detect_face.py
10.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import torch
from torch.nn.functional import interpolate
from torchvision.transforms import functional as F
from torchvision.ops.boxes import batched_nms
import cv2
from PIL import Image
import numpy as np
import os
def detect_face(imgs, minsize, pnet, rnet, onet, threshold, factor, device):
if isinstance(imgs, (np.ndarray, torch.Tensor)):
imgs = torch.as_tensor(imgs, device=device)
if len(imgs.shape) == 3:
imgs = imgs.unsqueeze(0)
else:
if not isinstance(imgs, (list, tuple)):
imgs = [imgs]
if any(img.size != imgs[0].size for img in imgs):
raise Exception("MTCNN batch processing only compatible with equal-dimension images.")
imgs = np.stack([np.uint8(img) for img in imgs])
imgs = torch.as_tensor(imgs, device=device)
model_dtype = next(pnet.parameters()).dtype
imgs = imgs.permute(0, 3, 1, 2).type(model_dtype)
batch_size = len(imgs)
h, w = imgs.shape[2:4]
m = 12.0 / minsize
minl = min(h, w)
minl = minl * m
# Create scale pyramid
scale_i = m
scales = []
while minl >= 12:
scales.append(scale_i)
scale_i = scale_i * factor
minl = minl * factor
# First stage
boxes = []
image_inds = []
all_inds = []
all_i = 0
for scale in scales:
im_data = imresample(imgs, (int(h * scale + 1), int(w * scale + 1)))
im_data = (im_data - 127.5) * 0.0078125
reg, probs = pnet(im_data)
boxes_scale, image_inds_scale = generateBoundingBox(reg, probs[:, 1], scale, threshold[0])
boxes.append(boxes_scale)
image_inds.append(image_inds_scale)
all_inds.append(all_i + image_inds_scale)
all_i += batch_size
boxes = torch.cat(boxes, dim=0)
image_inds = torch.cat(image_inds, dim=0).cpu()
all_inds = torch.cat(all_inds, dim=0)
# NMS within each scale + image
pick = batched_nms(boxes[:, :4], boxes[:, 4], all_inds, 0.5)
boxes, image_inds = boxes[pick], image_inds[pick]
# NMS within each image
pick = batched_nms(boxes[:, :4], boxes[:, 4], image_inds, 0.7)
boxes, image_inds = boxes[pick], image_inds[pick]
regw = boxes[:, 2] - boxes[:, 0]
regh = boxes[:, 3] - boxes[:, 1]
qq1 = boxes[:, 0] + boxes[:, 5] * regw
qq2 = boxes[:, 1] + boxes[:, 6] * regh
qq3 = boxes[:, 2] + boxes[:, 7] * regw
qq4 = boxes[:, 3] + boxes[:, 8] * regh
boxes = torch.stack([qq1, qq2, qq3, qq4, boxes[:, 4]]).permute(1, 0)
boxes = rerec(boxes)
y, ey, x, ex = pad(boxes, w, h)
# Second stage
if len(boxes) > 0:
im_data = []
for k in range(len(y)):
if ey[k] > (y[k] - 1) and ex[k] > (x[k] - 1):
img_k = imgs[image_inds[k], :, (y[k] - 1):ey[k], (x[k] - 1):ex[k]].unsqueeze(0)
im_data.append(imresample(img_k, (24, 24)))
im_data = torch.cat(im_data, dim=0)
im_data = (im_data - 127.5) * 0.0078125
out = rnet(im_data)
out0 = out[0].permute(1, 0)
out1 = out[1].permute(1, 0)
score = out1[1, :]
ipass = score > threshold[1]
boxes = torch.cat((boxes[ipass, :4], score[ipass].unsqueeze(1)), dim=1)
image_inds = image_inds[ipass]
mv = out0[:, ipass].permute(1, 0)
# NMS within each image
pick = batched_nms(boxes[:, :4], boxes[:, 4], image_inds, 0.7)
boxes, image_inds, mv = boxes[pick], image_inds[pick], mv[pick]
boxes = bbreg(boxes, mv)
boxes = rerec(boxes)
# Third stage
points = torch.zeros(0, 5, 2, device=device)
if len(boxes) > 0:
y, ey, x, ex = pad(boxes, w, h)
im_data = []
for k in range(len(y)):
if ey[k] > (y[k] - 1) and ex[k] > (x[k] - 1):
img_k = imgs[image_inds[k], :, (y[k] - 1):ey[k], (x[k] - 1):ex[k]].unsqueeze(0)
