image-inl.h 20.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#ifndef TENSORFLOW_EXAMPLES_ANDROID_JNI_OBJECT_TRACKING_IMAGE_INL_H_
#define TENSORFLOW_EXAMPLES_ANDROID_JNI_OBJECT_TRACKING_IMAGE_INL_H_

#include <stdint.h>

#include "tensorflow/examples/android/jni/object_tracking/geom.h"
#include "tensorflow/examples/android/jni/object_tracking/image.h"
#include "tensorflow/examples/android/jni/object_tracking/utils.h"

namespace tf_tracking {

template <typename T>
Image<T>::Image(const int width, const int height)
    : width_less_one_(width - 1),
      height_less_one_(height - 1),
      data_size_(width * height),
      own_data_(true),
      width_(width),
      height_(height),
      stride_(width) {
  Allocate();
}

template <typename T>
Image<T>::Image(const Size& size)
    : width_less_one_(size.width - 1),
      height_less_one_(size.height - 1),
      data_size_(size.width * size.height),
      own_data_(true),
      width_(size.width),
      height_(size.height),
      stride_(size.width) {
  Allocate();
}

// Constructor that creates an image from preallocated data.
// Note: The image takes ownership of the data lifecycle, unless own_data is
// set to false.
template <typename T>
Image<T>::Image(const int width, const int height, T* const image_data,
      const bool own_data) :
    width_less_one_(width - 1),
    height_less_one_(height - 1),
    data_size_(width * height),
    own_data_(own_data),
    width_(width),
    height_(height),
    stride_(width) {
  image_data_ = image_data;
  SCHECK(image_data_ != NULL, "Can't create image with NULL data!");
}

template <typename T>
Image<T>::~Image() {
  if (own_data_) {
    delete[] image_data_;
  }
  image_data_ = NULL;
}

template<typename T>
template<class DstType>
bool Image<T>::ExtractPatchAtSubpixelFixed1616(const int fp_x,
                                               const int fp_y,
                                               const int patchwidth,
                                               const int patchheight,
                                               DstType* to_data) const {
  // Calculate weights.
  const int trunc_x = fp_x >> 16;
  const int trunc_y = fp_y >> 16;

  if (trunc_x < 0 || trunc_y < 0 ||
      (trunc_x + patchwidth) >= width_less_one_ ||
      (trunc_y + patchheight) >= height_less_one_) {
    return false;
  }

  // Now walk over destination patch and fill from interpolated source image.
  for (int y = 0; y < patchheight; ++y, to_data += patchwidth) {
    for (int x = 0; x < patchwidth; ++x) {
      to_data[x] =
          static_cast<DstType>(GetPixelInterpFixed1616(fp_x + (x << 16),
                                                       fp_y + (y << 16)));
    }
  }

  return true;
}

template <typename T>
Image<T>* Image<T>::Crop(
    const int left, const int top, const int right, const int bottom) const {
  SCHECK(left >= 0 && left < width_, "out of bounds at %d!", left);
  SCHECK(right >= 0 && right < width_, "out of bounds at %d!", right);
  SCHECK(top >= 0 && top < height_, "out of bounds at %d!", top);
  SCHECK(bottom >= 0 && bottom < height_, "out of bounds at %d!", bottom);

  SCHECK(left <= right, "mismatch!");
  SCHECK(top <= bottom, "mismatch!");

  const int new_width = right - left + 1;
  const int new_height = bottom - top + 1;

  Image<T>* const cropped_image = new Image(new_width, new_height);

  for (int y = 0; y < new_height; ++y) {
    memcpy((*cropped_image)[y], ((*this)[y + top] + left),
           new_width * sizeof(T));
  }

  return cropped_image;
}

template <typename T>
inline float Image<T>::GetPixelInterp(const float x, const float y) const {
  // Do int conversion one time.
  const int floored_x = static_cast<int>(x);
  const int floored_y = static_cast<int>(y);

  // Note: it might be the case that the *_[min|max] values are clipped, and
  // these (the a b c d vals) aren't (for speed purposes), but that doesn't
  // matter. We'll just be blending the pixel with itself in that case anyway.
  const float b = x - floored_x;
  const float a = 1.0f - b;

  const float d = y - floored_y;
  const float c = 1.0f - d;

  SCHECK(ValidInterpPixel(x, y),
        "x or y out of bounds! %.2f [0 - %d), %.2f [0 - %d)",
        x, width_less_one_, y, height_less_one_);

  const T* const pix_ptr = (*this)[floored_y] + floored_x;

