Graduate

final version

1 +# Default ignored files
2 +/shelf/
3 +/workspace.xml
1 +<?xml version="1.0" encoding="UTF-8"?>
2 +<module type="PYTHON_MODULE" version="4">
3 + <component name="NewModuleRootManager">
4 + <content url="file://$MODULE_DIR$" />
5 + <orderEntry type="inheritedJdk" />
6 + <orderEntry type="sourceFolder" forTests="false" />
7 + </component>
8 + <component name="PyDocumentationSettings">
9 + <option name="format" value="GOOGLE" />
10 + <option name="myDocStringFormat" value="Google" />
11 + </component>
12 +</module>
...\ No newline at end of file ...\ No newline at end of file
1 +<component name="InspectionProjectProfileManager">
2 + <settings>
3 + <option name="USE_PROJECT_PROFILE" value="false" />
4 + <version value="1.0" />
5 + </settings>
6 +</component>
...\ No newline at end of file ...\ No newline at end of file
1 +<?xml version="1.0" encoding="UTF-8"?>
2 +<project version="4">
3 + <component name="ProjectRootManager" version="2" project-jdk-name="Python 3.7" project-jdk-type="Python SDK" />
4 +</project>
...\ No newline at end of file ...\ No newline at end of file
1 +<?xml version="1.0" encoding="UTF-8"?>
2 +<project version="4">
3 + <component name="ProjectModuleManager">
4 + <modules>
5 + <module fileurl="file://$PROJECT_DIR$/.idea/KHY_Project1.iml" filepath="$PROJECT_DIR$/.idea/KHY_Project1.iml" />
6 + </modules>
7 + </component>
8 +</project>
...\ No newline at end of file ...\ No newline at end of file
1 +<?xml version="1.0" encoding="UTF-8"?>
2 +<project version="4">
3 + <component name="VcsDirectoryMappings">
4 + <mapping directory="$PROJECT_DIR$" vcs="Git" />
5 + </component>
6 +</project>
...\ No newline at end of file ...\ No newline at end of file
...@@ -115,7 +115,7 @@ class Client(tk.Frame): ...@@ -115,7 +115,7 @@ class Client(tk.Frame):
115 continue 115 continue
116 image = frame[int(y1):int(y2), int(x1):int(x2)] 116 image = frame[int(y1):int(y2), int(x1):int(x2)]
117 image_list.append(image) 117 image_list.append(image)
118 - # MTCNN 데이터 저장 118 + # tensor 데이터 저장
119 face_list.append(face.numpy()) 119 face_list.append(face.numpy())
120 return face_list, image_list 120 return face_list, image_list
121 121
...@@ -128,13 +128,14 @@ class Client(tk.Frame): ...@@ -128,13 +128,14 @@ class Client(tk.Frame):
128 y2 = int(self.cam_height / 2 + self.detecting_square[1] / 2) 128 y2 = int(self.cam_height / 2 + self.detecting_square[1] / 2)
129 while getattr(t, "do_run", True): 129 while getattr(t, "do_run", True):
130 ret, frame = self.cap.read() 130 ret, frame = self.cap.read()
131 - # model에 이용하기 위해 convert 131 + # BGR to RGB
132 converted = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) 132 converted = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
133 face_list, image_list = self.detect_face(converted[y1:y2, x1:x2]) 133 face_list, image_list = self.detect_face(converted[y1:y2, x1:x2])
134 # 얼굴이 인식되면 출석요청 134 # 얼굴이 인식되면 출석요청
135 - self.event_loop.run_until_complete(self.send_face(face_list, image_list)) 135 + if face_list:
136 + self.event_loop.run_until_complete(self.send_face(face_list, image_list))
136 137
137 - # show image 138 + # 사각형 영역 표시
138 frame = cv2.rectangle(frame, (x1, y1), (x2, y2), self.rectangle_color, 3) 139 frame = cv2.rectangle(frame, (x1, y1), (x2, y2), self.rectangle_color, 3)
139 converted = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) 140 converted = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
140 # 거울상으로 보여준다 141 # 거울상으로 보여준다
...@@ -147,18 +148,15 @@ class Client(tk.Frame): ...@@ -147,18 +148,15 @@ class Client(tk.Frame):
147 @asyncio.coroutine 148 @asyncio.coroutine
148 def set_rectangle(self): 149 def set_rectangle(self):
149 self.rectangle_color = (255, 0, 0) 150 self.rectangle_color = (255, 0, 0)
150 - yield from asyncio.sleep(3) 151 + yield from asyncio.sleep(2)
151 self.rectangle_color = (0, 0, 255) 152 self.rectangle_color = (0, 0, 255)
