keypoint_detector.cc
18.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
/* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// Various keypoint detecting functions.
#include <float.h>
#include "tensorflow/examples/android/jni/object_tracking/image-inl.h"
#include "tensorflow/examples/android/jni/object_tracking/image.h"
#include "tensorflow/examples/android/jni/object_tracking/time_log.h"
#include "tensorflow/examples/android/jni/object_tracking/utils.h"
#include "tensorflow/examples/android/jni/object_tracking/config.h"
#include "tensorflow/examples/android/jni/object_tracking/keypoint.h"
#include "tensorflow/examples/android/jni/object_tracking/keypoint_detector.h"
namespace tf_tracking {
static inline int GetDistSquaredBetween(const int* vec1, const int* vec2) {
return Square(vec1[0] - vec2[0]) + Square(vec1[1] - vec2[1]);
}
void KeypointDetector::ScoreKeypoints(const ImageData& image_data,
const int num_candidates,
Keypoint* const candidate_keypoints) {
const Image<int>& I_x = *image_data.GetSpatialX(0);
const Image<int>& I_y = *image_data.GetSpatialY(0);
if (config_->detect_skin) {
const Image<uint8_t>& u_data = *image_data.GetU();
const Image<uint8_t>& v_data = *image_data.GetV();
static const int reference[] = {111, 155};
// Score all the keypoints.
for (int i = 0; i < num_candidates; ++i) {
Keypoint* const keypoint = candidate_keypoints + i;
const int x_pos = keypoint->pos_.x * 2;
const int y_pos = keypoint->pos_.y * 2;
const int curr_color[] = {u_data[y_pos][x_pos], v_data[y_pos][x_pos]};
keypoint->score_ =
HarrisFilter(I_x, I_y, keypoint->pos_.x, keypoint->pos_.y) /
GetDistSquaredBetween(reference, curr_color);
}
} else {
// Score all the keypoints.
for (int i = 0; i < num_candidates; ++i) {
Keypoint* const keypoint = candidate_keypoints + i;
keypoint->score_ =
HarrisFilter(I_x, I_y, keypoint->pos_.x, keypoint->pos_.y);
}
}
}
inline int KeypointCompare(const void* const a, const void* const b) {
return (reinterpret_cast<const Keypoint*>(a)->score_ -
reinterpret_cast<const Keypoint*>(b)->score_) <= 0 ? 1 : -1;
}
// Quicksorts detected keypoints by score.
void KeypointDetector::SortKeypoints(const int num_candidates,
Keypoint* const candidate_keypoints) const {
qsort(candidate_keypoints, num_candidates, sizeof(Keypoint), KeypointCompare);
#ifdef SANITY_CHECKS
// Verify that the array got sorted.
float last_score = FLT_MAX;
for (int i = 0; i < num_candidates; ++i) {
const float curr_score = candidate_keypoints[i].score_;
// Scores should be monotonically increasing.
SCHECK(last_score >= curr_score,
"Quicksort failure! %d: %.5f > %d: %.5f (%d total)",
i - 1, last_score, i, curr_score, num_candidates);
last_score = curr_score;
}
#endif
}
int KeypointDetector::SelectKeypointsInBox(
const BoundingBox& box,
const Keypoint* const candidate_keypoints,
const int num_candidates,
const int max_keypoints,
const int num_existing_keypoints,
const Keypoint* const existing_keypoints,
Keypoint* const final_keypoints) const {
if (max_keypoints <= 0) {
return 0;
}
// This is the distance within which keypoints may be placed to each other
// within this box, roughly based on the box dimensions.
const int distance =
MAX(1, MIN(box.GetWidth(), box.GetHeight()) * kClosestPercent / 2.0f);
// First, mark keypoints that already happen to be inside this region. Ignore
// keypoints that are outside it, however close they might be.
interest_map_->Clear(false);
for (int i = 0; i < num_existing_keypoints; ++i) {
const Keypoint& candidate = existing_keypoints[i];
const int x_pos = candidate.pos_.x;
const int y_pos = candidate.pos_.y;
if (box.Contains(candidate.pos_)) {
MarkImage(x_pos, y_pos, distance, interest_map_.get());
}
}
// Now, go through and check which keypoints will still fit in the box.
int num_keypoints_selected = 0;
for (int i = 0; i < num_candidates; ++i) {
const Keypoint& candidate = candidate_keypoints[i];
const int x_pos = candidate.pos_.x;
const int y_pos = candidate.pos_.y;
if (!box.Contains(candidate.pos_) ||
!interest_map_->ValidPixel(x_pos, y_pos)) {
continue;
}
if (!(*interest_map_)[y_pos][x_pos]) {
final_keypoints[num_keypoints_selected++] = candidate;
if (num_keypoints_selected >= max_keypoints) {
break;
}
MarkImage(x_pos, y_pos, distance, interest_map_.get());
}
}
return num_keypoints_selected;
}
void KeypointDetector::SelectKeypoints(
const std::vector<BoundingBox>& boxes,
const Keypoint* const candidate_keypoints,
const int num_candidates,
FramePair* const curr_change) const {
// Now select all the interesting keypoints that fall insider our boxes.