  // Get the pixel values surrounding this point.
  const T& p1 = pix_ptr[0];
  const T& p2 = pix_ptr[1];
  const T& p3 = pix_ptr[width_];
  const T& p4 = pix_ptr[width_ + 1];

  // Simple bilinear interpolation between four reference pixels.
  // If x is the value requested:
  //     a  b
  //   -------
  // c |p1 p2|
  //   |  x  |
  // d |p3 p4|
  //   -------
  return  c * ((a * p1) + (b * p2)) +
          d * ((a * p3) + (b * p4));
}


template <typename T>
inline T Image<T>::GetPixelInterpFixed1616(
    const int fp_x_whole, const int fp_y_whole) const {
  static const int kFixedPointOne = 0x00010000;
  static const int kFixedPointHalf = 0x00008000;
  static const int kFixedPointTruncateMask = 0xFFFF0000;

  int trunc_x = fp_x_whole & kFixedPointTruncateMask;
  int trunc_y = fp_y_whole & kFixedPointTruncateMask;
  const int fp_x = fp_x_whole - trunc_x;
  const int fp_y = fp_y_whole - trunc_y;

  // Scale the truncated values back to regular ints.
  trunc_x >>= 16;
  trunc_y >>= 16;

  const int one_minus_fp_x = kFixedPointOne - fp_x;
  const int one_minus_fp_y = kFixedPointOne - fp_y;

  const T* trunc_start = (*this)[trunc_y] + trunc_x;

  const T a = trunc_start[0];
  const T b = trunc_start[1];
  const T c = trunc_start[stride_];
  const T d = trunc_start[stride_ + 1];

  return (
      (one_minus_fp_y * static_cast<int64_t>(one_minus_fp_x * a + fp_x * b) +
       fp_y * static_cast<int64_t>(one_minus_fp_x * c + fp_x * d) +
       kFixedPointHalf) >>
      32);
}

template <typename T>
inline bool Image<T>::ValidPixel(const int x, const int y) const {
  return InRange(x, ZERO, width_less_one_) &&
         InRange(y, ZERO, height_less_one_);
}

template <typename T>
inline BoundingBox Image<T>::GetContainingBox() const {
  return BoundingBox(
      0, 0, width_less_one_ - EPSILON, height_less_one_ - EPSILON);
}

template <typename T>
inline bool Image<T>::Contains(const BoundingBox& bounding_box) const {
  // TODO(andrewharp): Come up with a more elegant way of ensuring that bounds
  // are ok.
  return GetContainingBox().Contains(bounding_box);
}

template <typename T>
inline bool Image<T>::ValidInterpPixel(const float x, const float y) const {
  // Exclusive of max because we can be more efficient if we don't handle
  // interpolating on or past the last pixel.
  return (x >= ZERO) && (x < width_less_one_) &&
         (y >= ZERO) && (y < height_less_one_);
}

template <typename T>
void Image<T>::DownsampleAveraged(const T* const original, const int stride,
                                  const int factor) {
#ifdef __ARM_NEON
  if (factor == 4 || factor == 2) {
    DownsampleAveragedNeon(original, stride, factor);
    return;
  }
#endif

  // TODO(andrewharp): delete or enable this for non-uint8_t downsamples.
  const int pixels_per_block = factor * factor;

  // For every pixel in resulting image.
  for (int y = 0; y < height_; ++y) {
    const int orig_y = y * factor;
    const int y_bound = orig_y + factor;

    // Sum up the original pixels.
    for (int x = 0; x < width_; ++x) {
      const int orig_x = x * factor;
      const int x_bound = orig_x + factor;

      // Making this int32_t because type U or T might overflow.
      int32_t pixel_sum = 0;

      // Grab all the pixels that make up this pixel.
      for (int curr_y = orig_y; curr_y < y_bound; ++curr_y) {
        const T* p = original + curr_y * stride + orig_x;

        for (int curr_x = orig_x; curr_x < x_bound; ++curr_x) {
          pixel_sum += *p++;
        }
      }

      (*this)[y][x] = pixel_sum / pixels_per_block;
    }
  }
}

template <typename T>
void Image<T>::DownsampleInterpolateNearest(const Image<T>& original) {
  // Calculating the scaling factors based on target image size.
  const float factor_x = static_cast<float>(original.GetWidth()) /
      static_cast<float>(width_);
  const float factor_y = static_cast<float>(original.GetHeight()) /
      static_cast<float>(height_);

