Showing
1 changed file
with
202 additions
and
0 deletions
Chatbot/Chatbot_main.py
0 → 100644
1 | +import time | ||
2 | +import torch | ||
3 | +import argparse | ||
4 | +from torch import nn | ||
5 | +from metric import acc, train_test | ||
6 | +from Styling import styling, make_special_token | ||
7 | +from get_data import data_preprocessing, tokenizer1 | ||
8 | +from generation import inference | ||
9 | + | ||
10 | +SEED = 1234 | ||
11 | + | ||
12 | +# argparse 정의 | ||
13 | +parser = argparse.ArgumentParser() | ||
14 | +parser.add_argument('--max_len', type=int, default=40) # max_len 크게 해야 오류 안 생김. | ||
15 | +parser.add_argument('--batch_size', type=int, default=256) | ||
16 | +parser.add_argument('--num_epochs', type=int, default=22) | ||
17 | +parser.add_argument('--warming_up_epochs', type=int, default=5) | ||
18 | +parser.add_argument('--lr', type=float, default=0.0002) | ||
19 | +parser.add_argument('--embedding_dim', type=int, default=160) | ||
20 | +parser.add_argument('--nlayers', type=int, default=2) | ||
21 | +parser.add_argument('--nhead', type=int, default=2) | ||
22 | +parser.add_argument('--dropout', type=float, default=0.1) | ||
23 | +parser.add_argument('--train', type=bool, default=True) | ||
24 | +parser.add_argument('--per_soft', type=bool, default=False) | ||
25 | +parser.add_argument('--per_rough', type=bool, default=False) | ||
26 | +args = parser.parse_args() | ||
27 | + | ||
28 | +# 시간 계산 함수 | ||
29 | +def epoch_time(start_time, end_time): | ||
30 | + elapsed_time = end_time - start_time | ||
31 | + elapsed_mins = int(elapsed_time / 60) | ||
32 | + elapsed_secs = int(elapsed_time - (elapsed_mins * 60)) | ||
33 | + return elapsed_mins, elapsed_secs | ||
34 | + | ||
35 | +# 학습 | ||
36 | +def train(model, iterator, optimizer, criterion): | ||
37 | + total_loss = 0 | ||
38 | + iter_num = 0 | ||
39 | + tr_acc = 0 | ||
40 | + model.train() | ||
41 | + | ||
42 | + for step, batch in enumerate(iterator): | ||
43 | + optimizer.zero_grad() | ||
44 | + | ||
45 | + enc_input, dec_input , enc_label = batch.text, batch.target_text, batch.SA | ||
46 | + | ||
47 | + dec_output = dec_input[:, 1:] | ||
48 | + dec_outputs = torch.zeros(dec_output.size(0), args.max_len).type_as(dec_input.data) | ||
49 | + | ||
50 | + # emotion 과 체를 반영 | ||
51 | + enc_input, dec_input, dec_outputs = \ | ||
52 | + styling(enc_input, dec_input, dec_output, dec_outputs, enc_label, args, TEXT, LABEL) | ||
53 | + | ||
54 | + y_pred = model(enc_input, dec_input) | ||
55 | + | ||
56 | + y_pred = y_pred.reshape(-1, y_pred.size(-1)) | ||
57 | + dec_output = dec_outputs.view(-1).long() | ||
58 | + | ||
59 | + # padding 제외한 value index 추출 | ||
60 | + real_value_index = [dec_output != 1] # <pad> == 1 | ||
61 | + | ||
62 | + # padding 은 loss 계산시 제외 | ||
63 | + loss = criterion(y_pred[real_value_index], dec_output[real_value_index]) | ||
64 | + loss.backward() | ||
65 | + optimizer.step() | ||
66 | + | ||
67 | + with torch.no_grad(): | ||
68 | + train_acc = acc(y_pred, dec_output) | ||
69 | + | ||
70 | + total_loss += loss | ||
71 | + iter_num += 1 | ||
72 | + tr_acc += train_acc | ||
73 | + | ||
74 | + train_test(step, y_pred, dec_output, real_value_index, enc_input, | ||
75 | + args, TEXT, LABEL) | ||
76 | + | ||
77 | + return total_loss.data.cpu().numpy() / iter_num, tr_acc.data.cpu().numpy() / iter_num | ||
78 | + | ||
79 | +# 테스트 | ||
80 | +def test(model, iterator, criterion): | ||
81 | + total_loss = 0 | ||
82 | + iter_num = 0 | ||
83 | + te_acc = 0 | ||
84 | + model.eval() | ||
85 | + | ||
86 | + with torch.no_grad(): | ||
87 | + for batch in iterator: | ||
88 | + enc_input, dec_input, enc_label = batch.text, batch.target_text, batch.SA | ||
89 | + dec_output = dec_input[:, 1:] | ||
90 | + dec_outputs = torch.zeros(dec_output.size(0), args.max_len).type_as(dec_input.data) | ||
91 | + | ||
92 | + # emotion 과 체를 반영 | ||
93 | + enc_input, dec_input, dec_outputs = \ | ||
94 | + styling(enc_input, dec_input, dec_output, dec_outputs, enc_label, args, TEXT, LABEL) | ||
95 | + | ||
96 | + y_pred = model(enc_input, dec_input) | ||
97 | + | ||
98 | + y_pred = y_pred.reshape(-1, y_pred.size(-1)) | ||
99 | + dec_output = dec_outputs.view(-1).long() | ||
100 | + | ||
101 | + real_value_index = [dec_output != 1] # <pad> == 1 | ||
102 | + | ||
103 | + loss = criterion(y_pred[real_value_index], dec_output[real_value_index]) | ||
104 | + | ||
105 | + with torch.no_grad(): | ||
