optical_flow.cc
17.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <math.h>
#include "tensorflow/examples/android/jni/object_tracking/geom.h"
#include "tensorflow/examples/android/jni/object_tracking/image-inl.h"
#include "tensorflow/examples/android/jni/object_tracking/image.h"
#include "tensorflow/examples/android/jni/object_tracking/time_log.h"
#include "tensorflow/examples/android/jni/object_tracking/utils.h"
#include "tensorflow/examples/android/jni/object_tracking/config.h"
#include "tensorflow/examples/android/jni/object_tracking/flow_cache.h"
#include "tensorflow/examples/android/jni/object_tracking/frame_pair.h"
#include "tensorflow/examples/android/jni/object_tracking/image_data.h"
#include "tensorflow/examples/android/jni/object_tracking/keypoint.h"
#include "tensorflow/examples/android/jni/object_tracking/keypoint_detector.h"
#include "tensorflow/examples/android/jni/object_tracking/optical_flow.h"
namespace tf_tracking {
OpticalFlow::OpticalFlow(const OpticalFlowConfig* const config)
: config_(config),
frame1_(NULL),
frame2_(NULL),
working_size_(config->image_size) {}
void OpticalFlow::NextFrame(const ImageData* const image_data) {
// Special case for the first frame: make sure the image ends up in
// frame1_ so that keypoint detection can be done on it if desired.
frame1_ = (frame1_ == NULL) ? image_data : frame2_;
frame2_ = image_data;
}
// Static heart of the optical flow computation.
// Lucas Kanade algorithm.
bool OpticalFlow::FindFlowAtPoint_LK(const Image<uint8_t>& img_I,
const Image<uint8_t>& img_J,
const Image<int32_t>& I_x,
const Image<int32_t>& I_y, const float p_x,
const float p_y, float* out_g_x,
float* out_g_y) {
float g_x = *out_g_x;
float g_y = *out_g_y;
// Get values for frame 1. They remain constant through the inner
// iteration loop.
float vals_I[kFlowArraySize];
float vals_I_x[kFlowArraySize];
float vals_I_y[kFlowArraySize];
const int kPatchSize = 2 * kFlowIntegrationWindowSize + 1;
const float kWindowSizeFloat = static_cast<float>(kFlowIntegrationWindowSize);
#if USE_FIXED_POINT_FLOW
const int fixed_x_max = RealToFixed1616(img_I.width_less_one_) - 1;
const int fixed_y_max = RealToFixed1616(img_I.height_less_one_) - 1;
#else
const float real_x_max = I_x.width_less_one_ - EPSILON;
const float real_y_max = I_x.height_less_one_ - EPSILON;
#endif
// Get the window around the original point.
const float src_left_real = p_x - kWindowSizeFloat;
const float src_top_real = p_y - kWindowSizeFloat;
float* vals_I_ptr = vals_I;
float* vals_I_x_ptr = vals_I_x;
float* vals_I_y_ptr = vals_I_y;
#if USE_FIXED_POINT_FLOW
// Source integer coordinates.
const int src_left_fixed = RealToFixed1616(src_left_real);
const int src_top_fixed = RealToFixed1616(src_top_real);
for (int y = 0; y < kPatchSize; ++y) {
const int fp_y = Clip(src_top_fixed + (y << 16), 0, fixed_y_max);
for (int x = 0; x < kPatchSize; ++x) {
const int fp_x = Clip(src_left_fixed + (x << 16), 0, fixed_x_max);
*vals_I_ptr++ = img_I.GetPixelInterpFixed1616(fp_x, fp_y);
*vals_I_x_ptr++ = I_x.GetPixelInterpFixed1616(fp_x, fp_y);
*vals_I_y_ptr++ = I_y.GetPixelInterpFixed1616(fp_x, fp_y);
}
}
#else
for (int y = 0; y < kPatchSize; ++y) {
const float y_pos = Clip(src_top_real + y, 0.0f, real_y_max);
for (int x = 0; x < kPatchSize; ++x) {
const float x_pos = Clip(src_left_real + x, 0.0f, real_x_max);
*vals_I_ptr++ = img_I.GetPixelInterp(x_pos, y_pos);
*vals_I_x_ptr++ = I_x.GetPixelInterp(x_pos, y_pos);
*vals_I_y_ptr++ = I_y.GetPixelInterp(x_pos, y_pos);
}
}
#endif
// Compute the spatial gradient matrix about point p.
float G[] = { 0, 0, 0, 0 };
CalculateG(vals_I_x, vals_I_y, kFlowArraySize, G);
// Find the inverse of G.
