
/// hyper-rectangular index sets, where the bounds of one dimension do not
/// depend on other dimensions. Bounds of each dimension can thus be treated
/// independently, and deriving the new bounds is much simpler and faster
/// than for the case of tiling arbitrary polyhedral shapes.
static void
constructTiledIndexSetHyperRect(MutableArrayRef<AffineForOp> origLoops,
                                MutableArrayRef<AffineForOp> newLoops,
                                ArrayRef<unsigned> tileSizes) {
  assert(!origLoops.empty());
  assert(origLoops.size() == tileSizes.size());

  OpBuilder b(origLoops[0].getOperation());
  unsigned width = origLoops.size();

  // Bounds for tile space loops.
  for (unsigned i = 0; i < width; i++) {
    auto lbOperands = origLoops[i].getLowerBoundOperands();
    auto ubOperands = origLoops[i].getUpperBoundOperands();
    SmallVector<Value, 4> newLbOperands(lbOperands);
    SmallVector<Value, 4> newUbOperands(ubOperands);
    newLoops[i].setLowerBound(newLbOperands, origLoops[i].getLowerBoundMap());
    newLoops[i].setUpperBound(newUbOperands, origLoops[i].getUpperBoundMap());
    newLoops[i].setStep(tileSizes[i]);
  }
  // Bounds for intra-tile loops.
  for (unsigned i = 0; i < width; i++) {
    int64_t largestDiv = getLargestDivisorOfTripCount(origLoops[i]);
    auto mayBeConstantCount = getConstantTripCount(origLoops[i]);
    // The lower bound is just the tile-space loop.
    AffineMap lbMap = b.getDimIdentityMap();
    newLoops[width + i].setLowerBound(
        /*operands=*/newLoops[i].getInductionVar(), lbMap);

    // Set the upper bound.
    if (mayBeConstantCount.hasValue() &&
        mayBeConstantCount.getValue() < tileSizes[i]) {
      // Trip count is less than tile size; upper bound is the trip count.
      auto ubMap = b.getConstantAffineMap(mayBeConstantCount.getValue());
      newLoops[width + i].setUpperBoundMap(ubMap);
    } else if (largestDiv % tileSizes[i] != 0) {
      // Intra-tile loop ii goes from i to min(i + tileSize, ub_i).
      // Construct the upper bound map; the operands are the original operands
      // with 'i' (tile-space loop) appended to it. The new upper bound map is
      // the original one with an additional expression i + tileSize appended.
      auto ub = origLoops[i].getUpperBound();
      SmallVector<Value, 4> ubOperands;
      ubOperands.reserve(ub.getNumOperands() + 1);
      auto origUbMap = ub.getMap();
      // Add dim operands from original upper bound.
      for (unsigned j = 0, e = origUbMap.getNumDims(); j < e; ++j) {
        ubOperands.push_back(ub.getOperand(j));
      }
      // Add dim operand for new loop upper bound.
      ubOperands.push_back(newLoops[i].getInductionVar());
      // Add symbol operands from original upper bound.
      for (unsigned j = 0, e = origUbMap.getNumSymbols(); j < e; ++j) {
        ubOperands.push_back(ub.getOperand(origUbMap.getNumDims() + j));
      }
      SmallVector<AffineExpr, 4> boundExprs;
      boundExprs.reserve(1 + origUbMap.getNumResults());
      auto dim = b.getAffineDimExpr(origUbMap.getNumDims());
      // The new upper bound map is the original one with an additional
      // expression i + tileSize appended.
      boundExprs.push_back(dim + tileSizes[i]);
      boundExprs.append(origUbMap.getResults().begin(),
                        origUbMap.getResults().end());
      auto ubMap = AffineMap::get(origUbMap.getNumDims() + 1,
                                  origUbMap.getNumSymbols(), boundExprs);
      newLoops[width + i].setUpperBound(/*operands=*/ubOperands, ubMap);
    } else {
      // No need of the min expression.
      auto dim = b.getAffineDimExpr(0);
      auto ubMap = AffineMap::get(1, 0, dim + tileSizes[i]);
      newLoops[width + i].setUpperBound(newLoops[i].getInductionVar(), ubMap);
    }
  }
}

/// Tiles the specified band of perfectly nested loops creating tile-space loops
/// and intra-tile loops. A band is a contiguous set of loops.
//  TODO(bondhugula): handle non hyper-rectangular spaces.
LogicalResult mlir::tileCodeGen(MutableArrayRef<AffineForOp> band,
                                ArrayRef<unsigned> tileSizes) {
  assert(!band.empty());
  assert(band.size() == tileSizes.size() && "Incorrect number of tile sizes");