  // Calculating initial offset in x-axis.
  const float offset_x = 0.5f * (original.GetWidth() - width_) / width_;

  // Calculating initial offset in y-axis.
  const float offset_y = 0.5f * (original.GetHeight() - height_) / height_;

  float orig_y = offset_y;

  // For every pixel in resulting image.
  for (int y = 0; y < height_; ++y) {
    float orig_x = offset_x;

    // Finding nearest pixel on y-axis.
    const int nearest_y = static_cast<int>(orig_y + 0.5f);
    const T* row_data = original[nearest_y];

    T* pixel_ptr = (*this)[y];

    for (int x = 0; x < width_; ++x) {
      // Finding nearest pixel on x-axis.
      const int nearest_x = static_cast<int>(orig_x + 0.5f);

      *pixel_ptr++ = row_data[nearest_x];

      orig_x += factor_x;
    }

    orig_y += factor_y;
  }
}

template <typename T>
void Image<T>::DownsampleInterpolateLinear(const Image<T>& original) {
  // TODO(andrewharp): Turn this into a general compare sizes/bulk
  // copy method.
  if (original.GetWidth() == GetWidth() &&
      original.GetHeight() == GetHeight() &&
      original.stride() == stride()) {
    memcpy(image_data_, original.data(), data_size_ * sizeof(T));
    return;
  }

  // Calculating the scaling factors based on target image size.
  const float factor_x = static_cast<float>(original.GetWidth()) /
      static_cast<float>(width_);
  const float factor_y = static_cast<float>(original.GetHeight()) /
      static_cast<float>(height_);

  // Calculating initial offset in x-axis.
  const float offset_x = 0;
  const int offset_x_fp = RealToFixed1616(offset_x);

  // Calculating initial offset in y-axis.
  const float offset_y = 0;
  const int offset_y_fp = RealToFixed1616(offset_y);

  // Get the fixed point scaling factor value.
  // Shift by 8 so we can fit everything into a 4 byte int later for speed
  // reasons. This means the precision is limited to 1 / 256th of a pixel,
  // but this should be good enough.
  const int factor_x_fp = RealToFixed1616(factor_x) >> 8;
  const int factor_y_fp = RealToFixed1616(factor_y) >> 8;

  int src_y_fp = offset_y_fp >> 8;

  static const int kFixedPointOne8 = 0x00000100;
  static const int kFixedPointHalf8 = 0x00000080;
  static const int kFixedPointTruncateMask8 = 0xFFFFFF00;

  // For every pixel in resulting image.
  for (int y = 0; y < height_; ++y) {
    int src_x_fp = offset_x_fp >> 8;

    int trunc_y = src_y_fp & kFixedPointTruncateMask8;
    const int fp_y = src_y_fp - trunc_y;

    // Scale the truncated values back to regular ints.
    trunc_y >>= 8;

    const int one_minus_fp_y = kFixedPointOne8 - fp_y;

    T* pixel_ptr = (*this)[y];

    // Make sure not to read from an invalid row.
    const int trunc_y_b = MIN(original.height_less_one_, trunc_y + 1);
    const T* other_top_ptr = original[trunc_y];
    const T* other_bot_ptr = original[trunc_y_b];

    int last_trunc_x = -1;
    int trunc_x = -1;

    T a = 0;
    T b = 0;
    T c = 0;
    T d = 0;

    for (int x = 0; x < width_; ++x) {
      trunc_x = src_x_fp & kFixedPointTruncateMask8;

      const int fp_x = (src_x_fp - trunc_x) >> 8;

      // Scale the truncated values back to regular ints.
      trunc_x >>= 8;

      // It's possible we're reading from the same pixels
      if (trunc_x != last_trunc_x) {
        // Make sure not to read from an invalid column.
        const int trunc_x_b = MIN(original.width_less_one_, trunc_x + 1);
        a = other_top_ptr[trunc_x];
        b = other_top_ptr[trunc_x_b];
        c = other_bot_ptr[trunc_x];
        d = other_bot_ptr[trunc_x_b];
        last_trunc_x = trunc_x;
      }

      const int one_minus_fp_x = kFixedPointOne8 - fp_x;

      const int32_t value =
          ((one_minus_fp_y * one_minus_fp_x * a + fp_x * b) +
           (fp_y * one_minus_fp_x * c + fp_x * d) + kFixedPointHalf8) >>
          16;

