model.py
13.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
##### layer utils
from __future__ import division, print_function
import numpy as np
import tensorflow as tf
slim = tf.contrib.slim
def conv2d(inputs, filters, kernel_size, strides=1):
def _fixed_padding(inputs, kernel_size):
pad_total = kernel_size - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg, pad_end],
[pad_beg, pad_end], [0, 0]], mode='CONSTANT')
return padded_inputs
if strides > 1:
inputs = _fixed_padding(inputs, kernel_size)
inputs = slim.conv2d(inputs, filters, kernel_size, stride=strides,
padding=('SAME' if strides == 1 else 'VALID'))
return inputs
def darknet53_body(inputs):
def res_block(inputs, filters):
shortcut = inputs
net = conv2d(inputs, filters * 1, 1)
net = conv2d(net, filters * 2, 3)
net = net + shortcut
return net
# first two conv2d layers
net = conv2d(inputs, 32, 3, strides=1)
net = conv2d(net, 64, 3, strides=2)
# res_block * 1
net = res_block(net, 32)
net = conv2d(net, 128, 3, strides=2)
# res_block * 2
for i in range(2):
net = res_block(net, 64)
net = conv2d(net, 256, 3, strides=2)
# res_block * 8
for i in range(8):
net = res_block(net, 128)
route_1 = net
net = conv2d(net, 512, 3, strides=2)
# res_block * 8
for i in range(8):
net = res_block(net, 256)
route_2 = net
net = conv2d(net, 1024, 3, strides=2)
# res_block * 4
for i in range(4):
net = res_block(net, 512)
route_3 = net
return route_1, route_2, route_3
def yolo_block(inputs, filters):
net = conv2d(inputs, filters * 1, 1)
net = conv2d(net, filters * 2, 3)
net = conv2d(net, filters * 1, 1)
net = conv2d(net, filters * 2, 3)
net = conv2d(net, filters * 1, 1)
route = net
net = conv2d(net, filters * 2, 3)
return route, net
def upsample_layer(inputs, out_shape):
new_height, new_width = out_shape[1], out_shape[2]
# NOTE: here height is the first
inputs = tf.image.resize_nearest_neighbor(inputs, (new_height, new_width), name='upsampled')
return inputs
class yolov3(object):
def __init__(self, class_num, anchors, use_label_smooth=False, use_focal_loss=False, batch_norm_decay=0.999, weight_decay=5e-4, use_static_shape=True):
self.class_num = class_num
self.anchors = anchors
self.batch_norm_decay = batch_norm_decay
self.use_label_smooth = use_label_smooth
self.use_focal_loss = use_focal_loss
self.weight_decay = weight_decay
self.use_static_shape = use_static_shape
def forward(self, inputs, is_training=False, reuse=False):
# the input size: [height, weight] format
self.img_size = tf.shape(inputs)[1:3]
batch_norm_params = {
'decay': self.batch_norm_decay,
'epsilon': 1e-05,
'scale': True,
'is_training': is_training,
'fused': None,
}
with slim.arg_scope([slim.conv2d, slim.batch_norm], reuse=reuse):
with slim.arg_scope([slim.conv2d],
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params,
biases_initializer=None,
activation_fn=lambda x: tf.nn.leaky_relu(x, alpha=0.1),
weights_regularizer=slim.l2_regularizer(self.weight_decay)):
with tf.variable_scope('darknet53_body'):
route_1, route_2, route_3 = darknet53_body(inputs)
with tf.variable_scope('yolov3_head'):
inter1, net = yolo_block(route_3, 512)
feature_map_1 = slim.conv2d(net, 3 * (5 + self.class_num), 1,
stride=1, normalizer_fn=None,
activation_fn=None, biases_initializer=tf.zeros_initializer())
feature_map_1 = tf.identity(feature_map_1, name='feature_map_1')
inter1 = conv2d(inter1, 256, 1)
inter1 = upsample_layer(inter1, route_2.get_shape().as_list() if self.use_static_shape else tf.shape(route_2))
concat1 = tf.concat([inter1, route_2], axis=3)
inter2, net = yolo_block(concat1, 256)
feature_map_2 = slim.conv2d(net, 3 * (5 + self.class_num), 1,
stride=1, normalizer_fn=None,
activation_fn=None, biases_initializer=tf.zeros_initializer())
feature_map_2 = tf.identity(feature_map_2, name='feature_map_2')