152 -
153 - async def wait(self, n):
154 - await asyncio.sleep(n)
155 153
156 async def send_face(self, face_list, image_list): 154 async def send_face(self, face_list, image_list):
157 try: 155 try:
158 async with websockets.connect(uri) as websocket: 156 async with websockets.connect(uri) as websocket:
159 for face, image in zip(face_list, image_list): 157 for face, image in zip(face_list, image_list):
160 #type: np.float32 158 #type: np.float32
161 - send = json.dumps({'action': 'verify', 'MTCNN': face.tolist()}) 159 + send = json.dumps({'action': 'verify', 'tensor': face.tolist()})
162 await websocket.send(send) 160 await websocket.send(send)
163 recv = await websocket.recv() 161 recv = await websocket.recv()
164 data = json.loads(recv) 162 data = json.loads(recv)
......
No preview for this file type
No preview for this file type
...@@ -135,13 +135,12 @@ class Register(tk.Frame): ...@@ -135,13 +135,12 @@ class Register(tk.Frame):
135 continue 135 continue
136 image = frame 136 image = frame
137 image_list.append(image) 137 image_list.append(image)
138 - # MTCNN 데이터 저장 138 + # tensor 데이터 저장
139 face_list.append(face.numpy()) 139 face_list.append(face.numpy())
140 return face_list, image_list 140 return face_list, image_list
141 141
142 def mainthread(self): 142 def mainthread(self):
143 t = threading.currentThread() 143 t = threading.currentThread()
144 - #asyncio.set_event_loop(self.event_loop)
145 x1 = int(self.cam_width / 2 - self.detecting_square[0] / 2) 144 x1 = int(self.cam_width / 2 - self.detecting_square[0] / 2)
146 x2 = int(self.cam_width / 2 + self.detecting_square[0] / 2) 145 x2 = int(self.cam_width / 2 + self.detecting_square[0] / 2)
147 y1 = int(self.cam_height / 2 - self.detecting_square[1] / 2) 146 y1 = int(self.cam_height / 2 - self.detecting_square[1] / 2)
...@@ -153,7 +152,7 @@ class Register(tk.Frame): ...@@ -153,7 +152,7 @@ class Register(tk.Frame):
153 # model에 이용하기 위해 convert 152 # model에 이용하기 위해 convert
154 converted = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) 153 converted = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
155 154
156 - # 사각형 영역만 검사 (속도 차이 큼) 155 + # 사각형 영역만 검사
157 face_list, image_list = self.detect_face(converted[y1:y2, x1:x2]) 156 face_list, image_list = self.detect_face(converted[y1:y2, x1:x2])
158 157
159 # 얼굴이 인식된 경우 파란색 사각형을 띄움 158 # 얼굴이 인식된 경우 파란색 사각형을 띄움
...@@ -162,7 +161,7 @@ class Register(tk.Frame): ...@@ -162,7 +161,7 @@ class Register(tk.Frame):
162 else: 161 else:
163 frame = cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 3) 162 frame = cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 3)
164 163
165 - # show image 164 + # BGR color에서 RGB로 변환
166 converted = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) 165 converted = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
167 # 유저에게 보여줄 땐 거울상으로 보여준다 166 # 유저에게 보여줄 땐 거울상으로 보여준다
168 converted = cv2.flip(converted,1) 167 converted = cv2.flip(converted,1)
...@@ -198,7 +197,10 @@ class Register(tk.Frame): ...@@ -198,7 +197,10 @@ class Register(tk.Frame):
198 async with websockets.connect(self.uri) as websocket: 197 async with websockets.connect(self.uri) as websocket:
199 for face, image in zip(self.face_list, self.image_list): 198 for face, image in zip(self.face_list, self.image_list):
200 #type: np.float32 199 #type: np.float32
201 - send = json.dumps({'action': 'register', 'student_id':self.studentID.get(), 'student_name':self.studentName.get(), 'MTCNN': face.tolist()}) 200 + send = json.dumps({'action': 'register',
201 + 'student_id':self.studentID.get(),
202 + 'student_name':self.studentName.get(),
203 + 'tensor': face.tolist()})
202 await websocket.send(send) 204 await websocket.send(send)
203 recv = await websocket.recv() 205 recv = await websocket.recv()
204 data = json.loads(recv) 206 data = json.loads(recv)
......
