inference_pb.py
9.47 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import numpy as np
import tensorflow as tf
from tensorflow import logging
from tensorflow import gfile
import operator
import esot3ria.pb_util as pbutil
import esot3ria.video_recommender as recommender
import esot3ria.video_util as videoutil
# Define file paths.
MODEL_PATH = "/Users/esot3ria/PycharmProjects/yt8m/models/frame/" \
"refined_model/inference_model/segment_inference_model"
VOCAB_PATH = "../vocabulary.csv"
VIDEO_TAGS_PATH = "./kaggle_solution_40k.csv"
TAG_VECTOR_MODEL_PATH = "./tag_vectors.model"
VIDEO_VECTOR_MODEL_PATH = "./video_vectors.model"
# Define parameters.
TAG_TOP_K = 5
VIDEO_TOP_K = 10
def get_segments(batch_video_mtx, batch_num_frames, segment_size):
"""Get segment-level inputs from frame-level features."""
video_batch_size = batch_video_mtx.shape[0]
max_frame = batch_video_mtx.shape[1]
feature_dim = batch_video_mtx.shape[-1]
padded_segment_sizes = (batch_num_frames + segment_size - 1) // segment_size
padded_segment_sizes *= segment_size
segment_mask = (
0 < (padded_segment_sizes[:, np.newaxis] - np.arange(0, max_frame)))
# Segment bags.
frame_bags = batch_video_mtx.reshape((-1, feature_dim))
segment_frames = frame_bags[segment_mask.reshape(-1)].reshape(
(-1, segment_size, feature_dim))
# Segment num frames.
segment_start_times = np.arange(0, max_frame, segment_size)
num_segments = batch_num_frames[:, np.newaxis] - segment_start_times
num_segment_bags = num_segments.reshape((-1))
valid_segment_mask = num_segment_bags > 0
segment_num_frames = num_segment_bags[valid_segment_mask]
segment_num_frames[segment_num_frames > segment_size] = segment_size
max_segment_num = (max_frame + segment_size - 1) // segment_size
video_idxs = np.tile(
np.arange(0, video_batch_size)[:, np.newaxis], [1, max_segment_num])
segment_idxs = np.tile(segment_start_times, [video_batch_size, 1])
idx_bags = np.stack([video_idxs, segment_idxs], axis=-1).reshape((-1, 2))
video_segment_ids = idx_bags[valid_segment_mask]
return {
"video_batch": segment_frames,
"num_frames_batch": segment_num_frames,
"video_segment_ids": video_segment_ids
}
def format_predictions(video_ids, predictions, top_k, whitelisted_cls_mask=None):
batch_size = len(video_ids)
for video_index in range(batch_size):
video_prediction = predictions[video_index]
if whitelisted_cls_mask is not None:
# Whitelist classes.
video_prediction *= whitelisted_cls_mask
top_indices = np.argpartition(video_prediction, -top_k)[-top_k:]
line = [(class_index, predictions[video_index][class_index])
for class_index in top_indices]
line = sorted(line, key=lambda p: -p[1])
yield (video_ids[video_index] + "," +
" ".join("%i %g" % (label, score) for (label, score) in line) +
"\n").encode("utf8")
def normalize_tag(tag):
if isinstance(tag, str):
new_tag = tag.lower().replace('[^a-zA-Z]', ' ')
if new_tag.find(" (") != -1:
new_tag = new_tag[:new_tag.find(" (")]
new_tag = new_tag.replace(" ", "-")
return new_tag
else:
return tag
def inference_pb(file_path):
inference_result = {}
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
# 0. Import SequenceExample type target from pb.
target_video = pbutil.convert_pb(file_path)
# 1. Load video features from pb.
video_id_batch_val = np.array([b'video'])
n_frames = len(target_video.feature_lists.feature_list['rgb'].feature)
# Restrict frame size to 300
if n_frames > 300:
n_frames = 300
video_batch_val = np.zeros((300, 1152))
for i in range(n_frames):
video_batch_rgb_raw = target_video.feature_lists.feature_list['rgb'].feature[i].bytes_list.value[0]
video_batch_rgb = np.array(tf.cast(tf.decode_raw(video_batch_rgb_raw, tf.float32), tf.float32).eval())
video_batch_audio_raw = target_video.feature_lists.feature_list['audio'].feature[i].bytes_list.value[0]
video_batch_audio = np.array(tf.cast(tf.decode_raw(video_batch_audio_raw, tf.float32), tf.float32).eval())
video_batch_val[i] = np.concatenate([video_batch_rgb, video_batch_audio], axis=0)
video_batch_val = np.array([video_batch_val])
num_frames_batch_val = np.array([n_frames])
