Utils.cpp
18.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
//===- Utils.cpp ---- Misc utilities for code and data transformation -----===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements miscellaneous transformation routines for non-loop IR
// structures.
//
//===----------------------------------------------------------------------===//
#include "mlir/Transforms/Utils.h"
#include "mlir/ADT/TypeSwitch.h"
#include "mlir/Analysis/AffineAnalysis.h"
#include "mlir/Analysis/AffineStructures.h"
#include "mlir/Analysis/Dominance.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/Dialect/AffineOps/AffineOps.h"
#include "mlir/Dialect/StandardOps/Ops.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Module.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/ADT/DenseMap.h"
using namespace mlir;
/// Return true if this operation dereferences one or more memref's.
// Temporary utility: will be replaced when this is modeled through
// side-effects/op traits. TODO(b/117228571)
static bool isMemRefDereferencingOp(Operation &op) {
if (isa<AffineLoadOp>(op) || isa<AffineStoreOp>(op) ||
isa<AffineDmaStartOp>(op) || isa<AffineDmaWaitOp>(op))
return true;
return false;
}
/// Return the AffineMapAttr associated with memory 'op' on 'memref'.
static NamedAttribute getAffineMapAttrForMemRef(Operation *op, Value memref) {
return TypeSwitch<Operation *, NamedAttribute>(op)
.Case<AffineDmaStartOp, AffineLoadOp, AffinePrefetchOp, AffineStoreOp,
AffineDmaWaitOp>(
[=](auto op) { return op.getAffineMapAttrForMemRef(memref); });
}
// Perform the replacement in `op`.
LogicalResult mlir::replaceAllMemRefUsesWith(Value oldMemRef, Value newMemRef,
Operation *op,
ArrayRef<Value> extraIndices,
AffineMap indexRemap,
ArrayRef<Value> extraOperands,
ArrayRef<Value> symbolOperands) {
unsigned newMemRefRank = newMemRef.getType().cast<MemRefType>().getRank();
(void)newMemRefRank; // unused in opt mode
unsigned oldMemRefRank = oldMemRef.getType().cast<MemRefType>().getRank();
(void)oldMemRefRank; // unused in opt mode
if (indexRemap) {
assert(indexRemap.getNumSymbols() == symbolOperands.size() &&
"symbolic operand count mismatch");
assert(indexRemap.getNumInputs() ==
extraOperands.size() + oldMemRefRank + symbolOperands.size());
assert(indexRemap.getNumResults() + extraIndices.size() == newMemRefRank);
} else {
assert(oldMemRefRank + extraIndices.size() == newMemRefRank);
}
// Assert same elemental type.
assert(oldMemRef.getType().cast<MemRefType>().getElementType() ==
newMemRef.getType().cast<MemRefType>().getElementType());
if (!isMemRefDereferencingOp(*op))
// Failure: memref used in a non-dereferencing context (potentially
// escapes); no replacement in these cases.
return failure();
SmallVector<unsigned, 2> usePositions;
for (const auto &opEntry : llvm::enumerate(op->getOperands())) {
if (opEntry.value() == oldMemRef)
usePositions.push_back(opEntry.index());
}
// If memref doesn't appear, nothing to do.
if (usePositions.empty())
return success();
if (usePositions.size() > 1) {
// TODO(mlir-team): extend it for this case when needed (rare).
assert(false && "multiple dereferencing uses in a single op not supported");
return failure();
}
unsigned memRefOperandPos = usePositions.front();
OpBuilder builder(op);
NamedAttribute oldMapAttrPair = getAffineMapAttrForMemRef(op, oldMemRef);
AffineMap oldMap = oldMapAttrPair.second.cast<AffineMapAttr>().getValue();
unsigned oldMapNumInputs = oldMap.getNumInputs();
SmallVector<Value, 4> oldMapOperands(
op->operand_begin() + memRefOperandPos + 1,
op->operand_begin() + memRefOperandPos + 1 + oldMapNumInputs);
// Apply 'oldMemRefOperands = oldMap(oldMapOperands)'.
SmallVector<Value, 4> oldMemRefOperands;
SmallVector<Value, 4> affineApplyOps;
oldMemRefOperands.reserve(oldMemRefRank);
if (oldMap != builder.getMultiDimIdentityMap(oldMap.getNumDims())) {
for (auto resultExpr : oldMap.getResults()) {
auto singleResMap = AffineMap::get(oldMap.getNumDims(),
oldMap.getNumSymbols(), resultExpr);
auto afOp = builder.create<AffineApplyOp>(op->getLoc(), singleResMap,
oldMapOperands);
oldMemRefOperands.push_back(afOp);
affineApplyOps.push_back(afOp);
}
} else {
oldMemRefOperands.append(oldMapOperands.begin(), oldMapOperands.end());
}
// Construct new indices as a remap of the old ones if a remapping has been
// provided. The indices of a memref come right after it, i.e.,
// at position memRefOperandPos + 1.