inter2 = conv2d(inter2, 128, 1)
inter2 = upsample_layer(inter2, route_1.get_shape().as_list() if self.use_static_shape else tf.shape(route_1))
concat2 = tf.concat([inter2, route_1], axis=3)
_, feature_map_3 = yolo_block(concat2, 128)
feature_map_3 = slim.conv2d(feature_map_3, 3 * (5 + self.class_num), 1,
stride=1, normalizer_fn=None,
activation_fn=None, biases_initializer=tf.zeros_initializer())
feature_map_3 = tf.identity(feature_map_3, name='feature_map_3')
return feature_map_1, feature_map_2, feature_map_3
def reorg_layer(self, feature_map, anchors):
# size : [h, w] format
grid_size = feature_map.get_shape().as_list()[1:3] if self.use_static_shape else tf.shape(feature_map)[1:3] # [13, 13]
ratio = tf.cast(self.img_size / grid_size, tf.float32)
# anchor : [w, h] format
rescaled_anchors = [(anchor[0] / ratio[1], anchor[1] / ratio[0]) for anchor in anchors]
feature_map = tf.reshape(feature_map, [-1, grid_size[0], grid_size[1], 3, 5 + self.class_num])
box_centers, box_sizes, conf_logits, prob_logits = tf.split(feature_map, [2, 2, 1, self.class_num], axis=-1)
box_centers = tf.nn.sigmoid(box_centers)
grid_x = tf.range(grid_size[1], dtype=tf.int32)
grid_y = tf.range(grid_size[0], dtype=tf.int32)
grid_x, grid_y = tf.meshgrid(grid_x, grid_y)
x_offset = tf.reshape(grid_x, (-1, 1))
y_offset = tf.reshape(grid_y, (-1, 1))
x_y_offset = tf.concat([x_offset, y_offset], axis=-1)
x_y_offset = tf.cast(tf.reshape(x_y_offset, [grid_size[0], grid_size[1], 1, 2]), tf.float32)
box_centers = box_centers + x_y_offset
box_centers = box_centers * ratio[::-1]
box_sizes = tf.exp(box_sizes) * rescaled_anchors
box_sizes = box_sizes * ratio[::-1]
boxes = tf.concat([box_centers, box_sizes], axis=-1)
return x_y_offset, boxes, conf_logits, prob_logits
def predict(self, feature_maps):
feature_map_1, feature_map_2, feature_map_3 = feature_maps
feature_map_anchors = [(feature_map_1, self.anchors[6:9]),
(feature_map_2, self.anchors[3:6]),
(feature_map_3, self.anchors[0:3])]
reorg_results = [self.reorg_layer(feature_map, anchors) for (feature_map, anchors) in feature_map_anchors]
def _reshape_logit(result):
x_y_offset, boxes, conf_logits, prob_logits = result
grid_size = x_y_offset.get_shape().as_list()[:2] if self.use_static_shape else tf.shape(x_y_offset)[:2]
boxes = tf.reshape(boxes, [-1, grid_size[0] * grid_size[1] * 3, 4])
conf_logits = tf.reshape(conf_logits, [-1, grid_size[0] * grid_size[1] * 3, 1])
prob_logits = tf.reshape(prob_logits, [-1, grid_size[0] * grid_size[1] * 3, self.class_num])
return boxes, conf_logits, prob_logits
boxes_list, confs_list, probs_list = [], [], []
for result in reorg_results:
boxes, conf_logits, prob_logits = _reshape_logit(result)
confs = tf.sigmoid(conf_logits)
probs = tf.sigmoid(prob_logits)
boxes_list.append(boxes)
confs_list.append(confs)
probs_list.append(probs)
boxes = tf.concat(boxes_list, axis=1)
confs = tf.concat(confs_list, axis=1)
probs = tf.concat(probs_list, axis=1)
center_x, center_y, width, height = tf.split(boxes, [1, 1, 1, 1], axis=-1)
x_min = center_x - width / 2
y_min = center_y - height / 2
x_max = center_x + width / 2
y_max = center_y + height / 2
boxes = tf.concat([x_min, y_min, x_max, y_max], axis=-1)
return boxes, confs, probs
def loss_layer(self, feature_map_i, y_true, anchors):
grid_size = tf.shape(feature_map_i)[1:3]
ratio = tf.cast(self.img_size / grid_size, tf.float32)
# N: batch_size
N = tf.cast(tf.shape(feature_map_i)[0], tf.float32)
x_y_offset, pred_boxes, pred_conf_logits, pred_prob_logits = self.reorg_layer(feature_map_i, anchors)
### mask
object_mask = y_true[..., 4:5]
ignore_mask = tf.TensorArray(tf.float32, size=0, dynamic_size=True)
def loop_cond(idx, ignore_mask):
return tf.less(idx, tf.cast(N, tf.int32))
