@@ -2,8 +2,13 @@ changes from https://github.com/wizyoung/YOLOv3_TensorFlow
by Seongju Kim, kareus1@khu.ac.kr
I only tested in colab environment yet (2020.05.16),
so let me know if there are some errors/problems in python code version
(##last changed: 2020.05.16)
1] changed TextLineDataset to TFRecordDataset. (also changed data parsing in data utils and eval utils)
2] fixed restore-does-not-exist problem in train/eval mode
3] fixed saver to save the parameter only when save-optimizer option is true
4] changed parameter 'mode' to bool value 'is_training' in data util functions (string value 'mode' is passed as byte string, so functions do not evaluate if-clauses as expected. ex) 'train' != b'train')
5] wrote TFRecord binary iterator, which runs without tf session (references: https://github.com/pgmmpk/tfrecord )
\ No newline at end of file
5] wrote TFRecord binary iterator, which runs without tf session (references: https://github.com/pgmmpk/tfrecord )
6] removed logging/tenorboard summary code. (I will add it later if necessary)
assertlen(boxes)%5==0,'Annotation error occured in box array.'
box_cnt=len(boxes)//5
...
...
@@ -33,7 +31,7 @@ def parse_tfrecord(data):
labels=[]
foriinrange(box_cnt):
label,x_min,y_min,x_max,y_max=int(boxes[i*5]),float(boxes[i*5+1]),float(boxes[i*5+2]),float(boxes[i*5+3])## do we need to change int to float? is there float rectangle sample?
label,x_min,y_min,x_max,y_max=int(boxes[i*5]),float(boxes[i*5+1]),float(boxes[i*5+2]),float(boxes[i*5+3]),float(boxes[i*5+4])## do we need to change int to float? is there float rectangle sample?