SmallVector<Value, 4> remapOperands;
remapOperands.reserve(extraOperands.size() + oldMemRefRank +
symbolOperands.size());
remapOperands.append(extraOperands.begin(), extraOperands.end());
remapOperands.append(oldMemRefOperands.begin(), oldMemRefOperands.end());
remapOperands.append(symbolOperands.begin(), symbolOperands.end());
SmallVector<Value, 4> remapOutputs;
remapOutputs.reserve(oldMemRefRank);
if (indexRemap &&
indexRemap != builder.getMultiDimIdentityMap(indexRemap.getNumDims())) {
// Remapped indices.
for (auto resultExpr : indexRemap.getResults()) {
auto singleResMap = AffineMap::get(
indexRemap.getNumDims(), indexRemap.getNumSymbols(), resultExpr);
auto afOp = builder.create<AffineApplyOp>(op->getLoc(), singleResMap,
remapOperands);
remapOutputs.push_back(afOp);
affineApplyOps.push_back(afOp);
}
} else {
// No remapping specified.
remapOutputs.append(remapOperands.begin(), remapOperands.end());
}
SmallVector<Value, 4> newMapOperands;
newMapOperands.reserve(newMemRefRank);
// Prepend 'extraIndices' in 'newMapOperands'.
for (auto extraIndex : extraIndices) {
assert(extraIndex.getDefiningOp()->getNumResults() == 1 &&
"single result op's expected to generate these indices");
assert((isValidDim(extraIndex) || isValidSymbol(extraIndex)) &&
"invalid memory op index");
newMapOperands.push_back(extraIndex);
}
// Append 'remapOutputs' to 'newMapOperands'.
newMapOperands.append(remapOutputs.begin(), remapOutputs.end());
// Create new fully composed AffineMap for new op to be created.
assert(newMapOperands.size() == newMemRefRank);
auto newMap = builder.getMultiDimIdentityMap(newMemRefRank);
// TODO(b/136262594) Avoid creating/deleting temporary AffineApplyOps here.
fullyComposeAffineMapAndOperands(&newMap, &newMapOperands);
newMap = simplifyAffineMap(newMap);
canonicalizeMapAndOperands(&newMap, &newMapOperands);
// Remove any affine.apply's that became dead as a result of composition.
for (auto value : affineApplyOps)
if (value.use_empty())
value.getDefiningOp()->erase();
// Construct the new operation using this memref.
OperationState state(op->getLoc(), op->getName());
state.setOperandListToResizable(op->hasResizableOperandsList());
state.operands.reserve(op->getNumOperands() + extraIndices.size());
// Insert the non-memref operands.
state.operands.append(op->operand_begin(),
op->operand_begin() + memRefOperandPos);
// Insert the new memref value.
state.operands.push_back(newMemRef);
// Insert the new memref map operands.
state.operands.append(newMapOperands.begin(), newMapOperands.end());
// Insert the remaining operands unmodified.
state.operands.append(op->operand_begin() + memRefOperandPos + 1 +
oldMapNumInputs,
op->operand_end());
// Result types don't change. Both memref's are of the same elemental type.
state.types.reserve(op->getNumResults());
for (auto result : op->getResults())
state.types.push_back(result.getType());
// Add attribute for 'newMap', other Attributes do not change.
auto newMapAttr = AffineMapAttr::get(newMap);
for (auto namedAttr : op->getAttrs()) {
if (namedAttr.first == oldMapAttrPair.first) {
state.attributes.push_back({namedAttr.first, newMapAttr});
} else {
state.attributes.push_back(namedAttr);
}
}
// Create the new operation.
auto *repOp = builder.createOperation(state);
op->replaceAllUsesWith(repOp);
op->erase();
return success();
}
LogicalResult mlir::replaceAllMemRefUsesWith(Value oldMemRef, Value newMemRef,
ArrayRef<Value> extraIndices,
AffineMap indexRemap,
ArrayRef<Value> extraOperands,
ArrayRef<Value> symbolOperands,
Operation *domInstFilter,
Operation *postDomInstFilter) {
unsigned newMemRefRank = newMemRef.getType().cast<MemRefType>().getRank();
(void)newMemRefRank; // unused in opt mode
unsigned oldMemRefRank = oldMemRef.getType().cast<MemRefType>().getRank();
(void)oldMemRefRank;
if (indexRemap) {
assert(indexRemap.getNumSymbols() == symbolOperands.size() &&
"symbol operand count mismatch");
assert(indexRemap.getNumInputs() ==
extraOperands.size() + oldMemRefRank + symbolOperands.size());
assert(indexRemap.getNumResults() + extraIndices.size() == newMemRefRank);
} else {
assert(oldMemRefRank + extraIndices.size() == newMemRefRank);
}
// Assert same elemental type.
