Vectorize.cpp 57.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
//===- Vectorize.cpp - Vectorize Pass Impl --------------------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements vectorization of loops, operations and data types to
// a target-independent, n-D super-vector abstraction.
//
//===----------------------------------------------------------------------===//

#include "mlir/Analysis/LoopAnalysis.h"
#include "mlir/Analysis/NestedMatcher.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Analysis/Utils.h"
#include "mlir/Dialect/AffineOps/AffineOps.h"
#include "mlir/Dialect/StandardOps/Ops.h"
#include "mlir/Dialect/VectorOps/Utils.h"
#include "mlir/Dialect/VectorOps/VectorOps.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/Types.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/Functional.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Transforms/FoldUtils.h"
#include "mlir/Transforms/Passes.h"

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"

using namespace mlir;

///
/// Implements a high-level vectorization strategy on a Function.
/// The abstraction used is that of super-vectors, which provide a single,
/// compact, representation in the vector types, information that is expected
/// to reduce the impact of the phase ordering problem
///
/// Vector granularity:
/// ===================
/// This pass is designed to perform vectorization at a super-vector
/// granularity. A super-vector is loosely defined as a vector type that is a
/// multiple of a "good" vector size so the HW can efficiently implement a set
/// of high-level primitives. Multiple is understood along any dimension; e.g.
/// both vector<16xf32> and vector<2x8xf32> are valid super-vectors for a
/// vector<8xf32> HW vector. Note that a "good vector size so the HW can
/// efficiently implement a set of high-level primitives" is not necessarily an
/// integer multiple of actual hardware registers. We leave details of this
/// distinction unspecified for now.
///
/// Some may prefer the terminology a "tile of HW vectors". In this case, one
/// should note that super-vectors implement an "always full tile" abstraction.
/// They guarantee no partial-tile separation is necessary by relying on a
/// high-level copy-reshape abstraction that we call vector.transfer. This
/// copy-reshape operations is also responsible for performing layout
/// transposition if necessary. In the general case this will require a scoped
/// allocation in some notional local memory.
///
/// Whatever the mental model one prefers to use for this abstraction, the key
/// point is that we burn into a single, compact, representation in the vector
/// types, information that is expected to reduce the impact of the phase
/// ordering problem. Indeed, a vector type conveys information that:
///   1. the associated loops have dependency semantics that do not prevent
///      vectorization;
///   2. the associate loops have been sliced in chunks of static sizes that are
///      compatible with vector sizes (i.e. similar to unroll-and-jam);
///   3. the inner loops, in the unroll-and-jam analogy of 2, are captured by
///   the
///      vector type and no vectorization hampering transformations can be
///      applied to them anymore;
///   4. the underlying memrefs are accessed in some notional contiguous way
///      that allows loading into vectors with some amount of spatial locality;
/// In other words, super-vectorization provides a level of separation of
/// concern by way of opacity to subsequent passes. This has the effect of
/// encapsulating and propagating vectorization constraints down the list of
/// passes until we are ready to lower further.
///
/// For a particular target, a notion of minimal n-d vector size will be
/// specified and vectorization targets a multiple of those. In the following
/// paragraph, let "k ." represent "a multiple of", to be understood as a
/// multiple in the same dimension (e.g. vector<16 x k . 128> summarizes
/// vector<16 x 128>, vector<16 x 256>, vector<16 x 1024>, etc).
///
/// Some non-exhaustive notable super-vector sizes of interest include:
///   - CPU: vector<k . HW_vector_size>,
///          vector<k' . core_count x k . HW_vector_size>,
///          vector<socket_count x k' . core_count x k . HW_vector_size>;
///   - GPU: vector<k . warp_size>,
///          vector<k . warp_size x float2>,
///          vector<k . warp_size x float4>,
///          vector<k . warp_size x 4 x 4x 4> (for tensor_core sizes).
///
/// Loops and operations are emitted that operate on those super-vector shapes.
/// Subsequent lowering passes will materialize to actual HW vector sizes. These
/// passes are expected to be (gradually) more target-specific.
///
/// At a high level, a vectorized load in a loop will resemble:
/// ```mlir
///   affine.for %i = ? to ? step ? {
///     %v_a = vector.transfer_read A[%i] : memref<?xf32>, vector<128xf32>
///   }
/// ```
/// It is the responsibility of the implementation of vector.transfer_read to
/// materialize vector registers from the original scalar memrefs. A later (more
/// target-dependent) lowering pass will materialize to actual HW vector sizes.
/// This lowering may be occur at different times:
///   1. at the MLIR level into a combination of loops, unrolling, DmaStartOp +
///      DmaWaitOp + vectorized operations for data transformations and shuffle;
///      thus opening opportunities for unrolling and pipelining. This is an
///      instance of library call "whiteboxing"; or
///   2. later in the a target-specific lowering pass or hand-written library
///      call; achieving full separation of concerns. This is an instance of
///      library call; or
///   3. a mix of both, e.g. based on a model.
/// In the future, these operations will expose a contract to constrain the
/// search on vectorization patterns and sizes.
///
/// Occurrence of super-vectorization in the compiler flow:
/// =======================================================
/// This is an active area of investigation. We start with 2 remarks to position
/// super-vectorization in the context of existing ongoing work: LLVM VPLAN
/// and LLVM SLP Vectorizer.
///
/// LLVM VPLAN:
/// -----------
/// The astute reader may have noticed that in the limit, super-vectorization
/// can be applied at a similar time and with similar objectives than VPLAN.
/// For instance, in the case of a traditional, polyhedral compilation-flow (for
/// instance, the PPCG project uses ISL to provide dependence analysis,
/// multi-level(scheduling + tiling), lifting footprint to fast memory,
/// communication synthesis, mapping, register optimizations) and before
/// unrolling. When vectorization is applied at this *late* level in a typical
/// polyhedral flow, and is instantiated with actual hardware vector sizes,
/// super-vectorization is expected to match (or subsume) the type of patterns
/// that LLVM's VPLAN aims at targeting. The main difference here is that MLIR
/// is higher level and our implementation should be significantly simpler. Also
/// note that in this mode, recursive patterns are probably a bit of an overkill
/// although it is reasonable to expect that mixing a bit of outer loop and
/// inner loop vectorization + unrolling will provide interesting choices to
/// MLIR.
///
/// LLVM SLP Vectorizer:
/// --------------------
/// Super-vectorization however is not meant to be usable in a similar fashion
/// to the SLP vectorizer. The main difference lies in the information that
/// both vectorizers use: super-vectorization examines contiguity of memory
/// references along fastest varying dimensions and loops with recursive nested
/// patterns capturing imperfectly-nested loop nests; the SLP vectorizer, on
/// the other hand, performs flat pattern matching inside a single unrolled loop
/// body and stitches together pieces of load and store operations into full
/// 1-D vectors. We envision that the SLP vectorizer is a good way to capture
/// innermost loop, control-flow dependent patterns that super-vectorization may
/// not be able to capture easily. In other words, super-vectorization does not
/// aim at replacing the SLP vectorizer and the two solutions are complementary.
///
/// Ongoing investigations:
/// -----------------------
/// We discuss the following *early* places where super-vectorization is
/// applicable and touch on the expected benefits and risks . We list the
/// opportunities in the context of the traditional polyhedral compiler flow