...@@ -35,8 +35,7 @@ clients = set() ...@@ -35,8 +35,7 @@ clients = set()
35 async def get_embeddings(face_list): 35 async def get_embeddings(face_list):
36 global model 36 global model
37 x = torch.Tensor(face_list).to(device) 37 x = torch.Tensor(face_list).to(device)
38 - yhat = model(x) 38 + return model(x)
39 - return yhat
40 39
41 async def get_distance(arr1, arr2): 40 async def get_distance(arr1, arr2):
42 distance = np.linalg.norm(arr1 - arr2) 41 distance = np.linalg.norm(arr1 - arr2)
...@@ -78,7 +77,7 @@ async def thread(websocket, path): ...@@ -78,7 +77,7 @@ async def thread(websocket, path):
78 # load json 77 # load json
79 student_id = data['student_id'] 78 student_id = data['student_id']
80 student_name = data['student_name'] 79 student_name = data['student_name']
81 - face = np.asarray(data['MTCNN'], dtype = np.float32) 80 + face = np.asarray(data['tensor'], dtype = np.float32)
82 face = face.reshape((1,3,160,160)) 81 face = face.reshape((1,3,160,160))
83 82
84 # DB에 연결 83 # DB에 연결
...@@ -113,7 +112,7 @@ async def thread(websocket, path): ...@@ -113,7 +112,7 @@ async def thread(websocket, path):
113 print(msg) 112 print(msg)
114 113
115 # load json 114 # load json
116 - face = np.asarray(data['MTCNN'], dtype = np.float32) 115 + face = np.asarray(data['tensor'], dtype = np.float32)
117 face = face.reshape((1,3,160,160)) 116 face = face.reshape((1,3,160,160))
118 117
119 embedding = await get_embeddings(face) 118 embedding = await get_embeddings(face)
...@@ -171,7 +170,6 @@ async def thread(websocket, path): ...@@ -171,7 +170,6 @@ async def thread(websocket, path):
171 print(msg) 170 print(msg)
172 arr = np.asarray(data['image'], dtype = np.uint8) 171 arr = np.asarray(data['image'], dtype = np.uint8)
173 blob = arr.tobytes() 172 blob = arr.tobytes()
174 - # TODO: lecture DB에 tuple 삽입해야 아래 코드가 돌아감
175 # 테이블 맨 뒤에 datetime attribute가 있음. 서버 시간 가져오게 default로 설정해둠. 173 # 테이블 맨 뒤에 datetime attribute가 있음. 서버 시간 가져오게 default로 설정해둠.
176 cursor = attendance_db.cursor(pymysql.cursors.DictCursor) 174 cursor = attendance_db.cursor(pymysql.cursors.DictCursor)
177 sql = "INSERT INTO undefined_image(lecture_id, image, width, height) VALUES (%s, _binary %s, %s, %s)" 175 sql = "INSERT INTO undefined_image(lecture_id, image, width, height) VALUES (%s, _binary %s, %s, %s)"
......