float G_inv[4];
if (!Invert2x2(G, G_inv)) {
return false;
}
#if NORMALIZE
const float mean_I = ComputeMean(vals_I, kFlowArraySize);
const float std_dev_I = ComputeStdDev(vals_I, kFlowArraySize, mean_I);
#endif
// Iterate kNumIterations times or until we converge.
for (int iteration = 0; iteration < kNumIterations; ++iteration) {
// Get values for frame 2.
float vals_J[kFlowArraySize];
// Get the window around the destination point.
const float left_real = p_x + g_x - kWindowSizeFloat;
const float top_real = p_y + g_y - kWindowSizeFloat;
float* vals_J_ptr = vals_J;
#if USE_FIXED_POINT_FLOW
// The top-left sub-pixel is set for the current iteration (in 16:16
// fixed). This is constant over one iteration.
const int left_fixed = RealToFixed1616(left_real);
const int top_fixed = RealToFixed1616(top_real);
for (int win_y = 0; win_y < kPatchSize; ++win_y) {
const int fp_y = Clip(top_fixed + (win_y << 16), 0, fixed_y_max);
for (int win_x = 0; win_x < kPatchSize; ++win_x) {
const int fp_x = Clip(left_fixed + (win_x << 16), 0, fixed_x_max);
*vals_J_ptr++ = img_J.GetPixelInterpFixed1616(fp_x, fp_y);
}
}
#else
for (int win_y = 0; win_y < kPatchSize; ++win_y) {
const float y_pos = Clip(top_real + win_y, 0.0f, real_y_max);
for (int win_x = 0; win_x < kPatchSize; ++win_x) {
const float x_pos = Clip(left_real + win_x, 0.0f, real_x_max);
*vals_J_ptr++ = img_J.GetPixelInterp(x_pos, y_pos);
}
}
#endif
#if NORMALIZE
const float mean_J = ComputeMean(vals_J, kFlowArraySize);
const float std_dev_J = ComputeStdDev(vals_J, kFlowArraySize, mean_J);
// TODO(andrewharp): Probably better to completely detect and handle the
// "corner case" where the patch is fully outside the image diagonally.
const float std_dev_ratio = std_dev_J > 0.0f ? std_dev_I / std_dev_J : 1.0f;
#endif
// Compute image mismatch vector.
float b_x = 0.0f;
float b_y = 0.0f;
vals_I_ptr = vals_I;
vals_J_ptr = vals_J;
vals_I_x_ptr = vals_I_x;
vals_I_y_ptr = vals_I_y;
for (int win_y = 0; win_y < kPatchSize; ++win_y) {
for (int win_x = 0; win_x < kPatchSize; ++win_x) {
#if NORMALIZE
// Normalized Image difference.
const float dI =
(*vals_I_ptr++ - mean_I) - (*vals_J_ptr++ - mean_J) * std_dev_ratio;
#else
const float dI = *vals_I_ptr++ - *vals_J_ptr++;
#endif
b_x += dI * *vals_I_x_ptr++;
b_y += dI * *vals_I_y_ptr++;
}
}
// Optical flow... solve n = G^-1 * b
const float n_x = (G_inv[0] * b_x) + (G_inv[1] * b_y);
const float n_y = (G_inv[2] * b_x) + (G_inv[3] * b_y);
// Update best guess with residual displacement from this level and
// iteration.
g_x += n_x;
g_y += n_y;
// LOGV("Iteration %d: delta (%.3f, %.3f)", iteration, n_x, n_y);
// Abort early if we're already below the threshold.
if (Square(n_x) + Square(n_y) < Square(kTrackingAbortThreshold)) {
break;
}
} // Iteration.
// Copy value back into output.
*out_g_x = g_x;
*out_g_y = g_y;
return true;
}
// Pointwise flow using translational 2dof ESM.
bool OpticalFlow::FindFlowAtPoint_ESM(
const Image<uint8_t>& img_I, const Image<uint8_t>& img_J,
const Image<int32_t>& I_x, const Image<int32_t>& I_y,
const Image<int32_t>& J_x, const Image<int32_t>& J_y, const float p_x,
const float p_y, float* out_g_x, float* out_g_y) {
float g_x = *out_g_x;
float g_y = *out_g_y;
const float area_inv = 1.0f / static_cast<float>(kFlowArraySize);
// Get values for frame 1. They remain constant through the inner
// iteration loop.
uint8_t vals_I[kFlowArraySize];
uint8_t vals_J[kFlowArraySize];
int16_t src_gradient_x[kFlowArraySize];
int16_t src_gradient_y[kFlowArraySize];
// TODO(rspring): try out the IntegerPatchAlign() method once
// the code for that is in ../common.