/// described in PPCG. There are essentially 6 places in the MLIR pass pipeline
/// we expect to experiment with super-vectorization:
/// 1. Right after language lowering to MLIR: this is the earliest time where
///    super-vectorization is expected to be applied. At this level, all the
///    language/user/library-level annotations are available and can be fully
///    exploited. Examples include loop-type annotations (such as parallel,
///    reduction, scan, dependence distance vector, vectorizable) as well as
///    memory access annotations (such as non-aliasing writes guaranteed,
///    indirect accesses that are permutations by construction) accesses or
///    that a particular operation is prescribed atomic by the user. At this
///    level, anything that enriches what dependence analysis can do should be
///    aggressively exploited. At this level we are close to having explicit
///    vector types in the language, except we do not impose that burden on the
///    programmer/library: we derive information from scalar code + annotations.
/// 2. After dependence analysis and before polyhedral scheduling: the
///    information that supports vectorization does not need to be supplied by a
///    higher level of abstraction. Traditional dependence analysis is available
///    in MLIR and will be used to drive vectorization and cost models.
///
/// Let's pause here and remark that applying super-vectorization as described
/// in 1. and 2. presents clear opportunities and risks:
///   - the opportunity is that vectorization is burned in the type system and
///   is protected from the adverse effect of loop scheduling, tiling, loop
///   interchange and all passes downstream. Provided that subsequent passes are
///   able to operate on vector types; the vector shapes, associated loop
///   iterator properties, alignment, and contiguity of fastest varying
///   dimensions are preserved until we lower the super-vector types. We expect
///   this to significantly rein in on the adverse effects of phase ordering.
///   - the risks are that a. all passes after super-vectorization have to work
///   on elemental vector types (not that this is always true, wherever
///   vectorization is applied) and b. that imposing vectorization constraints
///   too early may be overall detrimental to loop fusion, tiling and other
///   transformations because the dependence distances are coarsened when
///   operating on elemental vector types. For this reason, the pattern
///   profitability analysis should include a component that also captures the
///   maximal amount of fusion available under a particular pattern. This is
///   still at the stage of rough ideas but in this context, search is our
///   friend as the Tensor Comprehensions and auto-TVM contributions
///   demonstrated previously.
/// Bottom-line is we do not yet have good answers for the above but aim at
/// making it easy to answer such questions.
///
/// Back to our listing, the last places where early super-vectorization makes
/// sense are:
/// 3. right after polyhedral-style scheduling: PLUTO-style algorithms are known
///    to improve locality, parallelism and be configurable (e.g. max-fuse,
///    smart-fuse etc). They can also have adverse effects on contiguity
///    properties that are required for vectorization but the vector.transfer
///    copy-reshape-pad-transpose abstraction is expected to help recapture
///    these properties.
/// 4. right after polyhedral-style scheduling+tiling;
/// 5. right after scheduling+tiling+rescheduling: points 4 and 5 represent
///    probably the most promising places because applying tiling achieves a
///    separation of concerns that allows rescheduling to worry less about
///    locality and more about parallelism and distribution (e.g. min-fuse).
///
/// At these levels the risk-reward looks different: on one hand we probably
/// lost a good deal of language/user/library-level annotation; on the other
/// hand we gained parallelism and locality through scheduling and tiling.
/// However we probably want to ensure tiling is compatible with the
/// full-tile-only abstraction used in super-vectorization or suffer the
/// consequences. It is too early to place bets on what will win but we expect
/// super-vectorization to be the right abstraction to allow exploring at all
/// these levels. And again, search is our friend.
///
/// Lastly, we mention it again here:
/// 6. as a MLIR-based alternative to VPLAN.
///
/// Lowering, unrolling, pipelining:
/// ================================
/// TODO(ntv): point to the proper places.
///
/// Algorithm:
/// ==========
/// The algorithm proceeds in a few steps:
///  1. defining super-vectorization patterns and matching them on the tree of
///     AffineForOp. A super-vectorization pattern is defined as a recursive
///     data structures that matches and captures nested, imperfectly-nested
///     loops that have a. conformable loop annotations attached (e.g. parallel,
///     reduction, vectorizable, ...) as well as b. all contiguous load/store
///     operations along a specified minor dimension (not necessarily the
///     fastest varying) ;
///  2. analyzing those patterns for profitability (TODO(ntv): and
///     interference);
///  3. Then, for each pattern in order:
///    a. applying iterative rewriting of the loop and the load operations in
///       DFS postorder. Rewriting is implemented by coarsening the loops and
///       turning load operations into opaque vector.transfer_read ops;
///    b. keeping track of the load operations encountered as "roots" and the
///       store operations as "terminals";
///    c. traversing the use-def chains starting from the roots and iteratively
///       propagating vectorized values. Scalar values that are encountered
///       during this process must come from outside the scope of the current
///       pattern (TODO(ntv): enforce this and generalize). Such a scalar value
///       is vectorized only if it is a constant (into a vector splat). The
///       non-constant case is not supported for now and results in the pattern
///       failing to vectorize;
///    d. performing a second traversal on the terminals (store ops) to
///       rewriting the scalar value they write to memory into vector form.
///       If the scalar value has been vectorized previously, we simply replace
///       it by its vector form. Otherwise, if the scalar value is a constant,
///       it is vectorized into a splat. In all other cases, vectorization for
///       the pattern currently fails.
///    e. if everything under the root AffineForOp in the current pattern
///       vectorizes properly, we commit that loop to the IR. Otherwise we
///       discard it and restore a previously cloned version of the loop. Thanks
///       to the recursive scoping nature of matchers and captured patterns,
///       this is transparently achieved by a simple RAII implementation.
///    f. vectorization is applied on the next pattern in the list. Because
///       pattern interference avoidance is not yet implemented and that we do
///       not support further vectorizing an already vector load we need to
///       re-verify that the pattern is still vectorizable. This is expected to
///       make cost models more difficult to write and is subject to improvement
///       in the future.
///
/// Points c. and d. above are worth additional comment. In most passes that
/// do not change the type of operands, it is usually preferred to eagerly
/// `replaceAllUsesWith`. Unfortunately this does not work for vectorization
/// because during the use-def chain traversal, all the operands of an operation
/// must be available in vector form. Trying to propagate eagerly makes the IR
/// temporarily invalid and results in errors such as:
///   `vectorize.mlir:308:13: error: 'addf' op requires the same type for all
///   operands and results
///      %s5 = addf %a5, %b5 : f32`
///
/// Lastly, we show a minimal example for which use-def chains rooted in load /
/// vector.transfer_read are not enough. This is what motivated splitting
/// terminal processing out of the use-def chains starting from loads. In the
/// following snippet, there is simply no load::
/// ```mlir
/// func @fill(%A : memref<128xf32>) -> () {
///   %f1 = constant 1.0 : f32
///   affine.for %i0 = 0 to 32 {
///     affine.store %f1, %A[%i0] : memref<128xf32, 0>
///   }
///   return
/// }
/// ```
///
/// Choice of loop transformation to support the algorithm:
/// =======================================================
/// The choice of loop transformation to apply for coarsening vectorized loops
/// is still subject to exploratory tradeoffs. In particular, say we want to
/// vectorize by a factor 128, we want to transform the following input:
/// ```mlir
///   affine.for %i = %M to %N {
///     %a = affine.load %A[%i] : memref<?xf32>
///   }
/// ```
///
/// Traditionally, one would vectorize late (after scheduling, tiling,
/// memory promotion etc) say after stripmining (and potentially unrolling in
/// the case of LLVM's SLP vectorizer):
/// ```mlir
///   affine.for %i = floor(%M, 128) to ceil(%N, 128) {
///     affine.for %ii = max(%M, 128 * %i) to min(%N, 128*%i + 127) {
///       %a = affine.load %A[%ii] : memref<?xf32>
///     }
///   }
/// ```
///
/// Instead, we seek to vectorize early and freeze vector types before
/// scheduling, so we want to generate a pattern that resembles:
/// ```mlir
///   affine.for %i = ? to ? step ? {
///     %v_a = vector.transfer_read %A[%i] : memref<?xf32>, vector<128xf32>
///   }
/// ```
///
/// i. simply dividing the lower / upper bounds by 128 creates issues
///    when representing expressions such as ii + 1 because now we only
///    have access to original values that have been divided. Additional
///    information is needed to specify accesses at below-128 granularity;
/// ii. another alternative is to coarsen the loop step but this may have
///    consequences on dependence analysis and fusability of loops: fusable
///    loops probably need to have the same step (because we don't want to
///    stripmine/unroll to enable fusion).
/// As a consequence, we choose to represent the coarsening using the loop
/// step for now and reevaluate in the future. Note that we can renormalize
/// loop steps later if/when we have evidence that they are problematic.
///
/// For the simple strawman example above, vectorizing for a 1-D vector
/// abstraction of size 128 returns code similar to:
/// ```mlir
///   affine.for %i = %M to %N step 128 {
///     %v_a = vector.transfer_read %A[%i] : memref<?xf32>, vector<128xf32>
///   }
/// ```
///
/// Unsupported cases, extensions, and work in progress (help welcome :-) ):
/// ========================================================================
///   1. lowering to concrete vector types for various HW;
///   2. reduction support;
///   3. non-effecting padding during vector.transfer_read and filter during
///      vector.transfer_write;
///   4. misalignment support vector.transfer_read / vector.transfer_write
///      (hopefully without read-modify-writes);
///   5. control-flow support;
///   6. cost-models, heuristics and search;
///   7. Op implementation, extensions and implication on memref views;
///   8. many TODOs left around.
///
/// Examples:
/// =========
/// Consider the following Function:
/// ```mlir
/// func @vector_add_2d(%M : index, %N : index) -> f32 {
///   %A = alloc (%M, %N) : memref<?x?xf32, 0>
///   %B = alloc (%M, %N) : memref<?x?xf32, 0>
///   %C = alloc (%M, %N) : memref<?x?xf32, 0>
///   %f1 = constant 1.0 : f32
///   %f2 = constant 2.0 : f32
///   affine.for %i0 = 0 to %M {
///     affine.for %i1 = 0 to %N {
///       // non-scoped %f1
///       affine.store %f1, %A[%i0, %i1] : memref<?x?xf32, 0>
///     }
///   }
///   affine.for %i2 = 0 to %M {
///     affine.for %i3 = 0 to %N {
///       // non-scoped %f2
///       affine.store %f2, %B[%i2, %i3] : memref<?x?xf32, 0>
///     }
///   }
///   affine.for %i4 = 0 to %M {
///     affine.for %i5 = 0 to %N {
///       %a5 = affine.load %A[%i4, %i5] : memref<?x?xf32, 0>
///       %b5 = affine.load %B[%i4, %i5] : memref<?x?xf32, 0>
///       %s5 = addf %a5, %b5 : f32
///       // non-scoped %f1
///       %s6 = addf %s5, %f1 : f32
///       // non-scoped %f2
///       %s7 = addf %s5, %f2 : f32
///       // diamond dependency.
///       %s8 = addf %s7, %s6 : f32
///       affine.store %s8, %C[%i4, %i5] : memref<?x?xf32, 0>
///     }
///   }
///   %c7 = constant 7 : index
///   %c42 = constant 42 : index
///   %res = load %C[%c7, %c42] : memref<?x?xf32, 0>
///   return %res : f32
/// }
/// ```
///
/// The -affine-vectorize pass with the following arguments:
/// ```
/// -affine-vectorize -virtual-vector-size 256 --test-fastest-varying=0
/// ```
///
/// produces this standard innermost-loop vectorized code:
/// ```mlir
/// func @vector_add_2d(%arg0 : index, %arg1 : index) -> f32 {
///   %0 = alloc(%arg0, %arg1) : memref<?x?xf32>
///   %1 = alloc(%arg0, %arg1) : memref<?x?xf32>
///   %2 = alloc(%arg0, %arg1) : memref<?x?xf32>
///   %cst = constant 1.0 : f32
///   %cst_0 = constant 2.0 : f32
///   affine.for %i0 = 0 to %arg0 {
///     affine.for %i1 = 0 to %arg1 step 256 {
///       %cst_1 = constant dense<vector<256xf32>, 1.0> :
///                vector<256xf32>
///       vector.transfer_write %cst_1, %0[%i0, %i1] :
///                vector<256xf32>, memref<?x?xf32>
///     }
///   }
///   affine.for %i2 = 0 to %arg0 {
///     affine.for %i3 = 0 to %arg1 step 256 {
///       %cst_2 = constant dense<vector<256xf32>, 2.0> :
///                vector<256xf32>
///       vector.transfer_write %cst_2, %1[%i2, %i3] :
///                vector<256xf32>, memref<?x?xf32>
///     }
///   }
///   affine.for %i4 = 0 to %arg0 {
///     affine.for %i5 = 0 to %arg1 step 256 {
///       %3 = vector.transfer_read %0[%i4, %i5] :
///            memref<?x?xf32>, vector<256xf32>
///       %4 = vector.transfer_read %1[%i4, %i5] :
///            memref<?x?xf32>, vector<256xf32>
///       %5 = addf %3, %4 : vector<256xf32>
///       %cst_3 = constant dense<vector<256xf32>, 1.0> :
///                vector<256xf32>
///       %6 = addf %5, %cst_3 : vector<256xf32>
///       %cst_4 = constant dense<vector<256xf32>, 2.0> :
///                vector<256xf32>
///       %7 = addf %5, %cst_4 : vector<256xf32>
///       %8 = addf %7, %6 : vector<256xf32>
///       vector.transfer_write %8, %2[%i4, %i5] :
///                vector<256xf32>, memref<?x?xf32>
///     }
///   }
///   %c7 = constant 7 : index
///   %c42 = constant 42 : index
///   %9 = load %2[%c7, %c42] : memref<?x?xf32>
///   return %9 : f32
/// }
/// ```
///
/// The -affine-vectorize pass with the following arguments:
/// ```
/// -affine-vectorize -virtual-vector-size 32 -virtual-vector-size 256
/// --test-fastest-varying=1 --test-fastest-varying=0
/// ```
///
/// produces this more interesting mixed outer-innermost-loop vectorized code:
/// ```mlir
/// func @vector_add_2d(%arg0 : index, %arg1 : index) -> f32 {
///   %0 = alloc(%arg0, %arg1) : memref<?x?xf32>
///   %1 = alloc(%arg0, %arg1) : memref<?x?xf32>
///   %2 = alloc(%arg0, %arg1) : memref<?x?xf32>
///   %cst = constant 1.0 : f32
///   %cst_0 = constant 2.0 : f32
///   affine.for %i0 = 0 to %arg0 step 32 {
///     affine.for %i1 = 0 to %arg1 step 256 {
///       %cst_1 = constant dense<vector<32x256xf32>, 1.0> :
///                vector<32x256xf32>
///       vector.transfer_write %cst_1, %0[%i0, %i1] :
///                vector<32x256xf32>, memref<?x?xf32>
///     }
///   }
///   affine.for %i2 = 0 to %arg0 step 32 {
///     affine.for %i3 = 0 to %arg1 step 256 {
///       %cst_2 = constant dense<vector<32x256xf32>, 2.0> :
///                vector<32x256xf32>
///       vector.transfer_write %cst_2, %1[%i2, %i3] :
///                vector<32x256xf32>, memref<?x?xf32>
///     }
///   }
///   affine.for %i4 = 0 to %arg0 step 32 {
///     affine.for %i5 = 0 to %arg1 step 256 {
///       %3 = vector.transfer_read %0[%i4, %i5] :
///                memref<?x?xf32> vector<32x256xf32>
///       %4 = vector.transfer_read %1[%i4, %i5] :
///                memref<?x?xf32>, vector<32x256xf32>
///       %5 = addf %3, %4 : vector<32x256xf32>
///       %cst_3 = constant dense<vector<32x256xf32>, 1.0> :
///                vector<32x256xf32>
///       %6 = addf %5, %cst_3 : vector<32x256xf32>
///       %cst_4 = constant dense<vector<32x256xf32>, 2.0> :
///                vector<32x256xf32>
///       %7 = addf %5, %cst_4 : vector<32x256xf32>
///       %8 = addf %7, %6 : vector<32x256xf32>
///       vector.transfer_write %8, %2[%i4, %i5] :
///                vector<32x256xf32>, memref<?x?xf32>
///     }
///   }
///   %c7 = constant 7 : index
///   %c42 = constant 42 : index
///   %9 = load %2[%c7, %c42] : memref<?x?xf32>
///   return %9 : f32
/// }
/// ```
///
/// Of course, much more intricate n-D imperfectly-nested patterns can be
/// vectorized too and specified in a fully declarative fashion.