  // Check if the supplied for op's are all successively nested.
  for (unsigned i = 1, e = band.size(); i < e; i++) {
    assert(band[i].getParentOp() == band[i - 1].getOperation());
  }

  auto origLoops = band;

  AffineForOp rootAffineForOp = origLoops[0];
  auto loc = rootAffineForOp.getLoc();
  // Note that width is at least one since band isn't empty.
  unsigned width = band.size();

  SmallVector<AffineForOp, 12> newLoops(2 * width);
  AffineForOp innermostPointLoop;

  // The outermost among the loops as we add more..
  auto *topLoop = rootAffineForOp.getOperation();

  // Add intra-tile (or point) loops.
  for (unsigned i = 0; i < width; i++) {
    OpBuilder b(topLoop);
    // Loop bounds will be set later.
    auto pointLoop = b.create<AffineForOp>(loc, 0, 0);
    pointLoop.getBody()->getOperations().splice(
        pointLoop.getBody()->begin(), topLoop->getBlock()->getOperations(),
        topLoop);
    newLoops[2 * width - 1 - i] = pointLoop;
    topLoop = pointLoop.getOperation();
    if (i == 0)
      innermostPointLoop = pointLoop;
  }

  // Add tile space loops;
  for (unsigned i = width; i < 2 * width; i++) {
    OpBuilder b(topLoop);
    // Loop bounds will be set later.
    auto tileSpaceLoop = b.create<AffineForOp>(loc, 0, 0);
    tileSpaceLoop.getBody()->getOperations().splice(
        tileSpaceLoop.getBody()->begin(), topLoop->getBlock()->getOperations(),
        topLoop);
    newLoops[2 * width - i - 1] = tileSpaceLoop;
    topLoop = tileSpaceLoop.getOperation();
  }

  // Move the loop body of the original nest to the new one.
  moveLoopBody(origLoops[origLoops.size() - 1], innermostPointLoop);

  SmallVector<Value, 8> origLoopIVs;
  extractForInductionVars(band, &origLoopIVs);
  SmallVector<Optional<Value>, 6> ids(origLoopIVs.begin(), origLoopIVs.end());
  FlatAffineConstraints cst;
  getIndexSet(band, &cst);

  if (!cst.isHyperRectangular(0, width)) {
    rootAffineForOp.emitError("tiled code generation unimplemented for the "
                              "non-hyperrectangular case");
    return failure();
  }

  constructTiledIndexSetHyperRect(origLoops, newLoops, tileSizes);
  // In this case, the point loop IVs just replace the original ones.
  for (unsigned i = 0; i < width; i++) {
    origLoopIVs[i].replaceAllUsesWith(newLoops[i + width].getInductionVar());
  }

  // Erase the old loop nest.
  rootAffineForOp.erase();

  return success();
}

// Identify valid and profitable bands of loops to tile. This is currently just
// a temporary placeholder to test the mechanics of tiled code generation.
// Returns all maximal outermost perfect loop nests to tile.
static void getTileableBands(FuncOp f,
                             std::vector<SmallVector<AffineForOp, 6>> *bands) {
  // Get maximal perfect nest of 'affine.for' insts starting from root
  // (inclusive).
  auto getMaximalPerfectLoopNest = [&](AffineForOp root) {
    SmallVector<AffineForOp, 6> band;
    getPerfectlyNestedLoops(band, root);
    bands->push_back(band);
  };

  for (auto &block : f)
    for (auto &op : block)
      if (auto forOp = dyn_cast<AffineForOp>(op))
        getMaximalPerfectLoopNest(forOp);
}

// Reduce each tile size to the largest divisor of the corresponding trip count
// (if the trip count is known).
static void adjustToDivisorsOfTripCounts(ArrayRef<AffineForOp> band,
                                         SmallVectorImpl<unsigned> *tileSizes) {
  assert(band.size() == tileSizes->size() && "invalid tile size count");
  for (unsigned i = 0, e = band.size(); i < e; i++) {
    unsigned &tSizeAdjusted = (*tileSizes)[i];
    auto mayConst = getConstantTripCount(band[i]);
    if (!mayConst.hasValue())
      continue;
    // Adjust the tile size to largest factor of the trip count less than
    // tSize.
    uint64_t constTripCount = mayConst.getValue();
    if (constTripCount > 1 && tSizeAdjusted > constTripCount / 2)
      tSizeAdjusted = constTripCount / 2;
    while (constTripCount % tSizeAdjusted != 0)
      tSizeAdjusted--;
  }
}