      *pixel_ptr++ = value;

      src_x_fp += factor_x_fp;
    }
    src_y_fp += factor_y_fp;
  }
}

template <typename T>
void Image<T>::DownsampleSmoothed3x3(const Image<T>& original) {
  for (int y = 0; y < height_; ++y) {
    const int orig_y = Clip(2 * y, ZERO, original.height_less_one_);
    const int min_y = Clip(orig_y - 1, ZERO, original.height_less_one_);
    const int max_y = Clip(orig_y + 1, ZERO, original.height_less_one_);

    for (int x = 0; x < width_; ++x) {
      const int orig_x = Clip(2 * x, ZERO, original.width_less_one_);
      const int min_x = Clip(orig_x - 1, ZERO, original.width_less_one_);
      const int max_x = Clip(orig_x + 1, ZERO, original.width_less_one_);

      // Center.
      int32_t pixel_sum = original[orig_y][orig_x] * 4;

      // Sides.
      pixel_sum += (original[orig_y][max_x] +
                    original[orig_y][min_x] +
                    original[max_y][orig_x] +
                    original[min_y][orig_x]) * 2;

      // Diagonals.
      pixel_sum += (original[min_y][max_x] +
                    original[min_y][min_x] +
                    original[max_y][max_x] +
                    original[max_y][min_x]);

      (*this)[y][x] = pixel_sum >> 4;  // 16
    }
  }
}

template <typename T>
void Image<T>::DownsampleSmoothed5x5(const Image<T>& original) {
  const int max_x = original.width_less_one_;
  const int max_y = original.height_less_one_;

  // The JY Bouget paper on Lucas-Kanade recommends a
  // [1/16 1/4 3/8 1/4 1/16]^2 filter.
  // This works out to a [1 4 6 4 1]^2 / 256 array, precomputed below.
  static const int window_radius = 2;
  static const int window_size = window_radius*2 + 1;
  static const int window_weights[] = {1,  4,  6,  4, 1,   // 16 +
                                       4, 16, 24, 16, 4,   // 64 +
                                       6, 24, 36, 24, 6,   // 96 +
                                       4, 16, 24, 16, 4,   // 64 +
                                       1,  4,  6,  4, 1};  // 16 = 256

  // We'll multiply and sum with the whole numbers first, then divide by
  // the total weight to normalize at the last moment.
  for (int y = 0; y < height_; ++y) {
    for (int x = 0; x < width_; ++x) {
      int32_t pixel_sum = 0;

      const int* w = window_weights;
      const int start_x = Clip((x << 1) - window_radius, ZERO, max_x);

      // Clip the boundaries to the size of the image.
      for (int window_y = 0; window_y < window_size; ++window_y) {
        const int start_y =
            Clip((y << 1) - window_radius + window_y, ZERO, max_y);

        const T* p = original[start_y] + start_x;

        for (int window_x = 0; window_x < window_size; ++window_x) {
          pixel_sum +=  *p++ * *w++;
        }
      }

      // Conversion to type T will happen here after shifting right 8 bits to
      // divide by 256.
      (*this)[y][x] = pixel_sum >> 8;
    }
  }
}

template <typename T>
template <typename U>
inline T Image<T>::ScharrPixelX(const Image<U>& original,
                      const int center_x, const int center_y) const {
  const int min_x = Clip(center_x - 1, ZERO, original.width_less_one_);
  const int max_x = Clip(center_x + 1, ZERO, original.width_less_one_);
  const int min_y = Clip(center_y - 1, ZERO, original.height_less_one_);
  const int max_y = Clip(center_y + 1, ZERO, original.height_less_one_);

  // Convolution loop unrolled for performance...
  return (3 * (original[min_y][max_x]
               + original[max_y][max_x]
               - original[min_y][min_x]
               - original[max_y][min_x])
          + 10 * (original[center_y][max_x]
                  - original[center_y][min_x])) / 32;
}

template <typename T>
template <typename U>
inline T Image<T>::ScharrPixelY(const Image<U>& original,
                      const int center_x, const int center_y) const {
  const int min_x = Clip(center_x - 1, 0, original.width_less_one_);
  const int max_x = Clip(center_x + 1, 0, original.width_less_one_);
  const int min_y = Clip(center_y - 1, 0, original.height_less_one_);
  const int max_y = Clip(center_y + 1, 0, original.height_less_one_);