#define DEBUG_TYPE "early-vect"

using functional::makePtrDynCaster;
using functional::map;
using llvm::dbgs;
using llvm::SetVector;

static llvm::cl::OptionCategory clOptionsCategory("vectorize options");

static llvm::cl::list<int> clVirtualVectorSize(
    "virtual-vector-size",
    llvm::cl::desc("Specify an n-D virtual vector size for vectorization"),
    llvm::cl::ZeroOrMore, llvm::cl::cat(clOptionsCategory));

static llvm::cl::list<int> clFastestVaryingPattern(
    "test-fastest-varying",
    llvm::cl::desc(
        "Specify a 1-D, 2-D or 3-D pattern of fastest varying memory"
        " dimensions to match. See defaultPatterns in Vectorize.cpp for a"
        " description and examples. This is used for testing purposes"),
    llvm::cl::ZeroOrMore, llvm::cl::cat(clOptionsCategory));

/// Forward declaration.
static FilterFunctionType
isVectorizableLoopPtrFactory(const DenseSet<Operation *> &parallelLoops,
                             int fastestVaryingMemRefDimension);

/// Creates a vectorization pattern from the command line arguments.
/// Up to 3-D patterns are supported.
/// If the command line argument requests a pattern of higher order, returns an
/// empty pattern list which will conservatively result in no vectorization.
static std::vector<NestedPattern>
makePatterns(const DenseSet<Operation *> &parallelLoops, int vectorRank,
             ArrayRef<int64_t> fastestVaryingPattern) {
  using matcher::For;
  int64_t d0 = fastestVaryingPattern.empty() ? -1 : fastestVaryingPattern[0];
  int64_t d1 = fastestVaryingPattern.size() < 2 ? -1 : fastestVaryingPattern[1];
  int64_t d2 = fastestVaryingPattern.size() < 3 ? -1 : fastestVaryingPattern[2];
  switch (vectorRank) {
  case 1:
    return {For(isVectorizableLoopPtrFactory(parallelLoops, d0))};
  case 2:
    return {For(isVectorizableLoopPtrFactory(parallelLoops, d0),
                For(isVectorizableLoopPtrFactory(parallelLoops, d1)))};
  case 3:
    return {For(isVectorizableLoopPtrFactory(parallelLoops, d0),
                For(isVectorizableLoopPtrFactory(parallelLoops, d1),
                    For(isVectorizableLoopPtrFactory(parallelLoops, d2))))};
  default: {
    return std::vector<NestedPattern>();
  }
  }
}

static NestedPattern &vectorTransferPattern() {
  static auto pattern = matcher::Op([](Operation &op) {
    return isa<vector::TransferReadOp>(op) || isa<vector::TransferWriteOp>(op);
  });
  return pattern;
}

namespace {

/// Base state for the vectorize pass.
/// Command line arguments are preempted by non-empty pass arguments.
struct Vectorize : public FunctionPass<Vectorize> {
  Vectorize();
  Vectorize(ArrayRef<int64_t> virtualVectorSize);
  void runOnFunction() override;

  // The virtual vector size that we vectorize to.
  SmallVector<int64_t, 4> vectorSizes;
  // Optionally, the fixed mapping from loop to fastest varying MemRef dimension
  // for all the MemRefs within a loop pattern:
  //   the index represents the loop depth, the value represents the k^th
  //   fastest varying memory dimension.
  // This is voluntarily restrictive and is meant to precisely target a
  // particular loop/op pair, for testing purposes.
  SmallVector<int64_t, 4> fastestVaryingPattern;
};

} // end anonymous namespace

Vectorize::Vectorize()
    : vectorSizes(clVirtualVectorSize.begin(), clVirtualVectorSize.end()),
      fastestVaryingPattern(clFastestVaryingPattern.begin(),
                            clFastestVaryingPattern.end()) {}

Vectorize::Vectorize(ArrayRef<int64_t> virtualVectorSize) : Vectorize() {
  if (!virtualVectorSize.empty()) {
    this->vectorSizes.assign(virtualVectorSize.begin(),
                             virtualVectorSize.end());
  }
}

/////// TODO(ntv): Hoist to a VectorizationStrategy.cpp when appropriate.
/////////
namespace {

struct VectorizationStrategy {
  SmallVector<int64_t, 8> vectorSizes;
  DenseMap<Operation *, unsigned> loopToVectorDim;
};