# Restore checkpoint and meta-graph file.
if not gfile.Exists(MODEL_PATH + ".meta"):
raise IOError("Cannot find %s. Did you run eval.py?" % MODEL_PATH)
meta_graph_location = MODEL_PATH + ".meta"
logging.info("loading meta-graph: " + meta_graph_location)
with tf.device("/cpu:0"):
saver = tf.train.import_meta_graph(meta_graph_location, clear_devices=True)
logging.info("restoring variables from " + MODEL_PATH)
saver.restore(sess, MODEL_PATH)
input_tensor = tf.get_collection("input_batch_raw")[0]
num_frames_tensor = tf.get_collection("num_frames")[0]
predictions_tensor = tf.get_collection("predictions")[0]
# Workaround for num_epochs issue.
def set_up_init_ops(variables):
init_op_list = []
for variable in list(variables):
if "train_input" in variable.name:
init_op_list.append(tf.assign(variable, 1))
variables.remove(variable)
init_op_list.append(tf.variables_initializer(variables))
return init_op_list
sess.run(
set_up_init_ops(tf.get_collection_ref(tf.GraphKeys.LOCAL_VARIABLES)))
whitelisted_cls_mask = np.zeros((predictions_tensor.get_shape()[-1],),
dtype=np.float32)
segment_label_ids_file = '../segment_label_ids.csv'
with tf.io.gfile.GFile(segment_label_ids_file) as fobj:
for line in fobj:
try:
cls_id = int(line)
whitelisted_cls_mask[cls_id] = 1.
except ValueError:
# Simply skip the non-integer line.
continue
# 2. Make segment features.
results = get_segments(video_batch_val, num_frames_batch_val, 5)
video_segment_ids = results["video_segment_ids"]
video_id_batch_val = video_id_batch_val[video_segment_ids[:, 0]]
video_id_batch_val = np.array([
"%s:%d" % (x.decode("utf8"), y)
for x, y in zip(video_id_batch_val, video_segment_ids[:, 1])
])
video_batch_val = results["video_batch"]
num_frames_batch_val = results["num_frames_batch"]
if input_tensor.get_shape()[1] != video_batch_val.shape[1]:
raise ValueError("max_frames mismatch. Please re-run the eval.py "
"with correct segment_labels settings.")
predictions_val, = sess.run([predictions_tensor],
feed_dict={
input_tensor: video_batch_val,
num_frames_tensor: num_frames_batch_val
})
# 3. Make vocabularies.
voca_dict = {}
vocabs = open(VOCAB_PATH, 'r')
while True:
line = vocabs.readline()
if not line: break
vocab_dict_item = line.split(",")
if vocab_dict_item[0] != "Index":
voca_dict[vocab_dict_item[0]] = vocab_dict_item[3]
vocabs.close()
# 4. Make combined scores.
combined_scores = {}
for line in format_predictions(video_id_batch_val, predictions_val, TAG_TOP_K, whitelisted_cls_mask):
segment_id, preds = line.decode("utf8").split(",")
preds = preds.split(" ")
pred_cls_ids = [int(preds[idx]) for idx in range(0, len(preds), 2)]
pred_cls_scores = [float(preds[idx]) for idx in range(1, len(preds), 2)]
for i in range(len(pred_cls_ids)):
if pred_cls_ids[i] in combined_scores:
combined_scores[pred_cls_ids[i]] += pred_cls_scores[i]
else:
combined_scores[pred_cls_ids[i]] = pred_cls_scores[i]
combined_scores = sorted(combined_scores.items(), key=operator.itemgetter(1), reverse=True)
demoninator = float(combined_scores[0][1] + combined_scores[1][1]
+ combined_scores[2][1] + combined_scores[3][1] + combined_scores[4][1])
tag_result = []
for itemIndex in range(TAG_TOP_K):
segment_tag = str(voca_dict[str(combined_scores[itemIndex][0])])
normalized_tag = normalize_tag(segment_tag)
tag_percentage = format(combined_scores[itemIndex][1] / demoninator, ".3f")
tag_result.append((normalized_tag, tag_percentage))
# 5. Create recommend videos info, Combine results.
recommend_video_ids = recommender.recommend_videos(tag_result, TAG_VECTOR_MODEL_PATH,
VIDEO_VECTOR_MODEL_PATH, VIDEO_TOP_K)
video_result = [videoutil.getVideoInfo(ids, VIDEO_TAGS_PATH, TAG_TOP_K) for ids in recommend_video_ids]
inference_result = {
"tag_result": tag_result,
"video_result": video_result
}
# 6. Dispose instances.
sess.close()
return inference_result
if __name__ == '__main__':
filepath = "features.pb"
result = inference_pb(filepath)
print(result)