Sentiment_Analysis_BERT_main.py
6.72 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import argparse
import torch
from torch import nn
from tqdm import tqdm
from transformers import AdamW
#from transformers.optimization import WarmupLinearSchedule
import time
import random
import numpy as np
from kobert.pytorch_kobert import get_pytorch_kobert_model
bertmodel, vocab = get_pytorch_kobert_model()
import KoBERT.dataset_ as dataset
# print(vocab.to_tokens(517))
# print(vocab.to_tokens(5515))
# print(vocab.to_tokens(517))
# print(vocab.to_tokens(492))
# print("----------------------------------------------")
# print(vocab.to_tokens(3610))
# print(vocab.to_tokens(7096))
# print(vocab.to_tokens(4214))
# print(vocab.to_tokens(1770))
# print(vocab.to_tokens(517))
# print(vocab.to_tokens(46))
# print(vocab.to_tokens(4525))
# print(vocab.to_tokens(3610))
# print(vocab.to_tokens(6954))
#
# exit()
device = torch.device("cuda:0")
SEED = 1234
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
def train(model, iter_loader, optimizer, loss_fn):
train_acc = 0.0
model.train()
for batch_id, (token_ids, valid_length, segment_ids, label) in enumerate(tqdm(iter_loader)):
optimizer.zero_grad()
token_ids = token_ids.long().to(device)
segment_ids = segment_ids.long().to(device)
valid_length = valid_length
label = label.long().to(device)
out = model(token_ids, valid_length, segment_ids)
loss = loss_fn(out, label)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
#scheduler.step() # Update learning rate schedule
train_acc += calc_accuracy(out, label)
return loss.data.cpu().numpy(), train_acc/(batch_id + 1)
def test(model, iter_loader, loss_fn):
model.eval()
test_acc = 0.0
with torch.no_grad():
for batch_id, (token_ids, valid_length, segment_ids, label) in enumerate(iter_loader):
token_ids = token_ids.long().to(device)
segment_ids = segment_ids.long().to(device)
valid_length = valid_length
label = label.long().to(device)
out = model(token_ids, valid_length, segment_ids)
loss = loss_fn(out, label)
test_acc += calc_accuracy(out, label)
return loss.data.cpu().numpy(), test_acc/(batch_id + 1)
def bert_inference(model, src):
model.eval()
with torch.no_grad():
src_data = dataset.infer(args, src)
for batch_id, (token_ids, valid_length, segment_ids) in enumerate(src_data):
token_ids = torch.tensor([token_ids]).long().to(device)
segment_ids = torch.tensor([segment_ids]).long().to(device)
valid_length = valid_length.tolist()
valid_length = torch.tensor([valid_length]).long()
out = model(token_ids, valid_length, segment_ids)
max_vals, max_indices = torch.max(out, 1)
label = max_indices.data.cpu().numpy()
if label == 0:
return 0
else:
return 1
return -1
import csv
def calc_accuracy(X,Y):
max_vals, max_indices = torch.max(X, 1)
if args.do_test:
max_list = max_indices.data.cpu().numpy().tolist()
f = open('chat_Q_label_0325.txt', 'a', encoding='utf-8')
wr = csv.writer(f, delimiter='\t')
for i in range(len(max_list)):
wr.writerow(str(max_list[i]))
train_acc = (max_indices == Y).sum().data.cpu().numpy()/max_indices.size()[0]
return train_acc
def epoch_time(start_time, end_time):
elapsed_time = end_time - start_time
elapsed_mins = int(elapsed_time / 60)
elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
return elapsed_mins, elapsed_secs
# Argparse init
parser = argparse.ArgumentParser()
parser.add_argument('--max_len', type=int, default=64)
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--warmup_ratio', type=int, default=0.1)
parser.add_argument('--num_epochs', type=int, default=5)
parser.add_argument('--max_grad_norm', type=int, default=1)
parser.add_argument('--learning_rate', type=float, default=5e-5)
parser.add_argument('--num_workers', type=int, default=1)
parser.add_argument('--do_train', type=bool, default=False)
parser.add_argument('--do_test', type=bool, default=False)
parser.add_argument('--train', type=bool, default=True)
args = parser.parse_args()
def main():
from Bert_model import BERTClassifier
model = BERTClassifier(bertmodel, dr_rate=0.5).to(device)
train_dataloader, test_dataloader = dataset.get_loader(args)
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': 0.01},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
loss_fn = nn.CrossEntropyLoss()
t_total = len(train_dataloader) * args.num_epochs
warmup_step = int(t_total * args.warmup_ratio)
# scheduler = WarmupLinearSchedule(optimizer, warmup_steps=warmup_step, t_total=t_total)
best_valid_loss = float('inf')
# for idx, (key, value) in enumerate(args.__dict__.items()):
# if idx == 0:
# print("\nargparse{\n", "\t", key, ":", value)
# elif idx == len(args.__dict__) - 1:
# print("\t", key, ":", value, "\n}")
# else:
# print("\t", key, ":", value)
if args.do_train:
for epoch in range(args.num_epochs):
start_time = time.time()
print("\n\t-----Train-----")
train_loss, train_acc = train(model, train_dataloader, optimizer, loss_fn)
valid_loss, valid_acc = test(model, test_dataloader, loss_fn)
end_time = time.time()
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), 'bert_SA-model.pt')
print(f'Epoch: {epoch + 1:02} | Epoch Time: {epoch_mins}m {epoch_secs}s')
print(f'\tTrain Loss: {train_loss:.3f} | Train Acc: {train_acc * 100:.2f}%')
print(f'\t Val. Loss: {valid_loss:.3f} | Val. Acc: {valid_acc * 100:.2f}%')
model.load_state_dict(torch.load('bert_SA-model.pt'))
if args.do_test:
test_loss, test_acc = test(model, test_dataloader, loss_fn)
print(f'Test Loss: {test_loss:.3f} | Test Acc: {test_acc * 100:.2f}%')
# while(1):
# se = input("input : ")
# se_list = [se, '-1']
# bert_inference(model, [se_list])
if __name__ == "__main__":
main()