Chatbot_main.py
7.38 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import time
import torch
import argparse
from torch import nn
from metric import acc, train_test
from Styling import styling, make_special_token
from get_data import data_preprocessing, tokenizer1
from generation import inference
SEED = 1234
# argparse 정의
parser = argparse.ArgumentParser()
parser.add_argument('--max_len', type=int, default=40) # max_len 크게 해야 오류 안 생김.
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--num_epochs', type=int, default=22)
parser.add_argument('--warming_up_epochs', type=int, default=5)
parser.add_argument('--lr', type=float, default=0.0002)
parser.add_argument('--embedding_dim', type=int, default=160)
parser.add_argument('--nlayers', type=int, default=2)
parser.add_argument('--nhead', type=int, default=2)
parser.add_argument('--dropout', type=float, default=0.1)
parser.add_argument('--train', type=bool, default=True)
parser.add_argument('--per_soft', type=bool, default=False)
parser.add_argument('--per_rough', type=bool, default=False)
args = parser.parse_args()
# 시간 계산 함수
def epoch_time(start_time, end_time):
elapsed_time = end_time - start_time
elapsed_mins = int(elapsed_time / 60)
elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
return elapsed_mins, elapsed_secs
# 학습
def train(model, iterator, optimizer, criterion):
total_loss = 0
iter_num = 0
tr_acc = 0
model.train()
for step, batch in enumerate(iterator):
optimizer.zero_grad()
enc_input, dec_input , enc_label = batch.text, batch.target_text, batch.SA
dec_output = dec_input[:, 1:]
dec_outputs = torch.zeros(dec_output.size(0), args.max_len).type_as(dec_input.data)
# emotion 과 체를 반영
enc_input, dec_input, dec_outputs = \
styling(enc_input, dec_input, dec_output, dec_outputs, enc_label, args, TEXT, LABEL)
y_pred = model(enc_input, dec_input)
y_pred = y_pred.reshape(-1, y_pred.size(-1))
dec_output = dec_outputs.view(-1).long()
# padding 제외한 value index 추출
real_value_index = [dec_output != 1] # <pad> == 1
# padding 은 loss 계산시 제외
loss = criterion(y_pred[real_value_index], dec_output[real_value_index])
loss.backward()
optimizer.step()
with torch.no_grad():
train_acc = acc(y_pred, dec_output)
total_loss += loss
iter_num += 1
tr_acc += train_acc
train_test(step, y_pred, dec_output, real_value_index, enc_input,
args, TEXT, LABEL)
return total_loss.data.cpu().numpy() / iter_num, tr_acc.data.cpu().numpy() / iter_num
# 테스트
def test(model, iterator, criterion):
total_loss = 0
iter_num = 0
te_acc = 0
model.eval()
with torch.no_grad():
for batch in iterator:
enc_input, dec_input, enc_label = batch.text, batch.target_text, batch.SA
dec_output = dec_input[:, 1:]
dec_outputs = torch.zeros(dec_output.size(0), args.max_len).type_as(dec_input.data)
# emotion 과 체를 반영
enc_input, dec_input, dec_outputs = \
styling(enc_input, dec_input, dec_output, dec_outputs, enc_label, args, TEXT, LABEL)
y_pred = model(enc_input, dec_input)
y_pred = y_pred.reshape(-1, y_pred.size(-1))
dec_output = dec_outputs.view(-1).long()
real_value_index = [dec_output != 1] # <pad> == 1
loss = criterion(y_pred[real_value_index], dec_output[real_value_index])
with torch.no_grad():
test_acc = acc(y_pred, dec_output)
total_loss += loss
iter_num += 1
te_acc += test_acc
return total_loss.data.cpu().numpy() / iter_num, te_acc.data.cpu().numpy() / iter_num
def main(TEXT, LABEL, train_loader, test_loader):
# for sentiment analysis. load .pt file
from KoBERT.Bert_model import BERTClassifier
from kobert.pytorch_kobert import get_pytorch_kobert_model
bertmodel, vocab = get_pytorch_kobert_model()
sa_model = BERTClassifier(bertmodel, dr_rate=0.5).to(device)
sa_model.load_state_dict(torch.load('bert_SA-model.pt'))
# print argparse
for idx, (key, value) in enumerate(args.__dict__.items()):
if idx == 0:
print("\nargparse{\n", "\t", key, ":", value)
elif idx == len(args.__dict__)-1:
print("\t", key, ":", value, "\n}")
else:
print("\t", key, ":", value)
from model import Transformer, GradualWarmupScheduler
# Transformer model init
model = Transformer(args, TEXT, LABEL)
if args.per_soft:
sorted_path = 'sorted_model-soft.pth'
else:
sorted_path = 'sorted_model-rough.pth'
# loss 계산시 pad 제외.
criterion = nn.CrossEntropyLoss(ignore_index=LABEL.vocab.stoi['<pad>'])
optimizer = torch.optim.Adam(params=model.parameters(), lr=args.lr)
scheduler = GradualWarmupScheduler(optimizer, multiplier=8, total_epoch=args.num_epochs)
# pre-trained 된 vectors load
model.src_embedding.weight.data.copy_(TEXT.vocab.vectors)
model.trg_embedding.weight.data.copy_(LABEL.vocab.vectors)
model.to(device)
criterion.to(device)
# overfitting 막기
best_valid_loss = float('inf')
# train
if args.train:
for epoch in range(args.num_epochs):
torch.manual_seed(SEED)
scheduler.step(epoch)
start_time = time.time()
# train, validation
train_loss, train_acc = train(model, train_loader, optimizer, criterion)
valid_loss, valid_acc = test(model, test_loader, criterion)
# time cal
end_time = time.time()
epoch_mins, epoch_secs = epoch_time(start_time, end_time)
#torch.save(model.state_dict(), sorted_path) # for some overfitting
#전에 학습된 loss 보다 현재 loss 가 더 낮을시 모델 저장.
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': valid_loss},
sorted_path)
print(f'\t## SAVE valid_loss: {valid_loss:.3f} | valid_acc: {valid_acc:.3f} ##')
# print loss and acc
print(f'\n\t==Epoch: {epoch + 1:02} | Epoch Time: {epoch_mins}m {epoch_secs}s==')
print(f'\t==Train Loss: {train_loss:.3f} | Train_acc: {train_acc:.3f}==')
print(f'\t==Valid Loss: {valid_loss:.3f} | Valid_acc: {valid_acc:.3f}==\n')
# inference
print("\t----------성능평가----------")
checkpoint = torch.load(sorted_path)
model.load_state_dict(checkpoint['model_state_dict'])
test_loss, test_acc = test(model, test_loader, criterion) # 아
print(f'==test_loss : {test_loss:.3f} | test_acc: {test_acc:.3f}==')
print("\t-----------------------------")
while (True):
inference(device, args, TEXT, LABEL, model, sa_model)
print("\n")
if __name__ == '__main__':
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
# TEXT 는 사람의 말, LABEL 은 챗봇 답변을 의미하는 Field.
TEXT, LABEL, train_loader, test_loader = data_preprocessing(args, device)
main(TEXT, LABEL, train_loader, test_loader)