im_data.append(imresample(img_k, (48, 48)))
im_data = torch.cat(im_data, dim=0)
im_data = (im_data - 127.5) * 0.0078125
out = onet(im_data)
out0 = out[0].permute(1, 0)
out1 = out[1].permute(1, 0)
out2 = out[2].permute(1, 0)
score = out2[1, :]
points = out1
ipass = score > threshold[2]
points = points[:, ipass]
boxes = torch.cat((boxes[ipass, :4], score[ipass].unsqueeze(1)), dim=1)
image_inds = image_inds[ipass]
mv = out0[:, ipass].permute(1, 0)
w_i = boxes[:, 2] - boxes[:, 0] + 1
h_i = boxes[:, 3] - boxes[:, 1] + 1
points_x = w_i.repeat(5, 1) * points[:5, :] + boxes[:, 0].repeat(5, 1) - 1
points_y = h_i.repeat(5, 1) * points[5:10, :] + boxes[:, 1].repeat(5, 1) - 1
points = torch.stack((points_x, points_y)).permute(2, 1, 0)
boxes = bbreg(boxes, mv)
# NMS within each image using "Min" strategy
# pick = batched_nms(boxes[:, :4], boxes[:, 4], image_inds, 0.7)
pick = batched_nms_numpy(boxes[:, :4], boxes[:, 4], image_inds, 0.7, 'Min')
boxes, image_inds, points = boxes[pick], image_inds[pick], points[pick]
boxes = boxes.cpu().numpy()
points = points.cpu().numpy()
batch_boxes = []
batch_points = []
for b_i in range(batch_size):
b_i_inds = np.where(image_inds == b_i)
batch_boxes.append(boxes[b_i_inds].copy())
batch_points.append(points[b_i_inds].copy())
batch_boxes, batch_points = np.array(batch_boxes), np.array(batch_points)
return batch_boxes, batch_points
def bbreg(boundingbox, reg):
if reg.shape[1] == 1:
reg = torch.reshape(reg, (reg.shape[2], reg.shape[3]))
w = boundingbox[:, 2] - boundingbox[:, 0] + 1
h = boundingbox[:, 3] - boundingbox[:, 1] + 1
b1 = boundingbox[:, 0] + reg[:, 0] * w
b2 = boundingbox[:, 1] + reg[:, 1] * h
b3 = boundingbox[:, 2] + reg[:, 2] * w
b4 = boundingbox[:, 3] + reg[:, 3] * h
boundingbox[:, :4] = torch.stack([b1, b2, b3, b4]).permute(1, 0)
return boundingbox
def generateBoundingBox(reg, probs, scale, thresh):
stride = 2
cellsize = 12
reg = reg.permute(1, 0, 2, 3)
mask = probs >= thresh
mask_inds = mask.nonzero()
image_inds = mask_inds[:, 0]
score = probs[mask]
reg = reg[:, mask].permute(1, 0)
bb = mask_inds[:, 1:].type(reg.dtype).flip(1)
q1 = ((stride * bb + 1) / scale).floor()
q2 = ((stride * bb + cellsize - 1 + 1) / scale).floor()
boundingbox = torch.cat([q1, q2, score.unsqueeze(1), reg], dim=1)
return boundingbox, image_inds
def nms_numpy(boxes, scores, threshold, method):
if boxes.size == 0:
return np.empty((0, 3))
x1 = boxes[:, 0].copy()
y1 = boxes[:, 1].copy()
x2 = boxes[:, 2].copy()
y2 = boxes[:, 3].copy()
s = scores
area = (x2 - x1 + 1) * (y2 - y1 + 1)
I = np.argsort(s)
pick = np.zeros_like(s, dtype=np.int16)
counter = 0
while I.size > 0:
i = I[-1]
pick[counter] = i
counter += 1
idx = I[0:-1]
xx1 = np.maximum(x1[i], x1[idx]).copy()
yy1 = np.maximum(y1[i], y1[idx]).copy()
xx2 = np.minimum(x2[i], x2[idx]).copy()
yy2 = np.minimum(y2[i], y2[idx]).copy()
w = np.maximum(0.0, xx2 - xx1 + 1).copy()
h = np.maximum(0.0, yy2 - yy1 + 1).copy()
inter = w * h
if method is "Min":
o = inter / np.minimum(area[i], area[idx])
else:
o = inter / (area[i] + area[idx] - inter)
I = I[np.where(o <= threshold)]
pick = pick[:counter].copy()
return pick
def batched_nms_numpy(boxes, scores, idxs, threshold, method):
device = boxes.device
if boxes.numel() == 0:
return torch.empty((0,), dtype=torch.int64, device=device)
