freeze_graph.py
5.45 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Converts checkpoint variables into Const ops in a standalone GraphDef file.
This script is designed to take a GraphDef proto, a SaverDef proto, and a set of
variable values stored in a checkpoint file, and output a GraphDef with all of
the variable ops converted into const ops containing the values of the
variables.
It's useful to do this when we need to load a single file in C++, especially in
environments like mobile or embedded where we may not have access to the
RestoreTensor ops and file loading calls that they rely on.
An example of command-line usage is:
bazel build tensorflow/python/tools:freeze_graph && \
bazel-bin/tensorflow/python/tools/freeze_graph \
--input_graph=some_graph_def.pb \
--input_checkpoint=model.ckpt-8361242 \
--output_graph=/tmp/frozen_graph.pb --output_node_names=softmax
You can also look at freeze_graph_test.py for an example of how to use it.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
from google.protobuf import text_format
from tensorflow.python.framework import graph_util
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string("input_graph", "",
"""TensorFlow 'GraphDef' file to load.""")
tf.app.flags.DEFINE_string("input_saver", "",
"""TensorFlow saver file to load.""")
tf.app.flags.DEFINE_string("input_checkpoint", "",
"""TensorFlow variables file to load.""")
tf.app.flags.DEFINE_string("output_graph", "",
"""Output 'GraphDef' file name.""")
tf.app.flags.DEFINE_boolean("input_binary", False,
"""Whether the input files are in binary format.""")
tf.app.flags.DEFINE_string("output_node_names", "",
"""The name of the output nodes, comma separated.""")
tf.app.flags.DEFINE_string("restore_op_name", "save/restore_all",
"""The name of the master restore operator.""")
tf.app.flags.DEFINE_string("filename_tensor_name", "save/Const:0",
"""The name of the tensor holding the save path.""")
tf.app.flags.DEFINE_boolean("clear_devices", True,
"""Whether to remove device specifications.""")
tf.app.flags.DEFINE_string("initializer_nodes", "", "comma separated list of "
"initializer nodes to run before freezing.")
def freeze_graph(input_graph, input_saver, input_binary, input_checkpoint,
output_node_names, restore_op_name, filename_tensor_name,
output_graph, clear_devices, initializer_nodes):
"""Converts all variables in a graph and checkpoint into constants."""
if not tf.gfile.Exists(input_graph):
print("Input graph file '" + input_graph + "' does not exist!")
return -1
if input_saver and not tf.gfile.Exists(input_saver):
print("Input saver file '" + input_saver + "' does not exist!")
return -1
if not tf.gfile.Glob(input_checkpoint):
print("Input checkpoint '" + input_checkpoint + "' doesn't exist!")
return -1
if not output_node_names:
print("You need to supply the name of a node to --output_node_names.")
return -1
input_graph_def = tf.GraphDef()
mode = "rb" if input_binary else "r"
with tf.gfile.FastGFile(input_graph, mode) as f:
if input_binary:
input_graph_def.ParseFromString(f.read())
else:
text_format.Merge(f.read(), input_graph_def)
# Remove all the explicit device specifications for this node. This helps to
# make the graph more portable.
if clear_devices:
for node in input_graph_def.node:
node.device = ""
_ = tf.import_graph_def(input_graph_def, name="")
with tf.Session() as sess:
if input_saver:
with tf.gfile.FastGFile(input_saver, mode) as f:
saver_def = tf.train.SaverDef()
if input_binary:
saver_def.ParseFromString(f.read())
else:
text_format.Merge(f.read(), saver_def)
saver = tf.train.Saver(saver_def=saver_def)
saver.restore(sess, input_checkpoint)
else:
sess.run([restore_op_name], {filename_tensor_name: input_checkpoint})
if initializer_nodes:
sess.run(initializer_nodes)
output_graph_def = graph_util.convert_variables_to_constants(
sess, input_graph_def, output_node_names.split(","))
with tf.gfile.GFile(output_graph, "wb") as f:
f.write(output_graph_def.SerializeToString())
print("%d ops in the final graph." % len(output_graph_def.node))
def main(unused_args):
freeze_graph(FLAGS.input_graph, FLAGS.input_saver, FLAGS.input_binary,
FLAGS.input_checkpoint, FLAGS.output_node_names,
FLAGS.restore_op_name, FLAGS.filename_tensor_name,
FLAGS.output_graph, FLAGS.clear_devices, FLAGS.initializer_nodes)
if __name__ == "__main__":
tf.app.run()