} // end anonymous namespace

static void vectorizeLoopIfProfitable(Operation *loop, unsigned depthInPattern,
                                      unsigned patternDepth,
                                      VectorizationStrategy *strategy) {
  assert(patternDepth > depthInPattern &&
         "patternDepth is greater than depthInPattern");
  if (patternDepth - depthInPattern > strategy->vectorSizes.size()) {
    // Don't vectorize this loop
    return;
  }
  strategy->loopToVectorDim[loop] =
      strategy->vectorSizes.size() - (patternDepth - depthInPattern);
}

/// Implements a simple strawman strategy for vectorization.
/// Given a matched pattern `matches` of depth `patternDepth`, this strategy
/// greedily assigns the fastest varying dimension ** of the vector ** to the
/// innermost loop in the pattern.
/// When coupled with a pattern that looks for the fastest varying dimension in
/// load/store MemRefs, this creates a generic vectorization strategy that works
/// for any loop in a hierarchy (outermost, innermost or intermediate).
///
/// TODO(ntv): In the future we should additionally increase the power of the
/// profitability analysis along 3 directions:
///   1. account for loop extents (both static and parametric + annotations);
///   2. account for data layout permutations;
///   3. account for impact of vectorization on maximal loop fusion.
/// Then we can quantify the above to build a cost model and search over
/// strategies.
static LogicalResult analyzeProfitability(ArrayRef<NestedMatch> matches,
                                          unsigned depthInPattern,
                                          unsigned patternDepth,
                                          VectorizationStrategy *strategy) {
  for (auto m : matches) {
    if (failed(analyzeProfitability(m.getMatchedChildren(), depthInPattern + 1,
                                    patternDepth, strategy))) {
      return failure();
    }
    vectorizeLoopIfProfitable(m.getMatchedOperation(), depthInPattern,
                              patternDepth, strategy);
  }
  return success();
}

///// end TODO(ntv): Hoist to a VectorizationStrategy.cpp when appropriate /////

namespace {

struct VectorizationState {
  /// Adds an entry of pre/post vectorization operations in the state.
  void registerReplacement(Operation *key, Operation *value);
  /// When the current vectorization pattern is successful, this erases the
  /// operations that were marked for erasure in the proper order and resets
  /// the internal state for the next pattern.
  void finishVectorizationPattern();

  // In-order tracking of original Operation that have been vectorized.
  // Erase in reverse order.
  SmallVector<Operation *, 16> toErase;
  // Set of Operation that have been vectorized (the values in the
  // vectorizationMap for hashed access). The vectorizedSet is used in
  // particular to filter the operations that have already been vectorized by
  // this pattern, when iterating over nested loops in this pattern.
  DenseSet<Operation *> vectorizedSet;
  // Map of old scalar Operation to new vectorized Operation.
  DenseMap<Operation *, Operation *> vectorizationMap;
  // Map of old scalar Value to new vectorized Value.
  DenseMap<Value, Value> replacementMap;
  // The strategy drives which loop to vectorize by which amount.
  const VectorizationStrategy *strategy;
  // Use-def roots. These represent the starting points for the worklist in the
  // vectorizeNonTerminals function. They consist of the subset of load
  // operations that have been vectorized. They can be retrieved from
  // `vectorizationMap` but it is convenient to keep track of them in a separate
  // data structure.
  DenseSet<Operation *> roots;
  // Terminal operations for the worklist in the vectorizeNonTerminals
  // function. They consist of the subset of store operations that have been
  // vectorized. They can be retrieved from `vectorizationMap` but it is
  // convenient to keep track of them in a separate data structure. Since they
  // do not necessarily belong to use-def chains starting from loads (e.g
  // storing a constant), we need to handle them in a post-pass.
  DenseSet<Operation *> terminals;
  // Checks that the type of `op` is AffineStoreOp and adds it to the terminals
  // set.
  void registerTerminal(Operation *op);
  // Folder used to factor out constant creation.
  OperationFolder *folder;

private:
  void registerReplacement(Value key, Value value);
};

} // end namespace

void VectorizationState::registerReplacement(Operation *key, Operation *value) {
  LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ commit vectorized op: ");
  LLVM_DEBUG(key->print(dbgs()));
  LLVM_DEBUG(dbgs() << "  into  ");
  LLVM_DEBUG(value->print(dbgs()));
  assert(key->getNumResults() == 1 && "already registered");
  assert(value->getNumResults() == 1 && "already registered");
  assert(vectorizedSet.count(value) == 0 && "already registered");
  assert(vectorizationMap.count(key) == 0 && "already registered");
  toErase.push_back(key);
  vectorizedSet.insert(value);
  vectorizationMap.insert(std::make_pair(key, value));
  registerReplacement(key->getResult(0), value->getResult(0));
  if (isa<AffineLoadOp>(key)) {
    assert(roots.count(key) == 0 && "root was already inserted previously");
    roots.insert(key);
  }
}

void VectorizationState::registerTerminal(Operation *op) {
  assert(isa<AffineStoreOp>(op) && "terminal must be a AffineStoreOp");
  assert(terminals.count(op) == 0 &&
         "terminal was already inserted previously");
  terminals.insert(op);
}

void VectorizationState::finishVectorizationPattern() {
  while (!toErase.empty()) {
    auto *op = toErase.pop_back_val();
    LLVM_DEBUG(dbgs() << "\n[early-vect] finishVectorizationPattern erase: ");
    LLVM_DEBUG(op->print(dbgs()));
    op->erase();
  }
}

void VectorizationState::registerReplacement(Value key, Value value) {
  assert(replacementMap.count(key) == 0 && "replacement already registered");
  replacementMap.insert(std::make_pair(key, value));
}

// Apply 'map' with 'mapOperands' returning resulting values in 'results'.
static void computeMemoryOpIndices(Operation *op, AffineMap map,
                                   ValueRange mapOperands,
                                   SmallVectorImpl<Value> &results) {
  OpBuilder builder(op);
  for (auto resultExpr : map.getResults()) {
    auto singleResMap =
        AffineMap::get(map.getNumDims(), map.getNumSymbols(), resultExpr);
    auto afOp =
        builder.create<AffineApplyOp>(op->getLoc(), singleResMap, mapOperands);
    results.push_back(afOp);
  }
}

////// TODO(ntv): Hoist to a VectorizationMaterialize.cpp when appropriate. ////

/// Handles the vectorization of load and store MLIR operations.
///
/// AffineLoadOp operations are the roots of the vectorizeNonTerminals call.
/// They are vectorized immediately. The resulting vector.transfer_read is
/// immediately registered to replace all uses of the AffineLoadOp in this
/// pattern's scope.
///
/// AffineStoreOp are the terminals of the vectorizeNonTerminals call. They
/// need to be vectorized late once all the use-def chains have been traversed.
/// Additionally, they may have ssa-values operands which come from outside the
/// scope of the current pattern.
/// Such special cases force us to delay the vectorization of the stores until
/// the last step. Here we merely register the store operation.
template <typename LoadOrStoreOpPointer>
static LogicalResult vectorizeRootOrTerminal(Value iv,
                                             LoadOrStoreOpPointer memoryOp,
                                             VectorizationState *state) {
  auto memRefType = memoryOp.getMemRef().getType().template cast<MemRefType>();

  auto elementType = memRefType.getElementType();
  // TODO(ntv): ponder whether we want to further vectorize a vector value.
  assert(VectorType::isValidElementType(elementType) &&
         "Not a valid vector element type");
  auto vectorType = VectorType::get(state->strategy->vectorSizes, elementType);