curr_change->number_of_keypoints_ = 0;
for (std::vector<BoundingBox>::const_iterator iter = boxes.begin();
iter != boxes.end(); ++iter) {
const BoundingBox bounding_box = *iter;
// Count up keypoints that have already been selected, and fall within our
// box.
int num_keypoints_already_in_box = 0;
for (int i = 0; i < curr_change->number_of_keypoints_; ++i) {
if (bounding_box.Contains(curr_change->frame1_keypoints_[i].pos_)) {
++num_keypoints_already_in_box;
}
}
const int max_keypoints_to_find_in_box =
MIN(kMaxKeypointsForObject - num_keypoints_already_in_box,
kMaxKeypoints - curr_change->number_of_keypoints_);
const int num_new_keypoints_in_box = SelectKeypointsInBox(
bounding_box,
candidate_keypoints,
num_candidates,
max_keypoints_to_find_in_box,
curr_change->number_of_keypoints_,
curr_change->frame1_keypoints_,
curr_change->frame1_keypoints_ + curr_change->number_of_keypoints_);
curr_change->number_of_keypoints_ += num_new_keypoints_in_box;
LOGV("Selected %d keypoints!", curr_change->number_of_keypoints_);
}
}
// Walks along the given circle checking for pixels above or below the center.
// Returns a score, or 0 if the keypoint did not pass the criteria.
//
// Parameters:
// circle_perimeter: the circumference in pixels of the circle.
// threshold: the minimum number of contiguous pixels that must be above or
// below the center value.
// center_ptr: the location of the center pixel in memory
// offsets: the relative offsets from the center pixel of the edge pixels.
inline int TestCircle(const int circle_perimeter, const int threshold,
const uint8_t* const center_ptr, const int* offsets) {
// Get the actual value of the center pixel for easier reference later on.
const int center_value = static_cast<int>(*center_ptr);
// Number of total pixels to check. Have to wrap around some in case
// the contiguous section is split by the array edges.
const int num_total = circle_perimeter + threshold - 1;
int num_above = 0;
int above_diff = 0;
int num_below = 0;
int below_diff = 0;
// Used to tell when this is definitely not going to meet the threshold so we
// can early abort.
int minimum_by_now = threshold - num_total + 1;
// Go through every pixel along the perimeter of the circle, and then around
// again a little bit.
for (int i = 0; i < num_total; ++i) {
// This should be faster than mod.
const int perim_index = i < circle_perimeter ? i : i - circle_perimeter;
// This gets the value of the current pixel along the perimeter by using
// a precomputed offset.
const int curr_value =
static_cast<int>(center_ptr[offsets[perim_index]]);
const int difference = curr_value - center_value;
if (difference > kFastDiffAmount) {
above_diff += difference;
++num_above;
num_below = 0;
below_diff = 0;
if (num_above >= threshold) {
return above_diff;
}
} else if (difference < -kFastDiffAmount) {
below_diff += difference;
++num_below;
num_above = 0;
above_diff = 0;
if (num_below >= threshold) {
return below_diff;
}
} else {
num_above = 0;
num_below = 0;
above_diff = 0;
below_diff = 0;
}
// See if there's any chance of making the threshold.
if (MAX(num_above, num_below) < minimum_by_now) {
// Didn't pass.
return 0;
}
++minimum_by_now;
}
// Didn't pass.
return 0;
}
// Returns a score in the range [0.0, positive infinity) which represents the
// relative likelihood of a point being a corner.
float KeypointDetector::HarrisFilter(const Image<int32_t>& I_x,
const Image<int32_t>& I_y, const float x,
const float y) const {
if (I_x.ValidInterpPixel(x - kHarrisWindowSize, y - kHarrisWindowSize) &&
I_x.ValidInterpPixel(x + kHarrisWindowSize, y + kHarrisWindowSize)) {
// Image gradient matrix.
float G[] = { 0, 0, 0, 0 };
CalculateG(kHarrisWindowSize, x, y, I_x, I_y, G);
const float dx = G[0];
const float dy = G[3];
const float dxy = G[1];
// Harris-Nobel corner score.