assert(oldMemRef.getType().cast<MemRefType>().getElementType() ==
newMemRef.getType().cast<MemRefType>().getElementType());
std::unique_ptr<DominanceInfo> domInfo;
std::unique_ptr<PostDominanceInfo> postDomInfo;
if (domInstFilter)
domInfo = std::make_unique<DominanceInfo>(
domInstFilter->getParentOfType<FuncOp>());
if (postDomInstFilter)
postDomInfo = std::make_unique<PostDominanceInfo>(
postDomInstFilter->getParentOfType<FuncOp>());
// Walk all uses of old memref; collect ops to perform replacement. We use a
// DenseSet since an operation could potentially have multiple uses of a
// memref (although rare), and the replacement later is going to erase ops.
DenseSet<Operation *> opsToReplace;
for (auto *op : oldMemRef.getUsers()) {
// Skip this use if it's not dominated by domInstFilter.
if (domInstFilter && !domInfo->dominates(domInstFilter, op))
continue;
// Skip this use if it's not post-dominated by postDomInstFilter.
if (postDomInstFilter && !postDomInfo->postDominates(postDomInstFilter, op))
continue;
// Skip dealloc's - no replacement is necessary, and a memref replacement
// at other uses doesn't hurt these dealloc's.
if (isa<DeallocOp>(op))
continue;
// Check if the memref was used in a non-dereferencing context. It is fine
// for the memref to be used in a non-dereferencing way outside of the
// region where this replacement is happening.
if (!isMemRefDereferencingOp(*op))
// Failure: memref used in a non-dereferencing op (potentially escapes);
// no replacement in these cases.
return failure();
// We'll first collect and then replace --- since replacement erases the op
// that has the use, and that op could be postDomFilter or domFilter itself!
opsToReplace.insert(op);
}
for (auto *op : opsToReplace) {
if (failed(replaceAllMemRefUsesWith(oldMemRef, newMemRef, op, extraIndices,
indexRemap, extraOperands,
symbolOperands)))
llvm_unreachable("memref replacement guaranteed to succeed here");
}
return success();
}
/// Given an operation, inserts one or more single result affine
/// apply operations, results of which are exclusively used by this operation
/// operation. The operands of these newly created affine apply ops are
/// guaranteed to be loop iterators or terminal symbols of a function.
///
/// Before
///
/// affine.for %i = 0 to #map(%N)
/// %idx = affine.apply (d0) -> (d0 mod 2) (%i)
/// "send"(%idx, %A, ...)
/// "compute"(%idx)
///
/// After
///
/// affine.for %i = 0 to #map(%N)
/// %idx = affine.apply (d0) -> (d0 mod 2) (%i)
/// "send"(%idx, %A, ...)
/// %idx_ = affine.apply (d0) -> (d0 mod 2) (%i)
/// "compute"(%idx_)
///
/// This allows applying different transformations on send and compute (for eg.
/// different shifts/delays).
///
/// Returns nullptr either if none of opInst's operands were the result of an
/// affine.apply and thus there was no affine computation slice to create, or if
/// all the affine.apply op's supplying operands to this opInst did not have any
/// uses besides this opInst; otherwise returns the list of affine.apply
/// operations created in output argument `sliceOps`.
void mlir::createAffineComputationSlice(
Operation *opInst, SmallVectorImpl<AffineApplyOp> *sliceOps) {
// Collect all operands that are results of affine apply ops.
SmallVector<Value, 4> subOperands;
subOperands.reserve(opInst->getNumOperands());
for (auto operand : opInst->getOperands())
if (isa_and_nonnull<AffineApplyOp>(operand.getDefiningOp()))
subOperands.push_back(operand);
// Gather sequence of AffineApplyOps reachable from 'subOperands'.