// Returns tile sizes to use. Checks CL options; if none are specified, sets it
// based on a simple model that looks at the memory footprint and determines
// tile sizes assuming identity accesses / 1:1 tile size proportional footprint
// along each of the dimensions being tiled.
// TODO(mlir-team): evolve this model. Tile size determination is a large area
// to play with in general.
void LoopTiling::getTileSizes(ArrayRef<AffineForOp> band,
                              SmallVectorImpl<unsigned> *tileSizes) {
  if (band.empty())
    return;

  tileSizes->resize(band.size());

  // Use clTileSize for all loops if specified.
  if (clTileSize.getNumOccurrences() > 0) {
    std::fill(tileSizes->begin(), tileSizes->end(), clTileSize);
    return;
  }

  // Use clTileSizes and fill them with default tile size if it's short.
  if (!clTileSizes.empty()) {
    std::fill(tileSizes->begin(), tileSizes->end(),
              LoopTiling::kDefaultTileSize);
    std::copy(clTileSizes.begin(),
              clTileSizes.begin() + std::min(clTileSizes.size(), band.size()),
              tileSizes->begin());
    return;
  }

  // The first loop in the band.
  auto rootForOp = band[0];
  (void)rootForOp;

  // Obtain memory footprint and set tile sizes so that a tile fits in
  // the cache size. This is an approximation with the assumption that the
  // footprint increases with the tile size linearly in that dimension (i.e.,
  // assumes one-to-one access function).
  auto fp = getMemoryFootprintBytes(band[0], 0);
  if (!fp.hasValue()) {
    // Fill with default tile sizes if footprint is unknown.
    std::fill(tileSizes->begin(), tileSizes->end(),
              LoopTiling::kDefaultTileSize);
    if (avoidMaxMinBounds)
      adjustToDivisorsOfTripCounts(band, tileSizes);
    LLVM_DEBUG(
        rootForOp.emitWarning("memory footprint unknown: using default tile "
                              "sizes adjusted to trip count divisors"));
    return;
  }

  // Check how many times larger the cache size is when compared to footprint.
  uint64_t excessFactor = llvm::divideCeil(fp.getValue(), cacheSizeBytes);
  if (excessFactor <= 1) {
    // No need of any tiling - set tile size to 1.
    std::fill(tileSizes->begin(), tileSizes->end(), 1);
    return;
  }

  // Divide all loops equally in an attempt to reduce footprint.
  // TODO(bondhugula): this is approximate. Ideally, obtain reuse factor /
  // profitability along each dimension and weight tile sizes based on that as
  // one possible approach. Or compute a polynomial in tile sizes and solve for
  // it.

  // For an n-d tileable band, compute n^th root of the excess.
  unsigned tSize =
      static_cast<unsigned>(floorl(std::pow(excessFactor, 1.0 / band.size())));
  // We'll keep a running product to determine the last tile size better.
  unsigned cumulProductOfTileSizes = 1;
  for (unsigned i = 0, e = band.size(); i < e; i++) {
    if (i < e - 1)
      (*tileSizes)[i] = tSize;
    else
      // Set last tile size to cover the balance.
      (*tileSizes)[i] = std::max(
          1U, static_cast<unsigned>(excessFactor / cumulProductOfTileSizes));
    cumulProductOfTileSizes *= (*tileSizes)[i];
  }
  if (avoidMaxMinBounds)
    adjustToDivisorsOfTripCounts(band, tileSizes);
}

void LoopTiling::runOnFunction() {
  // Override cache size if provided on command line.
  if (clCacheSizeKiB.getNumOccurrences() > 0)
    cacheSizeBytes = clCacheSizeKiB * 1024;

  // Bands of loops to tile.
  std::vector<SmallVector<AffineForOp, 6>> bands;
  getTileableBands(getFunction(), &bands);

  for (auto &band : bands) {
    // Set up tile sizes; fill missing tile sizes at the end with default tile
    // size or clTileSize if one was provided.
    SmallVector<unsigned, 6> tileSizes;
    getTileSizes(band, &tileSizes);
    if (llvm::DebugFlag) {
      auto diag = band[0].emitRemark("using tile sizes [");
      for (auto tSize : tileSizes)
        diag << tSize << " ";
      diag << "]\n";
    }
    if (failed(tileCodeGen(band, tileSizes)))
      return signalPassFailure();
  }
}

constexpr unsigned LoopTiling::kDefaultTileSize;
constexpr uint64_t LoopTiling::kDefaultCacheMemCapacity;

static PassRegistration<LoopTiling> pass("affine-loop-tile", "Tile loop nests");