const float wsize_float = static_cast<float>(kFlowIntegrationWindowSize);
const int src_left_fixed = RealToFixed1616(p_x - wsize_float);
const int src_top_fixed = RealToFixed1616(p_y - wsize_float);
const int patch_size = 2 * kFlowIntegrationWindowSize + 1;
// Create the keypoint template patch from a subpixel location.
if (!img_I.ExtractPatchAtSubpixelFixed1616(src_left_fixed, src_top_fixed,
patch_size, patch_size, vals_I) ||
!I_x.ExtractPatchAtSubpixelFixed1616(src_left_fixed, src_top_fixed,
patch_size, patch_size,
src_gradient_x) ||
!I_y.ExtractPatchAtSubpixelFixed1616(src_left_fixed, src_top_fixed,
patch_size, patch_size,
src_gradient_y)) {
return false;
}
int bright_offset = 0;
int sum_diff = 0;
// The top-left sub-pixel is set for the current iteration (in 16:16 fixed).
// This is constant over one iteration.
int left_fixed = RealToFixed1616(p_x + g_x - wsize_float);
int top_fixed = RealToFixed1616(p_y + g_y - wsize_float);
// The truncated version gives the most top-left pixel that is used.
int left_trunc = left_fixed >> 16;
int top_trunc = top_fixed >> 16;
// Compute an initial brightness offset.
if (kDoBrightnessNormalize &&
left_trunc >= 0 && top_trunc >= 0 &&
(left_trunc + patch_size) < img_J.width_less_one_ &&
(top_trunc + patch_size) < img_J.height_less_one_) {
int templ_index = 0;
const uint8_t* j_row = img_J[top_trunc] + left_trunc;
const int j_stride = img_J.stride();
for (int y = 0; y < patch_size; ++y, j_row += j_stride) {
for (int x = 0; x < patch_size; ++x) {
sum_diff += static_cast<int>(j_row[x]) - vals_I[templ_index++];
}
}
bright_offset = static_cast<int>(static_cast<float>(sum_diff) * area_inv);
}
// Iterate kNumIterations times or until we go out of image.
for (int iteration = 0; iteration < kNumIterations; ++iteration) {
int jtj[3] = { 0, 0, 0 };
int jtr[2] = { 0, 0 };
sum_diff = 0;
// Extract the target image values.
// Extract the gradient from the target image patch and accumulate to
// the gradient of the source image patch.
if (!img_J.ExtractPatchAtSubpixelFixed1616(left_fixed, top_fixed,
patch_size, patch_size,
vals_J)) {
break;
}
const uint8_t* templ_row = vals_I;
const uint8_t* extract_row = vals_J;
const int16_t* src_dx_row = src_gradient_x;
const int16_t* src_dy_row = src_gradient_y;
for (int y = 0; y < patch_size; ++y, templ_row += patch_size,
src_dx_row += patch_size, src_dy_row += patch_size,
extract_row += patch_size) {
const int fp_y = top_fixed + (y << 16);
for (int x = 0; x < patch_size; ++x) {
const int fp_x = left_fixed + (x << 16);
int32_t target_dx = J_x.GetPixelInterpFixed1616(fp_x, fp_y);
int32_t target_dy = J_y.GetPixelInterpFixed1616(fp_x, fp_y);
// Combine the two Jacobians.
// Right-shift by one to account for the fact that we add
// two Jacobians.
int32_t dx = (src_dx_row[x] + target_dx) >> 1;
int32_t dy = (src_dy_row[x] + target_dy) >> 1;
// The current residual b - h(q) == extracted - (template + offset)
int32_t diff = static_cast<int32_t>(extract_row[x]) -
static_cast<int32_t>(templ_row[x]) - bright_offset;
jtj[0] += dx * dx;
jtj[1] += dx * dy;
jtj[2] += dy * dy;
jtr[0] += dx * diff;
jtr[1] += dy * diff;
sum_diff += diff;
}
}
const float jtr1_float = static_cast<float>(jtr[0]);
const float jtr2_float = static_cast<float>(jtr[1]);
// Add some baseline stability to the system.
jtj[0] += kEsmRegularizer;
jtj[2] += kEsmRegularizer;
const int64_t prod1 = static_cast<int64_t>(jtj[0]) * jtj[2];
const int64_t prod2 = static_cast<int64_t>(jtj[1]) * jtj[1];
// One ESM step.
const float jtj_1[4] = { static_cast<float>(jtj[2]),
static_cast<float>(-jtj[1]),
static_cast<float>(-jtj[1]),
static_cast<float>(jtj[0]) };
const double det_inv = 1.0 / static_cast<double>(prod1 - prod2);
g_x -= det_inv * (jtj_1[0] * jtr1_float + jtj_1[1] * jtr2_float);
g_y -= det_inv * (jtj_1[2] * jtr1_float + jtj_1[3] * jtr2_float);
if (kDoBrightnessNormalize) {
bright_offset +=
static_cast<int>(area_inv * static_cast<float>(sum_diff) + 0.5f);
}
// Update top left position.
left_fixed = RealToFixed1616(p_x + g_x - wsize_float);
top_fixed = RealToFixed1616(p_y + g_y - wsize_float);
left_trunc = left_fixed >> 16;
top_trunc = top_fixed >> 16;
// Abort iterations if we go out of borders.
if (left_trunc < 0 || top_trunc < 0 ||
(left_trunc + patch_size) >= J_x.width_less_one_ ||
(top_trunc + patch_size) >= J_y.height_less_one_) {
break;
}
} // Iteration.