  // Materialize a MemRef with 1 vector.
  auto *opInst = memoryOp.getOperation();
  // For now, vector.transfers must be aligned, operate only on indices with an
  // identity subset of AffineMap and do not change layout.
  // TODO(ntv): increase the expressiveness power of vector.transfer operations
  // as needed by various targets.
  if (auto load = dyn_cast<AffineLoadOp>(opInst)) {
    OpBuilder b(opInst);
    ValueRange mapOperands = load.getMapOperands();
    SmallVector<Value, 8> indices;
    indices.reserve(load.getMemRefType().getRank());
    if (load.getAffineMap() !=
        b.getMultiDimIdentityMap(load.getMemRefType().getRank())) {
      computeMemoryOpIndices(opInst, load.getAffineMap(), mapOperands, indices);
    } else {
      indices.append(mapOperands.begin(), mapOperands.end());
    }
    auto permutationMap =
        makePermutationMap(opInst, indices, state->strategy->loopToVectorDim);
    if (!permutationMap)
      return LogicalResult::Failure;
    LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ permutationMap: ");
    LLVM_DEBUG(permutationMap.print(dbgs()));
    auto transfer = b.create<vector::TransferReadOp>(
        opInst->getLoc(), vectorType, memoryOp.getMemRef(), indices,
        AffineMapAttr::get(permutationMap),
        // TODO(b/144455320) add a proper padding value, not just 0.0 : f32
        state->folder->create<ConstantFloatOp>(b, opInst->getLoc(),
                                               APFloat(0.0f), b.getF32Type()));
    state->registerReplacement(opInst, transfer.getOperation());
  } else {
    state->registerTerminal(opInst);
  }
  return success();
}
/// end TODO(ntv): Hoist to a VectorizationMaterialize.cpp when appropriate. ///

/// Coarsens the loops bounds and transforms all remaining load and store
/// operations into the appropriate vector.transfer.
static LogicalResult vectorizeAffineForOp(AffineForOp loop, int64_t step,
                                          VectorizationState *state) {
  using namespace functional;
  loop.setStep(step);

  FilterFunctionType notVectorizedThisPattern = [state](Operation &op) {
    if (!matcher::isLoadOrStore(op)) {
      return false;
    }
    return state->vectorizationMap.count(&op) == 0 &&
           state->vectorizedSet.count(&op) == 0 &&
           state->roots.count(&op) == 0 && state->terminals.count(&op) == 0;
  };
  auto loadAndStores = matcher::Op(notVectorizedThisPattern);
  SmallVector<NestedMatch, 8> loadAndStoresMatches;
  loadAndStores.match(loop.getOperation(), &loadAndStoresMatches);
  for (auto ls : loadAndStoresMatches) {
    auto *opInst = ls.getMatchedOperation();
    auto load = dyn_cast<AffineLoadOp>(opInst);
    auto store = dyn_cast<AffineStoreOp>(opInst);
    LLVM_DEBUG(opInst->print(dbgs()));
    LogicalResult result =
        load ? vectorizeRootOrTerminal(loop.getInductionVar(), load, state)
             : vectorizeRootOrTerminal(loop.getInductionVar(), store, state);
    if (failed(result)) {
      return failure();
    }
  }
  return success();
}

/// Returns a FilterFunctionType that can be used in NestedPattern to match a
/// loop whose underlying load/store accesses are either invariant or all
// varying along the `fastestVaryingMemRefDimension`.
static FilterFunctionType
isVectorizableLoopPtrFactory(const DenseSet<Operation *> &parallelLoops,
                             int fastestVaryingMemRefDimension) {
  return [&parallelLoops, fastestVaryingMemRefDimension](Operation &forOp) {
    auto loop = cast<AffineForOp>(forOp);
    auto parallelIt = parallelLoops.find(loop);
    if (parallelIt == parallelLoops.end())
      return false;
    int memRefDim = -1;
    auto vectorizableBody =
        isVectorizableLoopBody(loop, &memRefDim, vectorTransferPattern());
    if (!vectorizableBody)
      return false;
    return memRefDim == -1 || fastestVaryingMemRefDimension == -1 ||
           memRefDim == fastestVaryingMemRefDimension;
  };
}

/// Apply vectorization of `loop` according to `state`. This is only triggered
/// if all vectorizations in `childrenMatches` have already succeeded
/// recursively in DFS post-order.
static LogicalResult
vectorizeLoopsAndLoadsRecursively(NestedMatch oneMatch,
                                  VectorizationState *state) {
  auto *loopInst = oneMatch.getMatchedOperation();
  auto loop = cast<AffineForOp>(loopInst);
  auto childrenMatches = oneMatch.getMatchedChildren();

  // 1. DFS postorder recursion, if any of my children fails, I fail too.
  for (auto m : childrenMatches) {
    if (failed(vectorizeLoopsAndLoadsRecursively(m, state))) {
      return failure();
    }
  }

  // 2. This loop may have been omitted from vectorization for various reasons
  // (e.g. due to the performance model or pattern depth > vector size).
  auto it = state->strategy->loopToVectorDim.find(loopInst);
  if (it == state->strategy->loopToVectorDim.end()) {
    return success();
  }

  // 3. Actual post-order transformation.
  auto vectorDim = it->second;
  assert(vectorDim < state->strategy->vectorSizes.size() &&
         "vector dim overflow");
  //   a. get actual vector size
  auto vectorSize = state->strategy->vectorSizes[vectorDim];
  //   b. loop transformation for early vectorization is still subject to
  //     exploratory tradeoffs (see top of the file). Apply coarsening, i.e.:
  //        | ub -> ub
  //        | step -> step * vectorSize
  LLVM_DEBUG(dbgs() << "\n[early-vect] vectorizeForOp by " << vectorSize
                    << " : ");
  LLVM_DEBUG(loopInst->print(dbgs()));
  return vectorizeAffineForOp(loop, loop.getStep() * vectorSize, state);
}

/// Tries to transform a scalar constant into a vector splat of that constant.
/// Returns the vectorized splat operation if the constant is a valid vector
/// element type.
/// If `type` is not a valid vector type or if the scalar constant is not a
/// valid vector element type, returns nullptr.
static Value vectorizeConstant(Operation *op, ConstantOp constant, Type type) {
  if (!type || !type.isa<VectorType>() ||
      !VectorType::isValidElementType(constant.getType())) {
    return nullptr;
  }
  OpBuilder b(op);
  Location loc = op->getLoc();
  auto vectorType = type.cast<VectorType>();
  auto attr = DenseElementsAttr::get(vectorType, constant.getValue());
  auto *constantOpInst = constant.getOperation();

