inception_resnet_v1.py
9.49 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import torch
from torch import nn
from torch.nn import functional as F
import os
class BasicConv2d(nn.Module):
def __init__(self, in_planes, out_planes, kernel_size, stride, padding=0):
super().__init__()
self.conv = nn.Conv2d(
in_planes, out_planes,
kernel_size=kernel_size, stride=stride,
padding=padding, bias=False
) # verify bias false
self.bn = nn.BatchNorm2d(
out_planes,
eps=0.001, # value found in tensorflow
momentum=0.1, # default pytorch value
affine=True
)
self.relu = nn.ReLU(inplace=False)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.relu(x)
return x
class Block35(nn.Module):
def __init__(self, scale=1.0):
super().__init__()
self.scale = scale
self.branch0 = BasicConv2d(256, 32, kernel_size=1, stride=1)
self.branch1 = nn.Sequential(
BasicConv2d(256, 32, kernel_size=1, stride=1),
BasicConv2d(32, 32, kernel_size=3, stride=1, padding=1)
)
self.branch2 = nn.Sequential(
BasicConv2d(256, 32, kernel_size=1, stride=1),
BasicConv2d(32, 32, kernel_size=3, stride=1, padding=1),
BasicConv2d(32, 32, kernel_size=3, stride=1, padding=1)
)
self.conv2d = nn.Conv2d(96, 256, kernel_size=1, stride=1)
self.relu = nn.ReLU(inplace=False)
def forward(self, x):
x0 = self.branch0(x)
x1 = self.branch1(x)
x2 = self.branch2(x)
out = torch.cat((x0, x1, x2), 1)
out = self.conv2d(out)
out = out * self.scale + x
out = self.relu(out)
return out
class Block17(nn.Module):
def __init__(self, scale=1.0):
super().__init__()
self.scale = scale
self.branch0 = BasicConv2d(896, 128, kernel_size=1, stride=1)
self.branch1 = nn.Sequential(
BasicConv2d(896, 128, kernel_size=1, stride=1),
BasicConv2d(128, 128, kernel_size=(1,7), stride=1, padding=(0,3)),
BasicConv2d(128, 128, kernel_size=(7,1), stride=1, padding=(3,0))
)
self.conv2d = nn.Conv2d(256, 896, kernel_size=1, stride=1)
self.relu = nn.ReLU(inplace=False)
def forward(self, x):
x0 = self.branch0(x)
x1 = self.branch1(x)
out = torch.cat((x0, x1), 1)
out = self.conv2d(out)
out = out * self.scale + x
out = self.relu(out)
return out
class Block8(nn.Module):
def __init__(self, scale=1.0, noReLU=False):
super().__init__()
self.scale = scale
self.noReLU = noReLU
self.branch0 = BasicConv2d(1792, 192, kernel_size=1, stride=1)
self.branch1 = nn.Sequential(
BasicConv2d(1792, 192, kernel_size=1, stride=1),
BasicConv2d(192, 192, kernel_size=(1,3), stride=1, padding=(0,1)),
BasicConv2d(192, 192, kernel_size=(3,1), stride=1, padding=(1,0))
)
self.conv2d = nn.Conv2d(384, 1792, kernel_size=1, stride=1)
if not self.noReLU:
self.relu = nn.ReLU(inplace=False)
def forward(self, x):
x0 = self.branch0(x)
x1 = self.branch1(x)
out = torch.cat((x0, x1), 1)
out = self.conv2d(out)
out = out * self.scale + x
if not self.noReLU:
out = self.relu(out)
return out
class Mixed_6a(nn.Module):
def __init__(self):
super().__init__()
self.branch0 = BasicConv2d(256, 384, kernel_size=3, stride=2)
self.branch1 = nn.Sequential(
BasicConv2d(256, 192, kernel_size=1, stride=1),
BasicConv2d(192, 192, kernel_size=3, stride=1, padding=1),
BasicConv2d(192, 256, kernel_size=3, stride=2)
)
self.branch2 = nn.MaxPool2d(3, stride=2)
def forward(self, x):
x0 = self.branch0(x)
x1 = self.branch1(x)
x2 = self.branch2(x)
out = torch.cat((x0, x1, x2), 1)
return out
class Mixed_7a(nn.Module):
def __init__(self):
super().__init__()
self.branch0 = nn.Sequential(
BasicConv2d(896, 256, kernel_size=1, stride=1),
BasicConv2d(256, 384, kernel_size=3, stride=2)
)
self.branch1 = nn.Sequential(
BasicConv2d(896, 256, kernel_size=1, stride=1),
BasicConv2d(256, 256, kernel_size=3, stride=2)
)
self.branch2 = nn.Sequential(
BasicConv2d(896, 256, kernel_size=1, stride=1),
BasicConv2d(256, 256, kernel_size=3, stride=1, padding=1),
BasicConv2d(256, 256, kernel_size=3, stride=2)
)
self.branch3 = nn.MaxPool2d(3, stride=2)
def forward(self, x):
x0 = self.branch0(x)
x1 = self.branch1(x)
x2 = self.branch2(x)
x3 = self.branch3(x)
out = torch.cat((x0, x1, x2, x3), 1)
return out
class InceptionResnetV1(nn.Module):
"""Inception Resnet V1 model with optional loading of pretrained weights.
