client.py
5.63 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
##################################################
#1. webcam에서 얼굴을 인식합니다.
#2. 얼굴일 확률이 97% 이상이고 영역이 15000 이상인 이미지를 서버에 전송
##################################################
import tkinter as tk
import tkinter.font
import tkinter.messagebox
import threading
import torch
import numpy as np
import cv2
import asyncio
import websockets
import json
import os
import timeit
import base64
import time
from PIL import Image, ImageTk
from io import BytesIO
import requests
from models.mtcnn import MTCNN
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('Running on device: {}'.format(device))
mtcnn = MTCNN(keep_all=True, post_process=True, device=device)
uri = 'ws://169.56.95.131:8765'
class Client(tk.Frame):
def __init__(self, parent, *args, **kwargs):
tk.Frame.__init__(self, parent, *args, **kwargs)
# URI
self.uri = 'ws://169.56.95.131:8765'
# Pytorch Model
self.device = device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
self.mtcnn = MTCNN(keep_all=True, device=device)
# OpenCV
self.cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)
self.cam_width = 640
self.cam_height = 480
self.cap.set(3, self.cam_width)
self.cap.set(4, self.cam_height)
# tkinter GUI
self.parent.title("출석시스템")
self.width = 740
self.height = 640
self.parent = parent
self.parent.geometry("%dx%d+100+100" % (self.width, self.height))
self.pack()
self.create_widgets()
# Event loop and Thread
self.event_loop = asyncio.new_event_loop()
self.thread = threading.Thread(target=self.mainthread)
self.thread.start()
def create_widgets(self):
image = np.zeros([self.cam_height, self.cam_width, 3], dtype=np.uint8)
image = Image.fromarray(image)
image = ImageTk.PhotoImage(image)
font = tk.font.Font(family="맑은 고딕", size=15)
self.alert = tk.Label(self, text="출석시스템", font=font)
self.alert.grid(row=0, column=0, columnspan=20)
self.label = tk.Label(self, image=image)
self.label.grid(row=1, column=0, columnspan=20)
self.log = tk.Text(self)
self.log.grid(row=2, column=0, columnspan=20)
self.quit = tk.Button(self, text="나가기", fg="red", command=self.stop)
self.quit.grid(row=5, column=10)
def detect_face(self, frame):
results = self.mtcnn.detect(frame)
faces = self.mtcnn(frame, return_prob = False)
image_list = []
face_list = []
if results[1][0] == None:
return [], []
for box, face, prob in zip(results[0], faces, results[1]):
if prob < 0.97:
continue
# for debug
# print('face detected. prob:', prob)
x1, y1, x2, y2 = box
if (x2-x1) * (y2-y1) < 15000:
# 얼굴 해상도가 너무 낮으면 무시
self.alert.config(text= "카메라에 더 가까이 접근해주세요.", fg="red")
self.alert.update()
continue
image = frame
image_list.append(image)
# MTCNN 데이터 저장
face_list.append(face.numpy())
return face_list, image_list
def mainthread(self):
t = threading.currentThread()
asyncio.set_event_loop(self.event_loop)
while getattr(t, "do_run", True):
ret, frame = self.cap.read()
# model에 이용하기 위해 convert
converted = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
face_list, image_list = self.detect_face(converted)
# show image
image = Image.fromarray(converted)
image = ImageTk.PhotoImage(image)
self.label.configure(image=image)
self.label.image = image # kind of double buffering
# 얼굴이 인식되면 요청
if face_list:
self.event_loop.run_until_complete(self.send_face(face_list, image_list))
async def wait(self, n):
await asyncio.sleep(n)
async def send_face(self, face_list, image_list):
try:
async with websockets.connect(uri) as websocket:
for face, image in zip(face_list, image_list):
#type: np.float32
send = json.dumps({'action': 'verify', 'MTCNN': face.tolist()})
await websocket.send(send)
recv = await websocket.recv()
data = json.loads(recv)
if data['status'] == 'success':
# 성공
self.log.insert(tkinter.CURRENT, data['student_id'] + 'is attend')
self.log.insert(tkinter.CURRENT, '\n')
else:
self.log.insert(tkinter.CURRENT, 'verification failed:' + data['status'])
self.log.insert(tkinter.CURRENT, '\n')
if data['status'] == 'failed':
send = json.dumps({'action': 'save_image', 'image': image.tolist()})
except Exception as e:
self.log.insert(tkinter.CURRENT, e)
self.log.insert(tkinter.CURRENT, '\n')
def stop(self):
self.thread.do_run = False
# self.thread.join() # there is a freeze problem
self.event_loop.close()
self.cap.release()
self.parent.destroy()
if __name__ == '__main__':
root = tk.Tk()
Client(root)
root.mainloop()