  OperationState state(loc, constantOpInst->getName().getStringRef(), {},
                       {vectorType}, {b.getNamedAttr("value", attr)});

  return b.createOperation(state)->getResult(0);
}

/// Tries to vectorize a given operand `op` of Operation `op` during
/// def-chain propagation or during terminal vectorization, by applying the
/// following logic:
/// 1. if the defining operation is part of the vectorizedSet (i.e. vectorized
///    useby -def propagation), `op` is already in the proper vector form;
/// 2. otherwise, the `op` may be in some other vector form that fails to
///    vectorize atm (i.e. broadcasting required), returns nullptr to indicate
///    failure;
/// 3. if the `op` is a constant, returns the vectorized form of the constant;
/// 4. non-constant scalars are currently non-vectorizable, in particular to
///    guard against vectorizing an index which may be loop-variant and needs
///    special handling.
///
/// In particular this logic captures some of the use cases where definitions
/// that are not scoped under the current pattern are needed to vectorize.
/// One such example is top level function constants that need to be splatted.
///
/// Returns an operand that has been vectorized to match `state`'s strategy if
/// vectorization is possible with the above logic. Returns nullptr otherwise.
///
/// TODO(ntv): handle more complex cases.
static Value vectorizeOperand(Value operand, Operation *op,
                              VectorizationState *state) {
  LLVM_DEBUG(dbgs() << "\n[early-vect]vectorize operand: " << operand);
  // 1. If this value has already been vectorized this round, we are done.
  if (state->vectorizedSet.count(operand.getDefiningOp()) > 0) {
    LLVM_DEBUG(dbgs() << " -> already vector operand");
    return operand;
  }
  // 1.b. Delayed on-demand replacement of a use.
  //    Note that we cannot just call replaceAllUsesWith because it may result
  //    in ops with mixed types, for ops whose operands have not all yet
  //    been vectorized. This would be invalid IR.
  auto it = state->replacementMap.find(operand);
  if (it != state->replacementMap.end()) {
    auto res = it->second;
    LLVM_DEBUG(dbgs() << "-> delayed replacement by: " << res);
    return res;
  }
  // 2. TODO(ntv): broadcast needed.
  if (operand.getType().isa<VectorType>()) {
    LLVM_DEBUG(dbgs() << "-> non-vectorizable");
    return nullptr;
  }
  // 3. vectorize constant.
  if (auto constant = dyn_cast<ConstantOp>(operand.getDefiningOp())) {
    return vectorizeConstant(
        op, constant,
        VectorType::get(state->strategy->vectorSizes, operand.getType()));
  }
  // 4. currently non-vectorizable.
  LLVM_DEBUG(dbgs() << "-> non-vectorizable: " << operand);
  return nullptr;
}

/// Encodes Operation-specific behavior for vectorization. In general we assume
/// that all operands of an op must be vectorized but this is not always true.
/// In the future, it would be nice to have a trait that describes how a
/// particular operation vectorizes. For now we implement the case distinction
/// here.
/// Returns a vectorized form of an operation or nullptr if vectorization fails.
// TODO(ntv): consider adding a trait to Op to describe how it gets vectorized.
// Maybe some Ops are not vectorizable or require some tricky logic, we cannot
// do one-off logic here; ideally it would be TableGen'd.
static Operation *vectorizeOneOperation(Operation *opInst,
                                        VectorizationState *state) {
  // Sanity checks.
  assert(!isa<AffineLoadOp>(opInst) &&
         "all loads must have already been fully vectorized independently");
  assert(!isa<vector::TransferReadOp>(opInst) &&
         "vector.transfer_read cannot be further vectorized");
  assert(!isa<vector::TransferWriteOp>(opInst) &&
         "vector.transfer_write cannot be further vectorized");

  if (auto store = dyn_cast<AffineStoreOp>(opInst)) {
    OpBuilder b(opInst);
    auto memRef = store.getMemRef();
    auto value = store.getValueToStore();
    auto vectorValue = vectorizeOperand(value, opInst, state);

    ValueRange mapOperands = store.getMapOperands();
    SmallVector<Value, 8> indices;
    indices.reserve(store.getMemRefType().getRank());
    if (store.getAffineMap() !=
        b.getMultiDimIdentityMap(store.getMemRefType().getRank())) {
      computeMemoryOpIndices(opInst, store.getAffineMap(), mapOperands,
                             indices);
    } else {
      indices.append(mapOperands.begin(), mapOperands.end());
    }

    auto permutationMap =
        makePermutationMap(opInst, indices, state->strategy->loopToVectorDim);
    if (!permutationMap)
      return nullptr;
    LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ permutationMap: ");
    LLVM_DEBUG(permutationMap.print(dbgs()));
    auto transfer = b.create<vector::TransferWriteOp>(
        opInst->getLoc(), vectorValue, memRef, indices,
        AffineMapAttr::get(permutationMap));
    auto *res = transfer.getOperation();
    LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ vectorized store: " << *res);
    // "Terminals" (i.e. AffineStoreOps) are erased on the spot.
    opInst->erase();
    return res;
  }
  if (opInst->getNumRegions() != 0)
    return nullptr;

  SmallVector<Type, 8> vectorTypes;
  for (auto v : opInst->getResults()) {
    vectorTypes.push_back(
        VectorType::get(state->strategy->vectorSizes, v.getType()));
  }
  SmallVector<Value, 8> vectorOperands;
  for (auto v : opInst->getOperands()) {
    vectorOperands.push_back(vectorizeOperand(v, opInst, state));
  }
  // Check whether a single operand is null. If so, vectorization failed.
  bool success = llvm::all_of(vectorOperands, [](Value op) { return op; });
  if (!success) {
    LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ an operand failed vectorize");
    return nullptr;
  }

  // Create a clone of the op with the proper operands and return types.
  // TODO(ntv): The following assumes there is always an op with a fixed
  // name that works both in scalar mode and vector mode.
  // TODO(ntv): Is it worth considering an Operation.clone operation which
  // changes the type so we can promote an Operation with less boilerplate?
  OpBuilder b(opInst);
  OperationState newOp(opInst->getLoc(), opInst->getName().getStringRef(),
                       vectorOperands, vectorTypes, opInst->getAttrs(),
                       /*successors=*/{},
                       /*regions=*/{}, opInst->hasResizableOperandsList());
  return b.createOperation(newOp);
}