Model parameters can be loaded based on pretraining on the VGGFace2 or CASIA-Webface
datasets. Pretrained state_dicts are automatically downloaded on model instantiation if
requested and cached in the torch cache. Subsequent instantiations use the cache rather than
redownloading.
Keyword Arguments:
pretrained {str} -- Optional pretraining dataset. Either 'vggface2' or 'casia-webface'.
(default: {None})
classify {bool} -- Whether the model should output classification probabilities or feature
embeddings. (default: {False})
num_classes {int} -- Number of output classes. If 'pretrained' is set and num_classes not
equal to that used for the pretrained model, the final linear layer will be randomly
initialized. (default: {None})
dropout_prob {float} -- Dropout probability. (default: {0.6})
"""
def __init__(self, classify=False, dropout_prob=0.6, device=None):
super().__init__()
# Set simple attributes
self.classify = classify
self.num_classes = 8631
# Define layers
self.conv2d_1a = BasicConv2d(3, 32, kernel_size=3, stride=2)
self.conv2d_2a = BasicConv2d(32, 32, kernel_size=3, stride=1)
self.conv2d_2b = BasicConv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.maxpool_3a = nn.MaxPool2d(3, stride=2)
self.conv2d_3b = BasicConv2d(64, 80, kernel_size=1, stride=1)
self.conv2d_4a = BasicConv2d(80, 192, kernel_size=3, stride=1)
self.conv2d_4b = BasicConv2d(192, 256, kernel_size=3, stride=2)
self.repeat_1 = nn.Sequential(
Block35(scale=0.17),
Block35(scale=0.17),
Block35(scale=0.17),
Block35(scale=0.17),
Block35(scale=0.17),
)
self.mixed_6a = Mixed_6a()
self.repeat_2 = nn.Sequential(
Block17(scale=0.10),
Block17(scale=0.10),
Block17(scale=0.10),
Block17(scale=0.10),
Block17(scale=0.10),
Block17(scale=0.10),
Block17(scale=0.10),
Block17(scale=0.10),
Block17(scale=0.10),
Block17(scale=0.10),
)
self.mixed_7a = Mixed_7a()
self.repeat_3 = nn.Sequential(
Block8(scale=0.20),
Block8(scale=0.20),
Block8(scale=0.20),
Block8(scale=0.20),
Block8(scale=0.20),
)
self.block8 = Block8(noReLU=True)
self.avgpool_1a = nn.AdaptiveAvgPool2d(1)
self.dropout = nn.Dropout(dropout_prob)
self.last_linear = nn.Linear(1792, 512, bias=False)
self.last_bn = nn.BatchNorm1d(512, eps=0.001, momentum=0.1, affine=True)
self.logits = nn.Linear(512, self.num_classes)
load_weights(self)
self.device = torch.device('cpu')
if device is not None:
self.device = device
self.to(device)
def forward(self, x):
"""Calculate embeddings or logits given a batch of input image tensors.
Arguments:
x {torch.tensor} -- Batch of image tensors representing faces.
Returns:
torch.tensor -- Batch of embedding vectors or multinomial logits.
"""
x = self.conv2d_1a(x)
x = self.conv2d_2a(x)
x = self.conv2d_2b(x)
x = self.maxpool_3a(x)
x = self.conv2d_3b(x)
x = self.conv2d_4a(x)
x = self.conv2d_4b(x)
x = self.repeat_1(x)
x = self.mixed_6a(x)
x = self.repeat_2(x)
x = self.mixed_7a(x)
x = self.repeat_3(x)
x = self.block8(x)
x = self.avgpool_1a(x)
x = self.dropout(x)
x = self.last_linear(x.view(x.shape[0], -1))
x = self.last_bn(x)
if self.classify:
x = self.logits(x)
else:
x = F.normalize(x, p=2, dim=1)
return x
def load_weights(mdl):
features_path = state_dict_path = os.path.join(os.path.dirname(__file__), 'vggface2-dict/20180402-114759-vggface2-features.pt')
logits_path = state_dict_path = os.path.join(os.path.dirname(__file__), 'vggface2-dict/20180402-114759-vggface2-logits.pt')
state_dict = {}
for i, path in enumerate([features_path, logits_path]):
state_dict.update(torch.load(path))
mdl.load_state_dict(state_dict)
def get_torch_home():
torch_home = os.path.expanduser(
os.getenv(
'TORCH_HOME',
os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'torch')
)
)
return torch_home