return (dx * dy - Square(dxy)) / (dx + dy + FLT_MIN);
}
return 0.0f;
}
int KeypointDetector::AddExtraCandidatesForBoxes(
const std::vector<BoundingBox>& boxes,
const int max_num_keypoints,
Keypoint* const keypoints) const {
int num_keypoints_added = 0;
for (std::vector<BoundingBox>::const_iterator iter = boxes.begin();
iter != boxes.end(); ++iter) {
const BoundingBox box = *iter;
for (int i = 0; i < kNumToAddAsCandidates; ++i) {
for (int j = 0; j < kNumToAddAsCandidates; ++j) {
if (num_keypoints_added >= max_num_keypoints) {
LOGW("Hit cap of %d for temporary keypoints!", max_num_keypoints);
return num_keypoints_added;
}
Keypoint& curr_keypoint = keypoints[num_keypoints_added++];
curr_keypoint.pos_ = Point2f(
box.left_ + box.GetWidth() * (i + 0.5f) / kNumToAddAsCandidates,
box.top_ + box.GetHeight() * (j + 0.5f) / kNumToAddAsCandidates);
curr_keypoint.type_ = KEYPOINT_TYPE_INTEREST;
}
}
}
return num_keypoints_added;
}
void KeypointDetector::FindKeypoints(const ImageData& image_data,
const std::vector<BoundingBox>& rois,
const FramePair& prev_change,
FramePair* const curr_change) {
// Copy keypoints from second frame of last pass to temp keypoints of this
// pass.
int number_of_tmp_keypoints = CopyKeypoints(prev_change, tmp_keypoints_);
const int max_num_fast = kMaxTempKeypoints - number_of_tmp_keypoints;
number_of_tmp_keypoints +=
FindFastKeypoints(image_data, max_num_fast,
tmp_keypoints_ + number_of_tmp_keypoints);
TimeLog("Found FAST keypoints");
if (number_of_tmp_keypoints >= kMaxTempKeypoints) {
LOGW("Hit cap of %d for temporary keypoints (FAST)! %d keypoints",
kMaxTempKeypoints, number_of_tmp_keypoints);
}
if (kAddArbitraryKeypoints) {
// Add some for each object prior to scoring.
const int max_num_box_keypoints =
kMaxTempKeypoints - number_of_tmp_keypoints;
number_of_tmp_keypoints +=
AddExtraCandidatesForBoxes(rois, max_num_box_keypoints,
tmp_keypoints_ + number_of_tmp_keypoints);
TimeLog("Added box keypoints");
if (number_of_tmp_keypoints >= kMaxTempKeypoints) {
LOGW("Hit cap of %d for temporary keypoints (boxes)! %d keypoints",
kMaxTempKeypoints, number_of_tmp_keypoints);
}
}
// Score them...
LOGV("Scoring %d keypoints!", number_of_tmp_keypoints);
ScoreKeypoints(image_data, number_of_tmp_keypoints, tmp_keypoints_);
TimeLog("Scored keypoints");
// Now pare it down a bit.
SortKeypoints(number_of_tmp_keypoints, tmp_keypoints_);
TimeLog("Sorted keypoints");
LOGV("%d keypoints to select from!", number_of_tmp_keypoints);
SelectKeypoints(rois, tmp_keypoints_, number_of_tmp_keypoints, curr_change);
TimeLog("Selected keypoints");
LOGV("Picked %d (%d max) final keypoints out of %d potential.",
curr_change->number_of_keypoints_,
kMaxKeypoints, number_of_tmp_keypoints);
}
int KeypointDetector::CopyKeypoints(const FramePair& prev_change,
Keypoint* const new_keypoints) {
int number_of_keypoints = 0;
// Caching values from last pass, just copy and compact.
for (int i = 0; i < prev_change.number_of_keypoints_; ++i) {
if (prev_change.optical_flow_found_keypoint_[i]) {
new_keypoints[number_of_keypoints] =
prev_change.frame2_keypoints_[i];
new_keypoints[number_of_keypoints].score_ =
prev_change.frame1_keypoints_[i].score_;
++number_of_keypoints;
}
}
TimeLog("Copied keypoints");
return number_of_keypoints;
}
// FAST keypoint detector.
int KeypointDetector::FindFastKeypoints(const Image<uint8_t>& frame,
const int quadrant,
const int downsample_factor,
const int max_num_keypoints,
Keypoint* const keypoints) {
/*
// Reference for a circle of diameter 7.
const int circle[] = {0, 0, 1, 1, 1, 0, 0,
0, 1, 0, 0, 0, 1, 0,
1, 0, 0, 0, 0, 0, 1,
1, 0, 0, 0, 0, 0, 1,
1, 0, 0, 0, 0, 0, 1,
0, 1, 0, 0, 0, 1, 0,
0, 0, 1, 1, 1, 0, 0};
const int circle_offset[] =
{2, 3, 4, 8, 12, 14, 20, 21, 27, 28, 34, 36, 40, 44, 45, 46};
*/
// Quick test of compass directions. Any length 16 circle with a break of up
// to 4 pixels will have at least 3 of these 4 pixels active.