SmallVector<Operation *, 4> affineApplyOps;
getReachableAffineApplyOps(subOperands, affineApplyOps);
// Skip transforming if there are no affine maps to compose.
if (affineApplyOps.empty())
return;
// Check if all uses of the affine apply op's lie only in this op op, in
// which case there would be nothing to do.
bool localized = true;
for (auto *op : affineApplyOps) {
for (auto result : op->getResults()) {
for (auto *user : result.getUsers()) {
if (user != opInst) {
localized = false;
break;
}
}
}
}
if (localized)
return;
OpBuilder builder(opInst);
SmallVector<Value, 4> composedOpOperands(subOperands);
auto composedMap = builder.getMultiDimIdentityMap(composedOpOperands.size());
fullyComposeAffineMapAndOperands(&composedMap, &composedOpOperands);
// Create an affine.apply for each of the map results.
sliceOps->reserve(composedMap.getNumResults());
for (auto resultExpr : composedMap.getResults()) {
auto singleResMap = AffineMap::get(composedMap.getNumDims(),
composedMap.getNumSymbols(), resultExpr);
sliceOps->push_back(builder.create<AffineApplyOp>(
opInst->getLoc(), singleResMap, composedOpOperands));
}
// Construct the new operands that include the results from the composed
// affine apply op above instead of existing ones (subOperands). So, they
// differ from opInst's operands only for those operands in 'subOperands', for
// which they will be replaced by the corresponding one from 'sliceOps'.
SmallVector<Value, 4> newOperands(opInst->getOperands());
for (unsigned i = 0, e = newOperands.size(); i < e; i++) {
// Replace the subOperands from among the new operands.
unsigned j, f;
for (j = 0, f = subOperands.size(); j < f; j++) {
if (newOperands[i] == subOperands[j])
break;
}
if (j < subOperands.size()) {
newOperands[i] = (*sliceOps)[j];
}
}
for (unsigned idx = 0, e = newOperands.size(); idx < e; idx++) {
opInst->setOperand(idx, newOperands[idx]);
}
}
// TODO: Currently works for static memrefs with a single layout map.
LogicalResult mlir::normalizeMemRef(AllocOp allocOp) {
MemRefType memrefType = allocOp.getType();
unsigned rank = memrefType.getRank();
if (rank == 0)
return success();
auto layoutMaps = memrefType.getAffineMaps();
OpBuilder b(allocOp);
if (layoutMaps.size() != 1)
return failure();
AffineMap layoutMap = layoutMaps.front();
// Nothing to do for identity layout maps.
if (layoutMap == b.getMultiDimIdentityMap(rank))
return success();
// We don't do any checks for one-to-one'ness; we assume that it is
// one-to-one.
// TODO: Only for static memref's for now.
if (memrefType.getNumDynamicDims() > 0)
return failure();
// We have a single map that is not an identity map. Create a new memref with
// the right shape and an identity layout map.
auto shape = memrefType.getShape();
FlatAffineConstraints fac(rank, allocOp.getNumSymbolicOperands());
for (unsigned d = 0; d < rank; ++d) {
fac.addConstantLowerBound(d, 0);
fac.addConstantUpperBound(d, shape[d] - 1);
}
// We compose this map with the original index (logical) space to derive the
// upper bounds for the new index space.
unsigned newRank = layoutMap.getNumResults();
if (failed(fac.composeMatchingMap(layoutMap)))
// TODO: semi-affine maps.
return failure();
// Project out the old data dimensions.
fac.projectOut(newRank, fac.getNumIds() - newRank - fac.getNumLocalIds());
SmallVector<int64_t, 4> newShape(newRank);
for (unsigned d = 0; d < newRank; ++d) {
// The lower bound for the shape is always zero.
auto ubConst = fac.getConstantUpperBound(d);
// For a static memref and an affine map with no symbols, this is always
// bounded.
assert(ubConst.hasValue() && "should always have an upper bound");
if (ubConst.getValue() < 0)
// This is due to an invalid map that maps to a negative space.
return failure();
newShape[d] = ubConst.getValue() + 1;
}
auto oldMemRef = allocOp.getResult();
SmallVector<Value, 4> symbolOperands(allocOp.getSymbolicOperands());
auto newMemRefType = MemRefType::get(newShape, memrefType.getElementType(),
b.getMultiDimIdentityMap(newRank));
auto newAlloc = b.create<AllocOp>(allocOp.getLoc(), newMemRefType);
// Replace all uses of the old memref.
if (failed(replaceAllMemRefUsesWith(oldMemRef, /*newMemRef=*/newAlloc,
/*extraIndices=*/{},
/*indexRemap=*/layoutMap,
/*extraOperands=*/{},
/*symbolOperands=*/symbolOperands))) {
// If it failed (due to escapes for example), bail out.
newAlloc.erase();
return failure();
}
// Replace any uses of the original alloc op and erase it. All remaining uses
// have to be dealloc's; RAMUW above would've failed otherwise.
assert(llvm::all_of(oldMemRef.getUsers(),
[](Operation *op) { return isa<DeallocOp>(op); }));
oldMemRef.replaceAllUsesWith(newAlloc);
allocOp.erase();
return success();
}