  // Convolution loop unrolled for performance...
  return (3 * (original[max_y][min_x]
               + original[max_y][max_x]
               - original[min_y][min_x]
               - original[min_y][max_x])
          + 10 * (original[max_y][center_x]
                  - original[min_y][center_x])) / 32;
}

template <typename T>
template <typename U>
inline void Image<T>::ScharrX(const Image<U>& original) {
  for (int y = 0; y < height_; ++y) {
    for (int x = 0; x < width_; ++x) {
      SetPixel(x, y, ScharrPixelX(original, x, y));
    }
  }
}

template <typename T>
template <typename U>
inline void Image<T>::ScharrY(const Image<U>& original) {
  for (int y = 0; y < height_; ++y) {
    for (int x = 0; x < width_; ++x) {
      SetPixel(x, y, ScharrPixelY(original, x, y));
    }
  }
}

template <typename T>
template <typename U>
void Image<T>::DerivativeX(const Image<U>& original) {
  for (int y = 0; y < height_; ++y) {
    const U* const source_row = original[y];
    T* const dest_row = (*this)[y];

    // Compute first pixel. Approximated with forward difference.
    dest_row[0] = source_row[1] - source_row[0];

    // All the pixels in between. Central difference method.
    const U* source_prev_pixel = source_row;
    T* dest_pixel = dest_row + 1;
    const U* source_next_pixel = source_row + 2;
    for (int x = 1; x < width_less_one_; ++x) {
      *dest_pixel++ = HalfDiff(*source_prev_pixel++, *source_next_pixel++);
    }

    // Last pixel. Approximated with backward difference.
    dest_row[width_less_one_] =
        source_row[width_less_one_] - source_row[width_less_one_ - 1];
  }
}

template <typename T>
template <typename U>
void Image<T>::DerivativeY(const Image<U>& original) {
  const int src_stride = original.stride();

  // Compute 1st row. Approximated with forward difference.
  {
    const U* const src_row = original[0];
    T* dest_row = (*this)[0];
    for (int x = 0; x < width_; ++x) {
      dest_row[x] = src_row[x + src_stride] - src_row[x];
    }
  }

  // Compute all rows in between using central difference.
  for (int y = 1; y < height_less_one_; ++y) {
    T* dest_row = (*this)[y];

    const U* source_prev_pixel = original[y - 1];
    const U* source_next_pixel = original[y + 1];
    for (int x = 0; x < width_; ++x) {
      *dest_row++ = HalfDiff(*source_prev_pixel++, *source_next_pixel++);
    }
  }

  // Compute last row. Approximated with backward difference.
  {
    const U* const src_row = original[height_less_one_];
    T* dest_row = (*this)[height_less_one_];
    for (int x = 0; x < width_; ++x) {
      dest_row[x] = src_row[x] - src_row[x - src_stride];
    }
  }
}

template <typename T>
template <typename U>
inline T Image<T>::ConvolvePixel3x3(const Image<U>& original,
                                    const int* const filter,
                                    const int center_x, const int center_y,
                                    const int total) const {
  int32_t sum = 0;
  for (int filter_y = 0; filter_y < 3; ++filter_y) {
    const int y = Clip(center_y - 1 + filter_y, 0, original.GetHeight());
    for (int filter_x = 0; filter_x < 3; ++filter_x) {
      const int x = Clip(center_x - 1 + filter_x, 0, original.GetWidth());
      sum += original[y][x] * filter[filter_y * 3 + filter_x];
    }
  }
  return sum / total;
}

template <typename T>
template <typename U>
inline void Image<T>::Convolve3x3(const Image<U>& original,
                                  const int32_t* const filter) {
  int32_t sum = 0;
  for (int i = 0; i < 9; ++i) {
    sum += abs(filter[i]);
  }
  for (int y = 0; y < height_; ++y) {
    for (int x = 0; x < width_; ++x) {
      SetPixel(x, y, ConvolvePixel3x3(original, filter, x, y, sum));
    }
  }
}

template <typename T>
inline void Image<T>::FromArray(const T* const pixels, const int stride,
                      const int factor) {
  if (factor == 1 && stride == width_) {
    // If not subsampling, memcpy per line should be faster.
    memcpy(this->image_data_, pixels, data_size_ * sizeof(T));
    return;
  }

  DownsampleAveraged(pixels, stride, factor);
}

}  // namespace tf_tracking

#endif  // TENSORFLOW_EXAMPLES_ANDROID_JNI_OBJECT_TRACKING_IMAGE_INL_H_