static const int short_circle_perimeter = 4;
static const int short_threshold = 3;
static const int short_circle_x[] = { -3, 0, +3, 0 };
static const int short_circle_y[] = { 0, -3, 0, +3 };
// Precompute image offsets.
int short_offsets[short_circle_perimeter];
for (int i = 0; i < short_circle_perimeter; ++i) {
short_offsets[i] = short_circle_x[i] + short_circle_y[i] * frame.GetWidth();
}
// Large circle values.
static const int full_circle_perimeter = 16;
static const int full_threshold = 12;
static const int full_circle_x[] =
{ -1, 0, +1, +2, +3, +3, +3, +2, +1, +0, -1, -2, -3, -3, -3, -2 };
static const int full_circle_y[] =
{ -3, -3, -3, -2, -1, 0, +1, +2, +3, +3, +3, +2, +1, +0, -1, -2 };
// Precompute image offsets.
int full_offsets[full_circle_perimeter];
for (int i = 0; i < full_circle_perimeter; ++i) {
full_offsets[i] = full_circle_x[i] + full_circle_y[i] * frame.GetWidth();
}
const int scratch_stride = frame.stride();
keypoint_scratch_->Clear(0);
// Set up the bounds on the region to test based on the passed-in quadrant.
const int quadrant_width = (frame.GetWidth() / 2) - kFastBorderBuffer;
const int quadrant_height = (frame.GetHeight() / 2) - kFastBorderBuffer;
const int start_x =
kFastBorderBuffer + ((quadrant % 2 == 0) ? 0 : quadrant_width);
const int start_y =
kFastBorderBuffer + ((quadrant < 2) ? 0 : quadrant_height);
const int end_x = start_x + quadrant_width;
const int end_y = start_y + quadrant_height;
// Loop through once to find FAST keypoint clumps.
for (int img_y = start_y; img_y < end_y; ++img_y) {
const uint8_t* curr_pixel_ptr = frame[img_y] + start_x;
for (int img_x = start_x; img_x < end_x; ++img_x) {
// Only insert it if it meets the quick minimum requirements test.
if (TestCircle(short_circle_perimeter, short_threshold,
curr_pixel_ptr, short_offsets) != 0) {
// Longer test for actual keypoint score..
const int fast_score = TestCircle(full_circle_perimeter,
full_threshold,
curr_pixel_ptr,
full_offsets);
// Non-zero score means the keypoint was found.
if (fast_score != 0) {
uint8_t* const center_ptr = (*keypoint_scratch_)[img_y] + img_x;
// Increase the keypoint count on this pixel and the pixels in all
// 4 cardinal directions.
*center_ptr += 5;
*(center_ptr - 1) += 1;
*(center_ptr + 1) += 1;
*(center_ptr - scratch_stride) += 1;
*(center_ptr + scratch_stride) += 1;
}
}
++curr_pixel_ptr;
} // x
} // y
TimeLog("Found FAST keypoints.");
int num_keypoints = 0;
// Loop through again and Harris filter pixels in the center of clumps.
// We can shrink the window by 1 pixel on every side.
for (int img_y = start_y + 1; img_y < end_y - 1; ++img_y) {
const uint8_t* curr_pixel_ptr = (*keypoint_scratch_)[img_y] + start_x;
for (int img_x = start_x + 1; img_x < end_x - 1; ++img_x) {
if (*curr_pixel_ptr >= kMinNumConnectedForFastKeypoint) {
Keypoint* const keypoint = keypoints + num_keypoints;
keypoint->pos_ = Point2f(
img_x * downsample_factor, img_y * downsample_factor);
keypoint->score_ = 0;
keypoint->type_ = KEYPOINT_TYPE_FAST;
++num_keypoints;
if (num_keypoints >= max_num_keypoints) {
return num_keypoints;
}
}
++curr_pixel_ptr;
} // x
} // y
TimeLog("Picked FAST keypoints.");
return num_keypoints;
}
int KeypointDetector::FindFastKeypoints(const ImageData& image_data,
const int max_num_keypoints,
Keypoint* const keypoints) {
int downsample_factor = 1;
int num_found = 0;
// TODO(andrewharp): Get this working for multiple image scales.
for (int i = 0; i < 1; ++i) {
const Image<uint8_t>& frame = *image_data.GetPyramidSqrt2Level(i);
num_found += FindFastKeypoints(
frame, fast_quadrant_,
downsample_factor, max_num_keypoints, keypoints + num_found);
downsample_factor *= 2;
}
// Increment the current quadrant.
fast_quadrant_ = (fast_quadrant_ + 1) % 4;
return num_found;
}
} // namespace tf_tracking