tensorflow2pytorch.py
15.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
import tensorflow as tf
import torch
import json
import os, sys
from dependencies.facenet.src import facenet
from dependencies.facenet.src.models import inception_resnet_v1 as tf_mdl
from dependencies.facenet.src.align import detect_face
from models.inception_resnet_v1 import InceptionResnetV1
from models.mtcnn import PNet, RNet, ONet
def import_tf_params(tf_mdl_dir, sess):
"""Import tensorflow model from save directory.
Arguments:
tf_mdl_dir {str} -- Location of protobuf, checkpoint, meta files.
sess {tensorflow.Session} -- Tensorflow session object.
Returns:
(list, list, list) -- Tuple of lists containing the layer names,
parameter arrays as numpy ndarrays, parameter shapes.
"""
print('\nLoading tensorflow model\n')
if callable(tf_mdl_dir):
tf_mdl_dir(sess)
else:
facenet.load_model(tf_mdl_dir)
print('\nGetting model weights\n')
tf_layers = tf.trainable_variables()
tf_params = sess.run(tf_layers)
tf_shapes = [p.shape for p in tf_params]
tf_layers = [l.name for l in tf_layers]
if not callable(tf_mdl_dir):
path = os.path.join(tf_mdl_dir, 'layer_description.json')
else:
path = 'data/layer_description.json'
with open(path, 'w') as f:
json.dump({l: s for l, s in zip(tf_layers, tf_shapes)}, f)
return tf_layers, tf_params, tf_shapes
def get_layer_indices(layer_lookup, tf_layers):
"""Giving a lookup of model layer attribute names and tensorflow variable names,
find matching parameters.
Arguments:
layer_lookup {dict} -- Dictionary mapping pytorch attribute names to (partial)
tensorflow variable names. Expects dict of the form {'attr': ['tf_name', ...]}
where the '...'s are ignored.
tf_layers {list} -- List of tensorflow variable names.
Returns:
list -- The input dictionary with the list of matching inds appended to each item.
"""
layer_inds = {}
for name, value in layer_lookup.items():
layer_inds[name] = value + [[i for i, n in enumerate(tf_layers) if value[0] in n]]
return layer_inds
def load_tf_batchNorm(weights, layer):
"""Load tensorflow weights into nn.BatchNorm object.
Arguments:
weights {list} -- Tensorflow parameters.
layer {torch.nn.Module} -- nn.BatchNorm.
"""
layer.bias.data = torch.tensor(weights[0]).view(layer.bias.data.shape)
layer.weight.data = torch.ones_like(layer.weight.data)
layer.running_mean = torch.tensor(weights[1]).view(layer.running_mean.shape)
layer.running_var = torch.tensor(weights[2]).view(layer.running_var.shape)
def load_tf_conv2d(weights, layer, transpose=False):
"""Load tensorflow weights into nn.Conv2d object.
Arguments:
weights {list} -- Tensorflow parameters.
layer {torch.nn.Module} -- nn.Conv2d.
"""
if isinstance(weights, list):
if len(weights) == 2:
layer.bias.data = (
torch.tensor(weights[1])
.view(layer.bias.data.shape)
)
weights = weights[0]
if transpose:
dim_order = (3, 2, 1, 0)
else:
dim_order = (3, 2, 0, 1)
layer.weight.data = (
torch.tensor(weights)
.permute(dim_order)
.view(layer.weight.data.shape)
)
def load_tf_conv2d_trans(weights, layer):
return load_tf_conv2d(weights, layer, transpose=True)
def load_tf_basicConv2d(weights, layer):
"""Load tensorflow weights into grouped Conv2d+BatchNorm object.
Arguments:
weights {list} -- Tensorflow parameters.
layer {torch.nn.Module} -- Object containing Conv2d+BatchNorm.
"""
load_tf_conv2d(weights[0], layer.conv)
load_tf_batchNorm(weights[1:], layer.bn)
def load_tf_linear(weights, layer):
"""Load tensorflow weights into nn.Linear object.
Arguments:
weights {list} -- Tensorflow parameters.
layer {torch.nn.Module} -- nn.Linear.