def loop_body(idx, ignore_mask):
valid_true_boxes = tf.boolean_mask(y_true[idx, ..., 0:4], tf.cast(object_mask[idx, ..., 0], 'bool'))
iou = self.box_iou(pred_boxes[idx], valid_true_boxes)
best_iou = tf.reduce_max(iou, axis=-1)
ignore_mask_tmp = tf.cast(best_iou < 0.5, tf.float32)
ignore_mask = ignore_mask.write(idx, ignore_mask_tmp)
return idx + 1, ignore_mask
_, ignore_mask = tf.while_loop(cond=loop_cond, body=loop_body, loop_vars=[0, ignore_mask])
ignore_mask = ignore_mask.stack()
ignore_mask = tf.expand_dims(ignore_mask, -1)
pred_box_xy = pred_boxes[..., 0:2]
pred_box_wh = pred_boxes[..., 2:4]
true_xy = y_true[..., 0:2] / ratio[::-1] - x_y_offset
pred_xy = pred_box_xy / ratio[::-1] - x_y_offset
true_tw_th = y_true[..., 2:4] / anchors
pred_tw_th = pred_box_wh / anchors
true_tw_th = tf.where(condition=tf.equal(true_tw_th, 0),
x=tf.ones_like(true_tw_th), y=true_tw_th)
pred_tw_th = tf.where(condition=tf.equal(pred_tw_th, 0),
x=tf.ones_like(pred_tw_th), y=pred_tw_th)
true_tw_th = tf.log(tf.clip_by_value(true_tw_th, 1e-9, 1e9))
pred_tw_th = tf.log(tf.clip_by_value(pred_tw_th, 1e-9, 1e9))
box_loss_scale = 2. - (y_true[..., 2:3] / tf.cast(self.img_size[1], tf.float32)) * (y_true[..., 3:4] / tf.cast(self.img_size[0], tf.float32))
### loss
mix_w = y_true[..., -1:]
xy_loss = tf.reduce_sum(tf.square(true_xy - pred_xy) * object_mask * box_loss_scale * mix_w) / N
wh_loss = tf.reduce_sum(tf.square(true_tw_th - pred_tw_th) * object_mask * box_loss_scale * mix_w) / N
conf_pos_mask = object_mask
conf_neg_mask = (1 - object_mask) * ignore_mask
conf_loss_pos = conf_pos_mask * tf.nn.sigmoid_cross_entropy_with_logits(labels=object_mask, logits=pred_conf_logits)
conf_loss_neg = conf_neg_mask * tf.nn.sigmoid_cross_entropy_with_logits(labels=object_mask, logits=pred_conf_logits)
conf_loss = conf_loss_pos + conf_loss_neg
if self.use_focal_loss:
alpha = 1.0
gamma = 2.0
focal_mask = alpha * tf.pow(tf.abs(object_mask - tf.sigmoid(pred_conf_logits)), gamma)
conf_loss *= focal_mask
conf_loss = tf.reduce_sum(conf_loss * mix_w) / N
if self.use_label_smooth:
delta = 0.01
label_target = (1 - delta) * y_true[..., 5:-1] + delta * 1. / self.class_num
else:
label_target = y_true[..., 5:-1]
class_loss = object_mask * tf.nn.sigmoid_cross_entropy_with_logits(labels=label_target, logits=pred_prob_logits) * mix_w
class_loss = tf.reduce_sum(class_loss) / N
return xy_loss, wh_loss, conf_loss, class_loss
def box_iou(self, pred_boxes, valid_true_boxes):
pred_box_xy = pred_boxes[..., 0:2]
pred_box_wh = pred_boxes[..., 2:4]
pred_box_xy = tf.expand_dims(pred_box_xy, -2)
pred_box_wh = tf.expand_dims(pred_box_wh, -2)
true_box_xy = valid_true_boxes[:, 0:2]
true_box_wh = valid_true_boxes[:, 2:4]
intersect_mins = tf.maximum(pred_box_xy - pred_box_wh / 2.,
true_box_xy - true_box_wh / 2.)
intersect_maxs = tf.minimum(pred_box_xy + pred_box_wh / 2.,
true_box_xy + true_box_wh / 2.)
intersect_wh = tf.maximum(intersect_maxs - intersect_mins, 0.)
intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
pred_box_area = pred_box_wh[..., 0] * pred_box_wh[..., 1]
true_box_area = true_box_wh[..., 0] * true_box_wh[..., 1]
true_box_area = tf.expand_dims(true_box_area, axis=0)
iou = intersect_area / (pred_box_area + true_box_area - intersect_area + 1e-10)
return iou
def compute_loss(self, y_pred, y_true):
loss_xy, loss_wh, loss_conf, loss_class = 0., 0., 0., 0.
anchor_group = [self.anchors[6:9], self.anchors[3:6], self.anchors[0:3]]
for i in range(len(y_pred)):
result = self.loss_layer(y_pred[i], y_true[i], anchor_group[i])
loss_xy += result[0]
loss_wh += result[1]
loss_conf += result[2]
loss_class += result[3]
total_loss = loss_xy + loss_wh + loss_conf + loss_class
return [total_loss, loss_xy, loss_wh, loss_conf, loss_class]