# strategy: in order to perform NMS independently per class.
# we add an offset to all the boxes. The offset is dependent
# only on the class idx, and is large enough so that boxes
# from different classes do not overlap
max_coordinate = boxes.max()
offsets = idxs.to(boxes) * (max_coordinate + 1)
boxes_for_nms = boxes + offsets[:, None]
boxes_for_nms = boxes_for_nms.cpu().numpy()
scores = scores.cpu().numpy()
keep = nms_numpy(boxes_for_nms, scores, threshold, method)
return torch.as_tensor(keep, dtype=torch.long, device=device)
def pad(boxes, w, h):
boxes = boxes.trunc().int().cpu().numpy()
x = boxes[:, 0]
y = boxes[:, 1]
ex = boxes[:, 2]
ey = boxes[:, 3]
x[x < 1] = 1
y[y < 1] = 1
ex[ex > w] = w
ey[ey > h] = h
return y, ey, x, ex
def rerec(bboxA):
h = bboxA[:, 3] - bboxA[:, 1]
w = bboxA[:, 2] - bboxA[:, 0]
l = torch.max(w, h)
bboxA[:, 0] = bboxA[:, 0] + w * 0.5 - l * 0.5
bboxA[:, 1] = bboxA[:, 1] + h * 0.5 - l * 0.5
bboxA[:, 2:4] = bboxA[:, :2] + l.repeat(2, 1).permute(1, 0)
return bboxA
def imresample(img, sz):
im_data = interpolate(img, size=sz, mode="area")
return im_data
def crop_resize(img, box, image_size):
if isinstance(img, np.ndarray):
out = cv2.resize(
img[box[1]:box[3], box[0]:box[2]],
(image_size, image_size),
interpolation=cv2.INTER_AREA
).copy()
else:
out = img.crop(box).copy().resize((image_size, image_size), Image.BILINEAR)
return out
def save_img(img, path):
if isinstance(img, np.ndarray):
cv2.imwrite(path, cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
else:
img.save(path)
def get_size(img):
if isinstance(img, np.ndarray):
return img.shape[1::-1]
else:
return img.size
def extract_face(img, box, image_size=160, margin=0, save_path=None):
"""Extract face + margin from PIL Image given bounding box.
Arguments:
img {PIL.Image} -- A PIL Image.
box {numpy.ndarray} -- Four-element bounding box.
image_size {int} -- Output image size in pixels. The image will be square.
margin {int} -- Margin to add to bounding box, in terms of pixels in the final image.
Note that the application of the margin differs slightly from the davidsandberg/facenet
repo, which applies the margin to the original image before resizing, making the margin
dependent on the original image size.
save_path {str} -- Save path for extracted face image. (default: {None})
Returns:
torch.tensor -- tensor representing the extracted face.
"""
margin = [
margin * (box[2] - box[0]) / (image_size - margin),
margin * (box[3] - box[1]) / (image_size - margin),
]
raw_image_size = get_size(img)
box = [
int(max(box[0] - margin[0] / 2, 0)),
int(max(box[1] - margin[1] / 2, 0)),
int(min(box[2] + margin[0] / 2, raw_image_size[0])),
int(min(box[3] + margin[1] / 2, raw_image_size[1])),
]
face = crop_resize(img, box, image_size)
if save_path is not None:
os.makedirs(os.path.dirname(save_path) + "/", exist_ok=True)
save_img(face, save_path)
face = F.to_tensor(np.float32(face))
return face