"""
if isinstance(weights, list):
if len(weights) == 2:
layer.bias.data = (
torch.tensor(weights[1])
.view(layer.bias.data.shape)
)
weights = weights[0]
layer.weight.data = (
torch.tensor(weights)
.transpose(-1, 0)
.view(layer.weight.data.shape)
)
# High-level parameter-loading functions:
def load_tf_block35(weights, layer):
load_tf_basicConv2d(weights[:4], layer.branch0)
load_tf_basicConv2d(weights[4:8], layer.branch1[0])
load_tf_basicConv2d(weights[8:12], layer.branch1[1])
load_tf_basicConv2d(weights[12:16], layer.branch2[0])
load_tf_basicConv2d(weights[16:20], layer.branch2[1])
load_tf_basicConv2d(weights[20:24], layer.branch2[2])
load_tf_conv2d(weights[24:26], layer.conv2d)
def load_tf_block17_8(weights, layer):
load_tf_basicConv2d(weights[:4], layer.branch0)
load_tf_basicConv2d(weights[4:8], layer.branch1[0])
load_tf_basicConv2d(weights[8:12], layer.branch1[1])
load_tf_basicConv2d(weights[12:16], layer.branch1[2])
load_tf_conv2d(weights[16:18], layer.conv2d)
def load_tf_mixed6a(weights, layer):
if len(weights) != 16:
raise ValueError(f'Number of weight arrays ({len(weights)}) not equal to 16')
load_tf_basicConv2d(weights[:4], layer.branch0)
load_tf_basicConv2d(weights[4:8], layer.branch1[0])
load_tf_basicConv2d(weights[8:12], layer.branch1[1])
load_tf_basicConv2d(weights[12:16], layer.branch1[2])
def load_tf_mixed7a(weights, layer):
if len(weights) != 28:
raise ValueError(f'Number of weight arrays ({len(weights)}) not equal to 28')
load_tf_basicConv2d(weights[:4], layer.branch0[0])
load_tf_basicConv2d(weights[4:8], layer.branch0[1])
load_tf_basicConv2d(weights[8:12], layer.branch1[0])
load_tf_basicConv2d(weights[12:16], layer.branch1[1])
load_tf_basicConv2d(weights[16:20], layer.branch2[0])
load_tf_basicConv2d(weights[20:24], layer.branch2[1])
load_tf_basicConv2d(weights[24:28], layer.branch2[2])
def load_tf_repeats(weights, layer, rptlen, subfun):
if len(weights) % rptlen != 0:
raise ValueError(f'Number of weight arrays ({len(weights)}) not divisible by {rptlen}')
weights_split = [weights[i:i+rptlen] for i in range(0, len(weights), rptlen)]
for i, w in enumerate(weights_split):
subfun(w, getattr(layer, str(i)))
def load_tf_repeat_1(weights, layer):
load_tf_repeats(weights, layer, 26, load_tf_block35)
def load_tf_repeat_2(weights, layer):
load_tf_repeats(weights, layer, 18, load_tf_block17_8)
def load_tf_repeat_3(weights, layer):
load_tf_repeats(weights, layer, 18, load_tf_block17_8)
def test_loaded_params(mdl, tf_params, tf_layers):
"""Check each parameter in a pytorch model for an equivalent parameter
in a list of tensorflow variables.
Arguments:
mdl {torch.nn.Module} -- Pytorch model.
tf_params {list} -- List of ndarrays representing tensorflow variables.
tf_layers {list} -- Corresponding list of tensorflow variable names.
"""
tf_means = torch.stack([torch.tensor(p).mean() for p in tf_params])
for name, param in mdl.named_parameters():
pt_mean = param.data.mean()
matching_inds = ((tf_means - pt_mean).abs() < 1e-8).nonzero()
print(f'{name} equivalent to {[tf_layers[i] for i in matching_inds]}')
def compare_model_outputs(pt_mdl, sess, test_data):
"""Given some testing data, compare the output of pytorch and tensorflow models.
Arguments:
pt_mdl {torch.nn.Module} -- Pytorch model.
sess {tensorflow.Session} -- Tensorflow session object.
test_data {torch.Tensor} -- Pytorch tensor.
