nms_utils.py 3.29 KB
from __future__ import division, print_function

import numpy as np
import tensorflow as tf

def gpu_nms(boxes, scores, num_classes, max_boxes=50, score_thresh=0.5, nms_thresh=0.5):
    boxes_list, label_list, score_list = [], [], []
    max_boxes = tf.constant(max_boxes, dtype='int32')

    boxes = tf.reshape(boxes, [-1, 4]) # '-1' means we don't konw the exact number of boxes
    score = tf.reshape(scores, [-1, num_classes])

    # Step 1: Create a filtering mask based on "box_class_scores" by using "threshold".
    mask = tf.greater_equal(score, tf.constant(score_thresh))
    # Step 2: Do non_max_suppression for each class
    for i in range(num_classes):
        # Step 3: Apply the mask to scores, boxes and pick them out
        filter_boxes = tf.boolean_mask(boxes, mask[:,i])
        filter_score = tf.boolean_mask(score[:,i], mask[:,i])
        nms_indices = tf.image.non_max_suppression(boxes=filter_boxes,
                                                   scores=filter_score,
                                                   max_output_size=max_boxes,
                                                   iou_threshold=nms_thresh, name='nms_indices')
        label_list.append(tf.ones_like(tf.gather(filter_score, nms_indices), 'int32')*i)
        boxes_list.append(tf.gather(filter_boxes, nms_indices))
        score_list.append(tf.gather(filter_score, nms_indices))

    boxes = tf.concat(boxes_list, axis=0)
    score = tf.concat(score_list, axis=0)
    label = tf.concat(label_list, axis=0)

    return boxes, score, label


def py_nms(boxes, scores, max_boxes=50, iou_thresh=0.5):
    assert boxes.shape[1] == 4 and len(scores.shape) == 1

    x1 = boxes[:, 0]
    y1 = boxes[:, 1]
    x2 = boxes[:, 2]
    y2 = boxes[:, 3]

    areas = (x2 - x1) * (y2 - y1)
    order = scores.argsort()[::-1]

    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)
        xx1 = np.maximum(x1[i], x1[order[1:]])
        yy1 = np.maximum(y1[i], y1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])

        w = np.maximum(0.0, xx2 - xx1 + 1)
        h = np.maximum(0.0, yy2 - yy1 + 1)
        inter = w * h
        ovr = inter / (areas[i] + areas[order[1:]] - inter)

        inds = np.where(ovr <= iou_thresh)[0]
        order = order[inds + 1]

    return keep[:max_boxes]


def cpu_nms(boxes, scores, num_classes, max_boxes=50, score_thresh=0.5, iou_thresh=0.5):
    boxes = boxes.reshape(-1, 4)
    scores = scores.reshape(-1, num_classes)
    picked_boxes, picked_score, picked_label = [], [], []

    for i in range(num_classes):
        indices = np.where(scores[:,i] >= score_thresh)
        filter_boxes = boxes[indices]
        filter_scores = scores[:,i][indices]
        if len(filter_boxes) == 0: 
            continue

        indices = py_nms(filter_boxes, filter_scores,
                         max_boxes=max_boxes, iou_thresh=iou_thresh)
        picked_boxes.append(filter_boxes[indices])
        picked_score.append(filter_scores[indices])
        picked_label.append(np.ones(len(indices), dtype='int32')*i)
    if len(picked_boxes) == 0: 
        return None, None, None

    boxes = np.concatenate(picked_boxes, axis=0)
    score = np.concatenate(picked_score, axis=0)
    label = np.concatenate(picked_label, axis=0)

    return boxes, score, label