/// Iterates over the forward slice from the loads in the vectorization pattern
/// and rewrites them using their vectorized counterpart by:
///   1. Create the forward slice starting from the loads in the vectorization
///   pattern.
///   2. Topologically sorts the forward slice.
///   3. For each operation in the slice, create the vector form of this
///   operation, replacing each operand by a replacement operands retrieved from
///   replacementMap. If any such replacement is missing, vectorization fails.
static LogicalResult vectorizeNonTerminals(VectorizationState *state) {
  // 1. create initial worklist with the uses of the roots.
  SetVector<Operation *> worklist;
  // Note: state->roots have already been vectorized and must not be vectorized
  // again. This fits `getForwardSlice` which does not insert `op` in the
  // result.
  // Note: we have to exclude terminals because some of their defs may not be
  // nested under the vectorization pattern (e.g. constants defined in an
  // encompassing scope).
  // TODO(ntv): Use a backward slice for terminals, avoid special casing and
  // merge implementations.
  for (auto *op : state->roots) {
    getForwardSlice(op, &worklist, [state](Operation *op) {
      return state->terminals.count(op) == 0; // propagate if not terminal
    });
  }
  // We merged multiple slices, topological order may not hold anymore.
  worklist = topologicalSort(worklist);

  for (unsigned i = 0; i < worklist.size(); ++i) {
    auto *op = worklist[i];
    LLVM_DEBUG(dbgs() << "\n[early-vect] vectorize use: ");
    LLVM_DEBUG(op->print(dbgs()));

    // Create vector form of the operation.
    // Insert it just before op, on success register op as replaced.
    auto *vectorizedInst = vectorizeOneOperation(op, state);
    if (!vectorizedInst) {
      return failure();
    }

    // 3. Register replacement for future uses in the scope.
    //    Note that we cannot just call replaceAllUsesWith because it may
    //    result in ops with mixed types, for ops whose operands have not all
    //    yet been vectorized. This would be invalid IR.
    state->registerReplacement(op, vectorizedInst);
  }
  return success();
}

/// Vectorization is a recursive procedure where anything below can fail.
/// The root match thus needs to maintain a clone for handling failure.
/// Each root may succeed independently but will otherwise clean after itself if
/// anything below it fails.
static LogicalResult vectorizeRootMatch(NestedMatch m,
                                        VectorizationStrategy *strategy) {
  auto loop = cast<AffineForOp>(m.getMatchedOperation());
  OperationFolder folder(loop.getContext());
  VectorizationState state;
  state.strategy = strategy;
  state.folder = &folder;

  // Since patterns are recursive, they can very well intersect.
  // Since we do not want a fully greedy strategy in general, we decouple
  // pattern matching, from profitability analysis, from application.
  // As a consequence we must check that each root pattern is still
  // vectorizable. If a pattern is not vectorizable anymore, we just skip it.
  // TODO(ntv): implement a non-greedy profitability analysis that keeps only
  // non-intersecting patterns.
  if (!isVectorizableLoopBody(loop, vectorTransferPattern())) {
    LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ loop is not vectorizable");
    return failure();
  }

  /// Sets up error handling for this root loop. This is how the root match
  /// maintains a clone for handling failure and restores the proper state via
  /// RAII.
  auto *loopInst = loop.getOperation();
  OpBuilder builder(loopInst);
  auto clonedLoop = cast<AffineForOp>(builder.clone(*loopInst));
  struct Guard {
    LogicalResult failure() {
      loop.getInductionVar().replaceAllUsesWith(clonedLoop.getInductionVar());
      loop.erase();
      return mlir::failure();
    }
    LogicalResult success() {
      clonedLoop.erase();
      return mlir::success();
    }
    AffineForOp loop;
    AffineForOp clonedLoop;
  } guard{loop, clonedLoop};

  //////////////////////////////////////////////////////////////////////////////
  // Start vectorizing.
  // From now on, any error triggers the scope guard above.
  //////////////////////////////////////////////////////////////////////////////
  // 1. Vectorize all the loops matched by the pattern, recursively.
  // This also vectorizes the roots (AffineLoadOp) as well as registers the
  // terminals (AffineStoreOp) for post-processing vectorization (we need to
  // wait for all use-def chains into them to be vectorized first).
  if (failed(vectorizeLoopsAndLoadsRecursively(m, &state))) {
    LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ failed root vectorizeLoop");
    return guard.failure();
  }

  // 2. Vectorize operations reached by use-def chains from root except the
  // terminals (store operations) that need to be post-processed separately.
  // TODO(ntv): add more as we expand.
  if (failed(vectorizeNonTerminals(&state))) {
    LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ failed vectorizeNonTerminals");
    return guard.failure();
  }

  // 3. Post-process terminals.
  // Note: we have to post-process terminals because some of their defs may not
  // be nested under the vectorization pattern (e.g. constants defined in an
  // encompassing scope).
  // TODO(ntv): Use a backward slice for terminals, avoid special casing and
  // merge implementations.
  for (auto *op : state.terminals) {
    if (!vectorizeOneOperation(op, &state)) { // nullptr == failure
      LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ failed to vectorize terminals");
      return guard.failure();
    }
  }

  // 4. Finish this vectorization pattern.
  LLVM_DEBUG(dbgs() << "\n[early-vect]+++++ success vectorizing pattern");
  state.finishVectorizationPattern();
  return guard.success();
}

/// Applies vectorization to the current Function by searching over a bunch of
/// predetermined patterns.
void Vectorize::runOnFunction() {
  FuncOp f = getFunction();
  if (!fastestVaryingPattern.empty() &&
      fastestVaryingPattern.size() != vectorSizes.size()) {
    f.emitRemark("Fastest varying pattern specified with different size than "
                 "the vector size.");
    return signalPassFailure();
  }

  // Thread-safe RAII local context, BumpPtrAllocator freed on exit.
  NestedPatternContext mlContext;

  DenseSet<Operation *> parallelLoops;
  f.walk([&parallelLoops](AffineForOp loop) {
    if (isLoopParallel(loop))
      parallelLoops.insert(loop);
  });

  for (auto &pat :
       makePatterns(parallelLoops, vectorSizes.size(), fastestVaryingPattern)) {
    LLVM_DEBUG(dbgs() << "\n******************************************");
    LLVM_DEBUG(dbgs() << "\n******************************************");
    LLVM_DEBUG(dbgs() << "\n[early-vect] new pattern on Function\n");
    LLVM_DEBUG(f.print(dbgs()));
    unsigned patternDepth = pat.getDepth();

    SmallVector<NestedMatch, 8> matches;
    pat.match(f, &matches);
    // Iterate over all the top-level matches and vectorize eagerly.
    // This automatically prunes intersecting matches.
    for (auto m : matches) {
      VectorizationStrategy strategy;
      // TODO(ntv): depending on profitability, elect to reduce the vector size.
      strategy.vectorSizes.assign(vectorSizes.begin(), vectorSizes.end());
      if (failed(analyzeProfitability(m.getMatchedChildren(), 1, patternDepth,
                                      &strategy))) {
        continue;
      }
      vectorizeLoopIfProfitable(m.getMatchedOperation(), 0, patternDepth,
                                &strategy);
      // TODO(ntv): if pattern does not apply, report it; alter the
      // cost/benefit.
      vectorizeRootMatch(m, &strategy);
      // TODO(ntv): some diagnostics if failure to vectorize occurs.
    }
  }
  LLVM_DEBUG(dbgs() << "\n");
}

std::unique_ptr<OpPassBase<FuncOp>>
mlir::createVectorizePass(ArrayRef<int64_t> virtualVectorSize) {
  return std::make_unique<Vectorize>(virtualVectorSize);
}

static PassRegistration<Vectorize>
    pass("affine-vectorize",
         "Vectorize to a target independent n-D vector abstraction");