"""
print('\nPassing test data through TF model\n')
if isinstance(sess, tf.Session):
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
feed_dict = {images_placeholder: test_data.numpy(), phase_train_placeholder: False}
tf_output = torch.tensor(sess.run(embeddings, feed_dict=feed_dict))
else:
tf_output = sess(test_data)
print(tf_output)
print('\nPassing test data through PT model\n')
pt_output = pt_mdl(test_data.permute(0, 3, 1, 2))
print(pt_output)
distance = (tf_output - pt_output).norm()
print(f'\nDistance {distance}\n')
def compare_mtcnn(pt_mdl, tf_fun, sess, ind, test_data):
tf_mdls = tf_fun(sess)
tf_mdl = tf_mdls[ind]
print('\nPassing test data through TF model\n')
tf_output = tf_mdl(test_data.numpy())
tf_output = [torch.tensor(out) for out in tf_output]
print('\n'.join([str(o.view(-1)[:10]) for o in tf_output]))
print('\nPassing test data through PT model\n')
with torch.no_grad():
pt_output = pt_mdl(test_data.permute(0, 3, 2, 1))
pt_output = [torch.tensor(out) for out in pt_output]
for i in range(len(pt_output)):
if len(pt_output[i].shape) == 4:
pt_output[i] = pt_output[i].permute(0, 3, 2, 1).contiguous()
print('\n'.join([str(o.view(-1)[:10]) for o in pt_output]))
distance = [(tf_o - pt_o).norm() for tf_o, pt_o in zip(tf_output, pt_output)]
print(f'\nDistance {distance}\n')
def load_tf_model_weights(mdl, layer_lookup, tf_mdl_dir, is_resnet=True, arg_num=None):
"""Load tensorflow parameters into a pytorch model.
Arguments:
mdl {torch.nn.Module} -- Pytorch model.
layer_lookup {[type]} -- Dictionary mapping pytorch attribute names to (partial)
tensorflow variable names, and a function suitable for loading weights.
Expects dict of the form {'attr': ['tf_name', function]}.
tf_mdl_dir {str} -- Location of protobuf, checkpoint, meta files.
"""
tf.reset_default_graph()
with tf.Session() as sess:
tf_layers, tf_params, tf_shapes = import_tf_params(tf_mdl_dir, sess)
layer_info = get_layer_indices(layer_lookup, tf_layers)
for layer_name, info in layer_info.items():
print(f'Loading {info[0]}/* into {layer_name}')
weights = [tf_params[i] for i in info[2]]
layer = getattr(mdl, layer_name)
info[1](weights, layer)
test_loaded_params(mdl, tf_params, tf_layers)
if is_resnet:
compare_model_outputs(mdl, sess, torch.randn(5, 160, 160, 3).detach())
def tensorflow2pytorch():
lookup_inception_resnet_v1 = {
'conv2d_1a': ['InceptionResnetV1/Conv2d_1a_3x3', load_tf_basicConv2d],
'conv2d_2a': ['InceptionResnetV1/Conv2d_2a_3x3', load_tf_basicConv2d],
'conv2d_2b': ['InceptionResnetV1/Conv2d_2b_3x3', load_tf_basicConv2d],
'conv2d_3b': ['InceptionResnetV1/Conv2d_3b_1x1', load_tf_basicConv2d],
'conv2d_4a': ['InceptionResnetV1/Conv2d_4a_3x3', load_tf_basicConv2d],
'conv2d_4b': ['InceptionResnetV1/Conv2d_4b_3x3', load_tf_basicConv2d],
'repeat_1': ['InceptionResnetV1/Repeat/block35', load_tf_repeat_1],
'mixed_6a': ['InceptionResnetV1/Mixed_6a', load_tf_mixed6a],
'repeat_2': ['InceptionResnetV1/Repeat_1/block17', load_tf_repeat_2],
'mixed_7a': ['InceptionResnetV1/Mixed_7a', load_tf_mixed7a],
'repeat_3': ['InceptionResnetV1/Repeat_2/block8', load_tf_repeat_3],
'block8': ['InceptionResnetV1/Block8', load_tf_block17_8],
'last_linear': ['InceptionResnetV1/Bottleneck/weights', load_tf_linear],
'last_bn': ['InceptionResnetV1/Bottleneck/BatchNorm', load_tf_batchNorm],
'logits': ['Logits', load_tf_linear],
}
print('\nLoad VGGFace2-trained weights and save\n')
mdl = InceptionResnetV1(num_classes=8631).eval()
tf_mdl_dir = 'data/20180402-114759'
data_name = 'vggface2'