106 | + test_acc = acc(y_pred, dec_output) | ||
107 | + total_loss += loss | ||
108 | + iter_num += 1 | ||
109 | + te_acc += test_acc | ||
110 | + | ||
111 | + return total_loss.data.cpu().numpy() / iter_num, te_acc.data.cpu().numpy() / iter_num | ||
112 | + | ||
113 | +def main(TEXT, LABEL, train_loader, test_loader): | ||
114 | + | ||
115 | + # for sentiment analysis. load .pt file | ||
116 | + from KoBERT.Bert_model import BERTClassifier | ||
117 | + from kobert.pytorch_kobert import get_pytorch_kobert_model | ||
118 | + bertmodel, vocab = get_pytorch_kobert_model() | ||
119 | + sa_model = BERTClassifier(bertmodel, dr_rate=0.5).to(device) | ||
120 | + sa_model.load_state_dict(torch.load('bert_SA-model.pt')) | ||
121 | + | ||
122 | + # print argparse | ||
123 | + for idx, (key, value) in enumerate(args.__dict__.items()): | ||
124 | + if idx == 0: | ||
125 | + print("\nargparse{\n", "\t", key, ":", value) | ||
126 | + elif idx == len(args.__dict__)-1: | ||
127 | + print("\t", key, ":", value, "\n}") | ||
128 | + else: | ||
129 | + print("\t", key, ":", value) | ||
130 | + | ||
131 | + from model import Transformer, GradualWarmupScheduler | ||
132 | + | ||
133 | + # Transformer model init | ||
134 | + model = Transformer(args, TEXT, LABEL) | ||
135 | + if args.per_soft: | ||
136 | + sorted_path = 'sorted_model-soft.pth' | ||
137 | + else: | ||
138 | + sorted_path = 'sorted_model-rough.pth' | ||
139 | + | ||
140 | + # loss 계산시 pad 제외. | ||
141 | + criterion = nn.CrossEntropyLoss(ignore_index=LABEL.vocab.stoi['<pad>']) | ||
142 | + | ||
143 | + optimizer = torch.optim.Adam(params=model.parameters(), lr=args.lr) | ||
144 | + scheduler = GradualWarmupScheduler(optimizer, multiplier=8, total_epoch=args.num_epochs) | ||
145 | + | ||
146 | + # pre-trained 된 vectors load | ||
147 | + model.src_embedding.weight.data.copy_(TEXT.vocab.vectors) | ||
148 | + model.trg_embedding.weight.data.copy_(LABEL.vocab.vectors) | ||
149 | + model.to(device) | ||
150 | + criterion.to(device) | ||
151 | + | ||
152 | + # overfitting 막기 | ||
153 | + best_valid_loss = float('inf') | ||
154 | + | ||
155 | + # train | ||
156 | + if args.train: | ||
157 | + for epoch in range(args.num_epochs): | ||
158 | + torch.manual_seed(SEED) | ||
159 | + scheduler.step(epoch) | ||
160 | + start_time = time.time() | ||
161 | + | ||
162 | + # train, validation | ||
163 | + train_loss, train_acc = train(model, train_loader, optimizer, criterion) | ||
164 | + valid_loss, valid_acc = test(model, test_loader, criterion) | ||
165 | + | ||
166 | + # time cal | ||
167 | + end_time = time.time() | ||
168 | + epoch_mins, epoch_secs = epoch_time(start_time, end_time) | ||
169 | + | ||
170 | + #torch.save(model.state_dict(), sorted_path) # for some overfitting | ||
171 | + #전에 학습된 loss 보다 현재 loss 가 더 낮을시 모델 저장. | ||
172 | + if valid_loss < best_valid_loss: | ||
173 | + best_valid_loss = valid_loss | ||
174 | + torch.save({ | ||
175 | + 'epoch': epoch, | ||
176 | + 'model_state_dict': model.state_dict(), | ||
177 | + 'optimizer_state_dict': optimizer.state_dict(), | ||
178 | + 'loss': valid_loss}, | ||
179 | + sorted_path) | ||
180 | + print(f'\t## SAVE valid_loss: {valid_loss:.3f} | valid_acc: {valid_acc:.3f} ##') | ||
181 | + | ||
182 | + # print loss and acc | ||
183 | + print(f'\n\t==Epoch: {epoch + 1:02} | Epoch Time: {epoch_mins}m {epoch_secs}s==') | ||
184 | + print(f'\t==Train Loss: {train_loss:.3f} | Train_acc: {train_acc:.3f}==') | ||
185 | + print(f'\t==Valid Loss: {valid_loss:.3f} | Valid_acc: {valid_acc:.3f}==\n') | ||
186 | + | ||
187 | + # inference | ||
188 | + print("\t----------성능평가----------") | ||
189 | + checkpoint = torch.load(sorted_path) | ||
190 | + model.load_state_dict(checkpoint['model_state_dict']) | ||
191 | + test_loss, test_acc = test(model, test_loader, criterion) # 아 | ||
192 | + print(f'==test_loss : {test_loss:.3f} | test_acc: {test_acc:.3f}==') | ||
193 | + print("\t-----------------------------") | ||
194 | + while (True): | ||
195 | + inference(device, args, TEXT, LABEL, model, sa_model) | ||
196 | + print("\n") | ||
197 | + | ||
198 | +if __name__ == '__main__': | ||
199 | + device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | ||
200 | + # TEXT 는 사람의 말, LABEL 은 챗봇 답변을 의미하는 Field. | ||
201 | + TEXT, LABEL, train_loader, test_loader = data_preprocessing(args, device) | ||
202 | + main(TEXT, LABEL, train_loader, test_loader) |
-
Please register or login to post a comment