// Copy value back into output.
*out_g_x = g_x;
*out_g_y = g_y;
return true;
}
bool OpticalFlow::FindFlowAtPointReversible(
const int level, const float u_x, const float u_y,
const bool reverse_flow,
float* flow_x, float* flow_y) const {
const ImageData& frame_a = reverse_flow ? *frame2_ : *frame1_;
const ImageData& frame_b = reverse_flow ? *frame1_ : *frame2_;
// Images I (prev) and J (next).
const Image<uint8_t>& img_I = *frame_a.GetPyramidSqrt2Level(level * 2);
const Image<uint8_t>& img_J = *frame_b.GetPyramidSqrt2Level(level * 2);
// Computed gradients.
const Image<int32_t>& I_x = *frame_a.GetSpatialX(level);
const Image<int32_t>& I_y = *frame_a.GetSpatialY(level);
const Image<int32_t>& J_x = *frame_b.GetSpatialX(level);
const Image<int32_t>& J_y = *frame_b.GetSpatialY(level);
// Shrink factor from original.
const float shrink_factor = (1 << level);
// Image position vector (p := u^l), scaled for this level.
const float scaled_p_x = u_x / shrink_factor;
const float scaled_p_y = u_y / shrink_factor;
float scaled_flow_x = *flow_x / shrink_factor;
float scaled_flow_y = *flow_y / shrink_factor;
// LOGE("FindFlowAtPoint level %d: %5.2f, %5.2f (%5.2f, %5.2f)", level,
// scaled_p_x, scaled_p_y, &scaled_flow_x, &scaled_flow_y);
const bool success = kUseEsm ?
FindFlowAtPoint_ESM(img_I, img_J, I_x, I_y, J_x, J_y,
scaled_p_x, scaled_p_y,
&scaled_flow_x, &scaled_flow_y) :
FindFlowAtPoint_LK(img_I, img_J, I_x, I_y,
scaled_p_x, scaled_p_y,
&scaled_flow_x, &scaled_flow_y);
*flow_x = scaled_flow_x * shrink_factor;
*flow_y = scaled_flow_y * shrink_factor;
return success;
}
bool OpticalFlow::FindFlowAtPointSingleLevel(
const int level,
const float u_x, const float u_y,
const bool filter_by_fb_error,
float* flow_x, float* flow_y) const {
if (!FindFlowAtPointReversible(level, u_x, u_y, false, flow_x, flow_y)) {
return false;
}
if (filter_by_fb_error) {
const float new_position_x = u_x + *flow_x;
const float new_position_y = u_y + *flow_y;
float reverse_flow_x = 0.0f;
float reverse_flow_y = 0.0f;
// Now find the backwards flow and confirm it lines up with the original
// starting point.
if (!FindFlowAtPointReversible(level, new_position_x, new_position_y,
true,
&reverse_flow_x, &reverse_flow_y)) {
LOGE("Backward error!");
return false;
}
const float discrepancy_length =
sqrtf(Square(*flow_x + reverse_flow_x) +
Square(*flow_y + reverse_flow_y));
const float flow_length = sqrtf(Square(*flow_x) + Square(*flow_y));
return discrepancy_length <
(kMaxForwardBackwardErrorAllowed * flow_length);
}
return true;
}
// An implementation of the Pyramidal Lucas-Kanade Optical Flow algorithm.
// See http://robots.stanford.edu/cs223b04/algo_tracking.pdf for details.
bool OpticalFlow::FindFlowAtPointPyramidal(const float u_x, const float u_y,
const bool filter_by_fb_error,
float* flow_x, float* flow_y) const {
const int max_level = MAX(kMinNumPyramidLevelsToUseForAdjustment,
kNumPyramidLevels - kNumCacheLevels);
// For every level in the pyramid, update the coordinates of the best match.
for (int l = max_level - 1; l >= 0; --l) {
if (!FindFlowAtPointSingleLevel(l, u_x, u_y,
filter_by_fb_error, flow_x, flow_y)) {
return false;
}
}
return true;
}
} // namespace tf_tracking