load_tf_model_weights(mdl, lookup_inception_resnet_v1, tf_mdl_dir)
state_dict = mdl.state_dict()
torch.save(state_dict, f'{tf_mdl_dir}-{data_name}.pt')
torch.save(
{
'logits.weight': state_dict['logits.weight'],
'logits.bias': state_dict['logits.bias'],
},
f'{tf_mdl_dir}-{data_name}-logits.pt'
)
state_dict.pop('logits.weight')
state_dict.pop('logits.bias')
torch.save(state_dict, f'{tf_mdl_dir}-{data_name}-features.pt')
print('\nLoad CASIA-Webface-trained weights and save\n')
mdl = InceptionResnetV1(num_classes=10575).eval()
tf_mdl_dir = 'data/20180408-102900'
data_name = 'casia-webface'
load_tf_model_weights(mdl, lookup_inception_resnet_v1, tf_mdl_dir)
state_dict = mdl.state_dict()
torch.save(state_dict, f'{tf_mdl_dir}-{data_name}.pt')
torch.save(
{
'logits.weight': state_dict['logits.weight'],
'logits.bias': state_dict['logits.bias'],
},
f'{tf_mdl_dir}-{data_name}-logits.pt'
)
state_dict.pop('logits.weight')
state_dict.pop('logits.bias')
torch.save(state_dict, f'{tf_mdl_dir}-{data_name}-features.pt')
lookup_pnet = {
'conv1': ['pnet/conv1', load_tf_conv2d_trans],
'prelu1': ['pnet/PReLU1', load_tf_linear],
'conv2': ['pnet/conv2', load_tf_conv2d_trans],
'prelu2': ['pnet/PReLU2', load_tf_linear],
'conv3': ['pnet/conv3', load_tf_conv2d_trans],
'prelu3': ['pnet/PReLU3', load_tf_linear],
'conv4_1': ['pnet/conv4-1', load_tf_conv2d_trans],
'conv4_2': ['pnet/conv4-2', load_tf_conv2d_trans],
}
lookup_rnet = {
'conv1': ['rnet/conv1', load_tf_conv2d_trans],
'prelu1': ['rnet/prelu1', load_tf_linear],
'conv2': ['rnet/conv2', load_tf_conv2d_trans],
'prelu2': ['rnet/prelu2', load_tf_linear],
'conv3': ['rnet/conv3', load_tf_conv2d_trans],
'prelu3': ['rnet/prelu3', load_tf_linear],
'dense4': ['rnet/conv4', load_tf_linear],
'prelu4': ['rnet/prelu4', load_tf_linear],
'dense5_1': ['rnet/conv5-1', load_tf_linear],
'dense5_2': ['rnet/conv5-2', load_tf_linear],
}
lookup_onet = {
'conv1': ['onet/conv1', load_tf_conv2d_trans],
'prelu1': ['onet/prelu1', load_tf_linear],
'conv2': ['onet/conv2', load_tf_conv2d_trans],
'prelu2': ['onet/prelu2', load_tf_linear],
'conv3': ['onet/conv3', load_tf_conv2d_trans],
'prelu3': ['onet/prelu3', load_tf_linear],
'conv4': ['onet/conv4', load_tf_conv2d_trans],
'prelu4': ['onet/prelu4', load_tf_linear],
'dense5': ['onet/conv5', load_tf_linear],
'prelu5': ['onet/prelu5', load_tf_linear],
'dense6_1': ['onet/conv6-1', load_tf_linear],
'dense6_2': ['onet/conv6-2', load_tf_linear],
'dense6_3': ['onet/conv6-3', load_tf_linear],
}
print('\nLoad PNet weights and save\n')
tf_mdl_dir = lambda sess: detect_face.create_mtcnn(sess, None)
mdl = PNet()
data_name = 'pnet'
load_tf_model_weights(mdl, lookup_pnet, tf_mdl_dir, is_resnet=False, arg_num=0)
torch.save(mdl.state_dict(), f'data/{data_name}.pt')
tf.reset_default_graph()
with tf.Session() as sess:
compare_mtcnn(mdl, tf_mdl_dir, sess, 0, torch.randn(1, 256, 256, 3).detach())
print('\nLoad RNet weights and save\n')
mdl = RNet()
data_name = 'rnet'
load_tf_model_weights(mdl, lookup_rnet, tf_mdl_dir, is_resnet=False, arg_num=1)
torch.save(mdl.state_dict(), f'data/{data_name}.pt')
tf.reset_default_graph()
with tf.Session() as sess:
compare_mtcnn(mdl, tf_mdl_dir, sess, 1, torch.randn(1, 24, 24, 3).detach())
print('\nLoad ONet weights and save\n')
mdl = ONet()
data_name = 'onet'
load_tf_model_weights(mdl, lookup_onet, tf_mdl_dir, is_resnet=False, arg_num=2)
torch.save(mdl.state_dict(), f'data/{data_name}.pt')
tf.reset_default_graph()
with tf.Session() as sess:
compare_mtcnn(mdl, tf_mdl_dir, sess, 2, torch.randn(1, 48, 48, 3).detach())